Yield Data Management in Rice Cultivation in Precision Agriculture Terms: The Greek Paradigm
Abstract
1. Introduction
1.1. Generic
1.2. The Role of Yield Monitoring in Precision Agriculture
1.3. Data Accuracy and Management Challenges
- Estimation of the amount of nutrients removed by the harvested crop.
- Economic assessment, such as the estimation of profitability.
- Delineation of site-specific management zones for tailored interventions.
- Analysis of the impacts of different experimental treatments within a field.
- Provision of verifiable, scientific data to farmers, serving as backed proof for low-yielding zones identified previously.
1.4. Research Gap and Study Objectives
- Identifying all possible sources of rice yield data, e.g., yield monitors, field measurements, remote sensing, institutional reports, etc.
- Assessing the reliability and accuracy of rice yield data obtained directly from harvesters.
- Exploring the necessity for post-processing rice yield data from harvesters, including cleansing, homogenization, and calibration.
- Developing a methodology for homogenizing rice yield data derived from different harvesters and sources to enable accurate comparisons between fields and across years.
2. Study Area
2.1. Geographic Context and Agricultural Importance
2.2. Environmental and Hydrological Conditions
2.3. Cropping System and Yield Performance
3. Data and Methods
3.1. Overall Methodology
3.2. Data Acquisition and Preparation
3.2.1. Source Data Acquisition
3.2.2. Coordinate System Unification
3.2.3. Data Type Normalization
3.3. Data Cleansing and Preprocessing
3.3.1. Geometry Repair and Filtering
3.3.2. Outlier Detection and Removal
3.4. Data Analysis and Application
3.4.1. Spatial Interpolation and Calibration
3.4.2. Comparative Descriptive Statistics
- PrecAg: Farmers implementing precision fertilization practices in the Axios River Plain (data derived from yield monitors, 2017–2024).
- Non-PrecAg: Farmers not implementing precision fertilization in the Axios River Plain (data derived from yield monitors, 2020–2024).
- JRC: The generic group of rice farmers across Greece, as reported by the JRC/MARS (data estimated via remote sensing and local reporting, 2014–2024).
3.4.3. Heterogeneity and Spatial Autocorrelation Analysis
3.4.4. Data Display and Application
4. Results
4.1. The Five-Descriptor Protocol Framework
4.2. Quantitative Yield Performance Results
4.2.1. Yield Discrepancy and Calibration
4.2.2. Comparative Yield Averages
- The PrecAg (Precision Agriculture) group, utilizing site-specific fertilization, achieved the highest average yield at 9.87 t/ha.
- The Non-PrecAg group, using conventional methods, had a lower average of 9.11 t/ha.
- Both groups significantly outperformed the broader national average of 7.68 t/ha (reported by JRC/MARS).
4.3. Characterization of Within-Field Variability
4.3.1. Global Variance (Coefficient of Variation—CV)
4.3.2. Local Variance and Spatial Structure
4.4. Visualization
5. Discussion
5.1. The Protocol as a Validated Data Management Framework
5.2. Low Yield Variability Versus High Environmental Variability
- Soil Properties (derived from sampling and interpolation): approx. 33.7% average within-field variability [29].
- Spectral Properties (derived from satellite imagery): approx. 35.3% average within-field variability [29].
- Processed Yield Data (derived from yield monitors): approx. 8.6% average within-field variability.
5.3. Impact of Precision Agriculture on Yield and Uniformity
5.4. Application in Predictive Modeling and Variation Interpretation
- Soil mechanics: Poor tillage, tractor traces causing compaction or crust formation.
- Hydrology: Rapidly drained (sandy soils) or persistently flooded locations (ground lowering).
- Obstacles and Wildlife: Physical obstacles (power columns) or the destructive presence of protected birds (flamingos in the Ramsar site).
- Pest Management: Weed infestations or collateral damage from spraying of weed management substances.
5.5. Methodological Choices for Zone Delineation
5.6. Future Enhancements
- Identifying specific spots with tillage or compaction issues.
- Mapping irrigation problems (waterlogged or rapidly drained spots).
- Correlating weed and pest outbreaks with low-yield spots.
6. Conclusions
6.1. Accomplishment of Specific Objectives
6.2. Key Contributions and Significance
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, L.; Mahdi, S.S. Yield Monitoring and Mapping. In Satellite Farming; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Karydas, C.; Iatrou, M.; Mourelatos, S. An Innovative Process Chain for Precision Agriculture Services. Computers 2025, 14, 234. [Google Scholar] [CrossRef]
- Zion Market Research. Precision Farming Market Size, Share, Growth and Forecast 2032. 2025. Available online: https://www.zionmarketresearch.com/report/precision-farming-market#:~:text=The%20yield%20monitoring%20segment%20is%20anticipated%20to%20report,landlord%20negotiations%2C%20and%20track%20records%20for%20food%20safety (accessed on 6 November 2025).
- Kabir, M.S.; Gulandaz, M.A.; Ali, M.; Reza, M.N.; Kabir, M.S.N.; Chung, S.-O. Yield monitoring systems for non-grain crops: A review. Korean J. Agric. Sci. 2024, 51, 63–77. [Google Scholar] [CrossRef]
- Johannsen, C.J.; Carter, P.G. Site-Specific Soil Management. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 497–503. ISBN 9780123485304. [Google Scholar] [CrossRef]
- Fabbri, C.; Dalla Marta, A.; Napoli, M.; Orlandini, S.; Verdi, L. Short-term response of greenhouse gas emissions from precision fertilization on barley. Agronomy 2023, 13, 96. [Google Scholar] [CrossRef]
- Lyle, G.K.; Johnson, B.E.; Johnson, A.M.H.; Humburg, C.L. On-the-go data quality control for yield monitors. Trans. ASABE 2019, 62, 939–947. [Google Scholar]
- Fulton, J.; Hawkins, E.; Taylor, R.; Franzen, A. Yield Monitoring and Mapping. In Precision Agriculture Basics; Shannon, D.K., Clay, D.E., Kitchen, N.R., Eds.; ACSESS Publications: Madison, WI, USA, 2017; pp. 63–78. ISBN 978-0-89118-366-2. [Google Scholar] [CrossRef]
- Longchamps, L.; Tisseyre, B.; Taylor, J.; Sagoo, L.; Momin, A.; Fountas, S.; Manfrini, L.; Ampatzidis, Y.; Schueller, J.K. Yield sensing technologies for perennial and annual horticultural crops: A review. Precis. Agric. 2022, 23, 2407–2448. [Google Scholar] [CrossRef]
- Gauci, A.A.; Fulton, J.P.; Lindsey, A.; Shearer, S.A.; Barker, D. Precision of grain yield monitors for use in on-farm research strip trials. Precis. Agric. 2024, 25, 771–784. [Google Scholar] [CrossRef]
- Byabazaire, J.; O’Hare, G.M.P.; Collier, R.; Kulatunga, C.; Delaney, D. A Comprehensive Approach to Assessing Yield Map Quality in Smart Agriculture: Void Detection and Spatial Error Mapping. Agronomy 2023, 13, 1943. [Google Scholar] [CrossRef]
- Clarke, D.E.; Stockdale, E.A.; Hannam, J.A.; Marchant, B.P.; Hallett, S.H. Whole-farm yield map datasets—Data validation for exploring spatiotemporal yield and economic stability. Agric. Syst. 2024, 218, 103972. [Google Scholar] [CrossRef]
- Vega, A.; Córdoba, M.; Castro-Franco, M.; Balzarini, M. Protocol for automating error removal from yield maps via statistical filtering. Precis. Agric. 2020, 19, 1–15. [Google Scholar] [CrossRef]
- Girz, A.; Mattila, T.J. Processing of Combine Harvester Yield Monitor Data in QGIS. Available online: https://files.core.ac.uk/download/586795241.pdf (accessed on 6 November 2025).
- Murrell, T.S.; Rund, Q.B. Using ArcGIS for Yield Data Analysis (ESRI Paper). Available online: https://proceedings.esri.com/library/userconf/proc03/p0897.pdf (accessed on 6 November 2025).
- Tripathi, R.; Nayak, A.K.; Shahid, M.; Gautam, P.; Bhattacharyya, P.; Satapathy, B.S. Precision farming technologies for water and nutrient management in rice: Challenges and opportunities. Oryza 2021, 58, 45–60. [Google Scholar] [CrossRef]
- Sallare, R. The Ecology of the Ancient Greek World; Cornell University Press: Ithaca, NY, USA, 1993; p. 23. ISBN 0801426154. [Google Scholar]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Aschonitis, V.G.; Papamichail, D.; Demertzi, K.; Colombani, N.; Mastrocicco, M.; Ghirardini, A.; Castaldelli, G.; Fano, E.-A. High-resolution global grids of revised Priestley-Taylor and Hargreaves-Samani coefficients for assessing ASCE-standardized reference crop evapotranspiration and solar radiation. Earth Syst. Sci. Data 2017, 9, 615–638. [Google Scholar] [CrossRef]
- Litskas, V.D.; Aschonitis, V.G.; Lekakis, E.H.; Antonopoulos, V.Z. Effects of land use and irrigation practices on Ca, Mg, K, Na loads in rice-based agricultural systems. Agric. Water Manag. 2014, 132, 30–36. [Google Scholar] [CrossRef]
- Ricepedia. Original Source: FAOSTAT. 2017. Available online: https://web.archive.org/web/20200803030706/http://ricepedia.org/index.php/greece (accessed on 18 January 2017).
- Joint Research Centre/Monitoring Agriculture ResourceS (JRC/MARS). 2024. Available online: https://agri4cast.jrc.ec.europa.eu/bulletinsarchive (accessed on 6 November 2025).
- Esri. How Segment Mean Shift Works. ArcGIS Pro Documentation. 2023. Available online: https://pro.arcgis.com/en/pro-app/latest/help/analysis/raster-functions/segment-mean-shift-function.htm (accessed on 6 November 2025).
- Sheehy, J.; Mitchell, P.L. Calculating maximum theoretical yield in rice. Field Crops Res. 2015, 182, 68–75. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Paraforos, D.S.; Vassiliadis, V.; Kortenbruck, D.; Stamkopoulos, K.; Ziogas, V.; Sapounas, A.A.; Griepentrog, H.W. Multi-level automation of farm management information systems. Comput. Electron. Agric. 2017, 14, 504–514. [Google Scholar] [CrossRef]
- Karydas, C.; Chatziantoniou, M.; Stamkopoulos, K.; Iatrou, M.; Vassiliadis, V.; Mourelatos, S. Embedding a new precision agriculture service into a farm management information system-points of innovation. Smart Agric. Technol. 2023, 4, 100175. [Google Scholar] [CrossRef]
- San Emeterio de la Parte, M.; Martínez-Ortega, J.-F.; Hernández Díaz, V.; Lucas Martínez, N. Big Data and precision agriculture: A novel spatio-temporal semantic IoT data management framework for improved interoperability. J. Big Data 2023, 10, 52. [Google Scholar] [CrossRef]
- Karydas, C.; Iatrou, M.; Iatrou, G.; Mourelatos, S. Management Zone Delineation for Site-Specific Fertilization in Rice Crop Using Multi-Temporal RapidEye Imagery. Remote Sens. 2020, 12, 2604. [Google Scholar] [CrossRef]
- Iatrou, M.; Karydas, C.; Tseni, X.; Mourelatos, S. Representation Learning with a Variational Autoencoder for Predicting Nitrogen Requirement in Rice. Remote Sens. 2022, 14, 5978. [Google Scholar] [CrossRef]
- Van Arendonk, J.; Van, T.C.; Van der Werf, W. Machine learning for crop yield prediction and nitrogen management. Front. Plant Sci. 2021, 12, 650519. [Google Scholar]
- Chauhan, B.S.; Mahajan, G.; Kumar, V. Integrated weed management in rice cultivation. In Recent Advances in Weed Management; Kang, M.S., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 211–236. [Google Scholar]
- Tsouvalis, J.; Seymour, S.; Watkins, C. Exploring Knowledge-Cultures: Precision Farming, Yield Mapping, and the Expert–Farmer Interface. Environ. Plan. A Econ. Space 2000, 32, 909–924. [Google Scholar] [CrossRef]








| Descriptor | Function/Purpose | Key Geospatial Actions |
|---|---|---|
| Data Organization | Establishes a common geodatabase foundation. | Data collection, ingestion, and projection to WGS84. |
| Data Curation | Ensures data quality and geometric integrity. | Geometry repair of polygon data, cleansing of outliers (zero and abnormally high values) via spatial filtering. |
| Data Homogenization | Standardizes diverse data for comparative analysis. | Data conversion (polygon to point), layer merging/unification, unit conversion (t/ha), interpolation to raster layers (IDW), and calibration with in situ weighting. |
| Data Analysis | Explores and characterizes yield performance and variability. | Descriptive statistics, spatial autocorrelation (Moran’s Index), and yield surface segmentation. |
| Data Visualization | Communicates final, processed data for application. | Displaying yield data (original or classified) in GIS and transferring to the ifarma Farm Management Information System (FMIS). |
| Year | PrecAg | Non-PrecAg | Greek Average |
|---|---|---|---|
| 2017 | 10.11 | - | 8.42 |
| 2018 | 9.44 | - | 8.51 |
| 2019 | 9.86 | - | 6.98 |
| 2020 | 9.69 | 9.40 | 7.04 |
| 2021 | 9.74 | 9.04 | 7.78 |
| 2022 | 10.20 | 9.19 | 8.10 |
| 2023 | 9.54 | 8.50 | 7.64 |
| 2024 | 10.18 | 9.41 | 7.86 |
| Avrg [2020–2024] | 9.87 | 9.11 | 7.68 |
| Std [2020–2024] | 0.30 | 0.37 | 0.40 |
| CV [2020–2024] | 3.1% | 4.1% | 5.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karydas, C.; Iatrou, M.; Mourelatos, S. Yield Data Management in Rice Cultivation in Precision Agriculture Terms: The Greek Paradigm. AgriEngineering 2025, 7, 413. https://doi.org/10.3390/agriengineering7120413
Karydas C, Iatrou M, Mourelatos S. Yield Data Management in Rice Cultivation in Precision Agriculture Terms: The Greek Paradigm. AgriEngineering. 2025; 7(12):413. https://doi.org/10.3390/agriengineering7120413
Chicago/Turabian StyleKarydas, Christos, Miltiadis Iatrou, and Spiros Mourelatos. 2025. "Yield Data Management in Rice Cultivation in Precision Agriculture Terms: The Greek Paradigm" AgriEngineering 7, no. 12: 413. https://doi.org/10.3390/agriengineering7120413
APA StyleKarydas, C., Iatrou, M., & Mourelatos, S. (2025). Yield Data Management in Rice Cultivation in Precision Agriculture Terms: The Greek Paradigm. AgriEngineering, 7(12), 413. https://doi.org/10.3390/agriengineering7120413

