Development of Prediction Models for Apple Fruit Diameter and Length Using Unmanned Aerial Vehicle-Based Multispectral Imagery
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Subjects and Locations
2.2. Multispectral Image Acquisition
2.3. Apple Data Collection
2.4. Multispectral Image Processing
2.5. Statistical Analysis
3. Results and Discussion
3.1. Model Performance Evaluation
3.2. Impact Analysis of Vegetation Indices
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hyson, D.A. A comprehensive review of apples and apple components and their relationship to human health. Adv. Nutr. 2011, 2, 408–420. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-A.; Choi, D.-W.; Lim, C.-R. A study on changes in productivity of apple farmers. J. Korea Acad. Ind. Coop. Soc. 2022, 23, 496–504. [Google Scholar] [CrossRef]
- Statistics Korea (KOSTAT). Results of the 2024 Autumn Production Survey for Cabbage, Radish, Soybean, Apple, and Pear; KOSTAT: Daejeon, Republic of Korea, 2024. (In Korean)
- Korea Rural Economic Institute (KREI). Agricultural Perspective 2024: Agriculture and Rural Areas in an Era of Uncertainty: Challenges and Future Prospects; KREI: Seoul, Republic of Korea, 2024; pp. 507–526. Available online: https://repository.krei.re.kr/bitstream/2018.oak/30725/1/E04-2024-2.pdf (accessed on 15 October 2025). (In Korean)
- Rural Development Administration (RDA). Apple Cultivation—Agricultural Technology Guide, 5th rev. ed.; Rural Development Administration: Jeollabuk-do, Republic of Korea, 2019.
- Li, M.; Chen, M.; Zhang, Y.; Fu, C.; Xing, B.; Li, W.; Qian, J.; Li, S.; Wang, H.; Fan, X.; et al. Apple fruit diameter and length estimation by using the thermal and sunshine hours approach and its application to the digital orchard management information system. PLoS ONE 2015, 10, e0120124. [Google Scholar] [CrossRef]
- Fang, P.; Wang, Y.; Abler, D.; Lin, G. Effects of aging on labor-intensive crop production from the perspectives of landform and life cycle labor supply: Evidence from Chinese apple growers. Agriculture 2023, 13, 1523. [Google Scholar] [CrossRef]
- Kim, S.; Heo, I.; Lee, S. Impacts of temperature rising on changing of cultivation area of apple in Korea. J. Korean Assoc. Reg. Geogr. 2010, 16, 201–215. Available online: https://www.koreascience.kr/article/JAKO201030853092608.page (accessed on 26 August 2025).
- Kaack, K.; Pedersen, H.L. Prediction of diameter, weight and quality of apple fruit (Malus domestica Borkh.) cv. ‘Elstar’ using climatic variables and their interactions. Eur. J. Hortic. Sci. 2010, 75, 60–70. [Google Scholar] [CrossRef]
- Jiang, X.; He, L. Investigation of effective irrigation strategies for high-density apple orchards in Pennsylvania. Agronomy 2021, 11, 732. [Google Scholar] [CrossRef]
- Yan, Y.; Tang, X.; Zhu, X.; Yu, X. Optimal time phase identification for apple orchard land recognition and spatial analysis using multitemporal Sentinel-2 images and random forest classification. Sustainability 2023, 15, 4695. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, C.; Xu, B.; Zhu, Y.; Zhao, F.; Han, S.; Yang, G.; Yang, H. Predicting individual apple tree yield using UAV multi-source remote sensing data and ensemble learning. Comput. Electron. Agric. 2022, 201, 107275. [Google Scholar] [CrossRef]
- Kang, Y.S.; Ryu, C.S.; Cho, J.G.; Park, K.S. Predicting apple tree macronutrients using unmanned aerial vehicle-based hyperspectral imagery to manage apple orchard nutrients. Drones 2024, 8, 369. [Google Scholar] [CrossRef]
- Jemaa, H.; Bouachir, W.; Leblon, B.; LaRocque, A.; Haddadi, A.; Bouguila, N. UAV-based computer vision system for orchard apple tree detection and health assessment. Remote Sens. 2023, 15, 3558. [Google Scholar] [CrossRef]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Xu, W.; Liu, X.; Dong, J.; Tan, J.; Wang, X.; Wang, X.; Wu, L. Improvement of citrus yield prediction using UAV multispectral images and the CPSO algorithm. Agronomy 2025, 15, 171. [Google Scholar] [CrossRef]
- Blanco, V.; Blaya-Ros, P.J.; Castillo, C.; Soto-Vallés, F.; Torres-Sánchez, R.; Domingo, R. Potential of UAS-based remote sensing for estimating tree water status and yield in sweet cherry trees. Remote Sens. 2020, 12, 2359. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006; Available online: https://www.gaussianprocess.org/gpml/ (accessed on 18 July 2025).
- Schulz, E.; Speekenbrink, M.; Krause, A. A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions. J. Math. Psychol. 2018, 85, 1–16. [Google Scholar] [CrossRef]
- Arefi, A.; Sturm, B.; von Gersdorff, G.; Nasirahmadi, A.; Hensel, O. Vis–NIR hyperspectral imaging along with Gaussian process regression to monitor quality attributes of apple slices during drying. LWT 2021, 152, 112297. [Google Scholar] [CrossRef]
- Korea Meteorological Administration (KMA). Daily Precipitation and Temperature Data. KMA Open Data Portal. Available online: https://data.kma.go.kr/stcs/grnd/grndRnList.do?pgmNo=69 (accessed on 16 October 2025). (In Korean).
- Rural Development Administration (RDA). Soil Environment Information System (Heuktoram). Available online: https://soil.rda.go.kr (accessed on 16 October 2025). (In Korean).
- Korea Institute of Geoscience and Mineral Resources (KIGAM). Geo Big Data Open Platform: Geological Map of Andong Region (1:250,000). Available online: https://data.kigam.re.kr/mgeo (accessed on 16 October 2025). (In Korean).
- Korea Rural Economic Institute (KREI). Agricultural Perspective 2023: Apple Industry Trends and Statistics; KREI: Seoul, Republic of Korea, 2023; pp. 543–544. Available online: https://repository.krei.re.kr/bitstream/2018.oak/29527/1/E04-2023-2.pdf (accessed on 27 August 2025). (In Korean)
- United States Department of Agriculture Foreign Agricultural Service (USDAFAS). 2021 Korea Apple Update, 2.0.2.1; GAINReport No KS2021-0029; USDAFAS: Washington, DC, USA, 2021. Available online: https://gain.fas.usda.gov (accessed on 27 August 2025).
- Varela, P.; Salvador, A.; Fiszman, S. Shelf-life estimation of ‘Fuji’ apples: Sensory characteristics and consumer acceptability. Postharvest Biol. Technol. 2005, 38, 18–24. [Google Scholar] [CrossRef]
- Simpson, J.E.; Holman, F.; Nieto, H.; Voelksch, I.; Mauder, M.; Klatt, J.; Fiener, P.; Kaplan, J.O. High Spatial and Temporal Resolution Energy Flux Mapping of Different Land Covers Using an Off-the-Shelf Unmanned Aerial System. Remote Sens. 2021, 13, 1286. [Google Scholar] [CrossRef]
- MicaSense Inc. MicaSense Image Processing Tutorials; MicaSense Inc.: Seattle, WA, USA, 2019. [Google Scholar]
- Rural Development Administration (RDA). Standard Manual for Crop Growth Survey; RDA: Jeonju, Republic of Korea, 2014.
- Richardson, C.; Sullivan, A.T.; Berube, F.B.; Jabari, S.; Moore, T. Towards Urban Heat Loss Modeling Using Building Digital Twin. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2025, XLVIII-M-8-2025, 35–42. [Google Scholar] [CrossRef]
- MicaSense. Altum-PT Integration Guide; MicaSense, Inc.: Seattle, WA, USA, 2024; Available online: https://support.micasense.com (accessed on 17 October 2025).
- Alcaras, E.; Parente, C.; Vallario, A. Automation of Pan-Sharpening Methods for Pléiades Images Using GIS Basic Functions. Remote Sens. 2021, 13, 1550. [Google Scholar] [CrossRef]
- Nowak, M.M.; Skowroński, J.; Słupecka, K.; Nowosad, J. Introducing tree belt designer—A QGIS plugin for designing agroforestry systems in terms of potential insolation. Ecol. Inform. 2023, 75, 102012. [Google Scholar] [CrossRef]
- Kang, Y.-S.; Kim, S.-H.; Kang, J.-G.; Hong, Y.-K.; Sarkar, T.K.; Ryu, C.-S. Estimation of leaf dry mass and nitrogen content for soybean using multi-spectral camera mounted on unmanned aerial vehicle. J. Agric. Life Sci. 2016, 50, 183–190. (In Korean) [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Third ERTS Symposium; NASA SP-351; NASA: Washington, DC, USA, 1973; Volume 1, pp. 309–317. [Google Scholar]
- Gitelson, A.A.; Merzlyak, M.N.; Zur, Y.; Stark, R.; Gritz, U. Non-destructive and remote sensing techniques for estimation of vegetation status. In Proceedings of the 3rd European Conference on Precision Agriculture, Montpellier, France, 18–20 June 2001; Grenier, G., Blackmore, S., Eds.; University of Nebraska–Lincoln: Lincoln, NE, USA, 2001; pp. 205–210. Available online: https://digitalcommons.unl.edu/natrespapers/273 (accessed on 2 August 2025).
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- El-Shikha, D.M.; Barnes, E.M.; Clarke, T.R.; Hunsaker, D.J.; Haberland, J.A.; Pinter, P.J., Jr.; Waller, P.M.; Thompson, T.L. Remote sensing of cotton nitrogen status using the canopy chlorophyll content index (CCCI). Trans. Am. Soc. Agric. Biol. Eng. 2008, 51, 73–82. [Google Scholar] [CrossRef]
- Montanaro, G.; Petrozza, A.; Rustioni, L.; Cellini, F.; Nuzzo, V. Phenotyping key fruit quality traits in olive using RGB images and back propagation neural networks. Plant Phenomics 2023, 5, 61. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Meijer, A.D. Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agron. J. 2006, 98, 968–977. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Yang, J.; Rahardja, S.; Fränti, P. Outlier detection: How to threshold outlier scores? In Proceedings of the International Conference on Artificial Intelligence, Information Processing and Cloud Computing (AIIPCC ’19), Sanya, China, 19–21 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Belsley, D.A.; Kuh, E.; Welsch, R.E. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity; Wiley: New York, NY, USA, 1980; p. 292. [Google Scholar] [CrossRef]
- Williams, C.K.I.; Rasmussen, C.E. Gaussian Processes for Regression. In Proceedings of the Advances in Neural Information Processing Systems 8 (NeurIPS 1995), Denver, CO, USA, 27–30 November 1995; Touretzky, D.S., Mozer, M.C., Hasselmo, M.E., Eds.; MIT Press: Cambridge, MA, USA, 1996; pp. 514–520. Available online: https://proceedings.neurips.cc/paper/1048-gaussian-processes-for-regression.pdf (accessed on 18 July 2025).
- Laaksonen, J.; Oja, E. Classification with learning k-nearest neighbors. In Proceedings of the International Conference on Neural Networks (ICNN ’96), Washington, DC, USA, 3–6 June 1996; pp. 1480–1483. [Google Scholar] [CrossRef]
- Segal, M.R. Machine Learning Benchmarks and Random Forest Regression. University of California, San Francisco, Center for Bioinformatics and Molecular Biostatistics. 2004. Available online: https://escholarship.org/uc/item/35x3v9t4 (accessed on 6 August 2025).
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16), San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the Advances in Neural Information Processing Systems 30 (NeurIPS 2017), Long Beach, CA, USA, 4–9 December 2017; MIT Press: Cambridge, MA, USA, 2017; pp. 4765–4774. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009; ISBN 978-0-387-84857-0. [Google Scholar]
- Belgiu, M.; Drăguț, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Kang, Y.-S.; Park, K.-S.; Kim, E.-R.; Jeong, J.-C.; Ryu, C.-S. Estimation of the Total Nonstructural Carbohydrate Concentration in Apple Trees Using Hyperspectral Imaging. Horticulturae 2023, 9, 967. [Google Scholar] [CrossRef]
- Asner, G.P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ. 1998, 64, 234–253. [Google Scholar] [CrossRef]
- Dai, J.; König, M.; Jamalinia, E.; Hondula, K.L.; Vaughn, N.R.; Heckler, J.; Asner, G.P. Canopy-level spectral variation and classification of diverse crop species with fine spatial resolution imaging spectroscopy. Remote Sens. 2024, 16, 1447. [Google Scholar] [CrossRef]
- Solovchenko, A.; Dorokhov, A.; Shurygin, B.; Nikolenko, A.; Velichko, V.; Smirnov, I.; Khort, D.; Aksenov, A.; Kuzin, A. Linking tissue damage to hyperspectral reflectance for non-invasive monitoring of apple fruit in orchards. Plants 2021, 10, 310. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, Y.; Song, Z.; Jiang, D.; Guo, Y.; Liu, Y.; Chang, Q. Estimating leaf area index in apple orchard by UAV multispectral images with spectral and texture information. Remote Sens. 2024, 16, 3237. [Google Scholar] [CrossRef]
- Zhen, Z.; Chen, S.; Yin, T.; Gastellu-Etchegorry, J.-P. Globally quantitative analysis of the impact of atmosphere and spectral response function on 2-band enhanced vegetation index (EVI2) over Sentinel-2 and Landsat-8. ISPRS J. Photogramm. Remote Sens. 2023, 205, 206–226. [Google Scholar] [CrossRef]
- Jewan, S.Y.Y.; Gautam, D.; Sparkes, D.; Singh, A.; Billa, L.; Cogato, A.; Murchie, E.; Pagay, V. Integrating Hyperspectral, Thermal, and Ground Data with Machine Learning Algorithms Enhances the Prediction of Grapevine Yield and Berry Composition. Remote Sens. 2024, 16, 4539. [Google Scholar] [CrossRef]
- Kwon, S.-H.; Ku, K.B.; Le, A.T.; Han, G.D.; Park, Y.; Kim, J.; Tuan, T.T.; Chung, Y.S.; Mansoor, S. Enhancing Citrus Fruit Yield Investigations through Flight Height Optimization with UAV Imaging. Sci. Rep. 2024, 14, 322. [Google Scholar] [CrossRef] [PubMed]









| Parameter | Description/Value | Reference |
|---|---|---|
| Mean annual temperature | 12.8 °C | [22] |
| Mean annual precipitation | 989.47 mm | [22] |
| Main soil texture | Sandy loam; moderate to good drainage | [23] |
| Bedrock type | Qa | [24] |
| Category | Multispectral Sensor |
|---|---|
| Model | Altum-PT |
| Manufacturer | MicaSense |
| Center Wavelengths and Bandwidth | (Blue) (Green) (Red) (Red Edge) (NIR) (LWIR) (Panchromatic) |
| GSD @ 150 m | 3.17 cm/pixel (Panchromatic, Criterion) |
| Category | Calibrated Reflectance Panel |
|---|---|
| Model | Altum-PT |
| Manufacturer | MicaSense |
| Panel Surface |
| Date (YYYY-MM-DD) | Number of Images Captured |
|---|---|
| 20 June 2024 | 13 |
| 4 July 2024 | 23 |
| 17 September 2024 | 38 |
| Total | 74 |
| Vegetation Indices | Formula | Reference |
|---|---|---|
| Anthocyanin reflectance index (ARI) | [37] | |
| Adjusted transformed soil-adjusted VI (ATSAVI) | [38] | |
| Canopy chlorophyll content index (CCCI) | [39] | |
| Coloration index (CI) | [40] | |
| Enhanced vegetation index (EVI) | [41] | |
| Enhanced vegetation index 2-2 (EVI2) | [42] | |
| Green difference vegetation index (GDVI) | [43] | |
| Soil-adjusted vegetation index (SAVI) | [44] | |
| Visible atmospherically resistant index (VARI) | [45] |
| GPR | KNNs | RFR | XGB | ||
|---|---|---|---|---|---|
| N | 74 | ||||
| Calibration | R2 | 0.82 | 0.87 | 0.94 | 0.99 |
| RMSE (mm) | 7.61 | 6.56 | 4.34 | 1.81 | |
| RE (%) | 12.53 | 10.80 | 7.15 | 2.99 | |
| Validation | R2 | 0.79 | 0.82 | 0.73 | 0.70 |
| RMSE (mm) | 8.23 | 7.61 | 9.36 | 9.80 | |
| RE (%) | 13.56 | 12.53 | 15.42 | 16.13 | |
| GPR | KNNs | RFR | XGB | ||
|---|---|---|---|---|---|
| N | 74 | ||||
| Calibration | R2 | 0.76 | 0.80 | 0.95 | 0.99 |
| RMSE (mm) | 8.78 | 8.01 | 4.15 | 1.81 | |
| RE (%) | 14.97 | 13.65 | 7.07 | 3.09 | |
| Validation | R2 | 0.72 | 0.76 | 0.62 | 0.63 |
| RMSE (mm) | 9.48 | 8.85 | 11.06 | 10.94 | |
| RE (%) | 16.16 | 15.08 | 18.85 | 18.64 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, D.H.; Kang, Y.S.; Park, C.H.; Je, G.I.; Ryu, C.S. Development of Prediction Models for Apple Fruit Diameter and Length Using Unmanned Aerial Vehicle-Based Multispectral Imagery. AgriEngineering 2025, 7, 361. https://doi.org/10.3390/agriengineering7110361
An DH, Kang YS, Park CH, Je GI, Ryu CS. Development of Prediction Models for Apple Fruit Diameter and Length Using Unmanned Aerial Vehicle-Based Multispectral Imagery. AgriEngineering. 2025; 7(11):361. https://doi.org/10.3390/agriengineering7110361
Chicago/Turabian StyleAn, Do Hyun, Ye Seong Kang, Chang Hyeok Park, Gang In Je, and Chan Seok Ryu. 2025. "Development of Prediction Models for Apple Fruit Diameter and Length Using Unmanned Aerial Vehicle-Based Multispectral Imagery" AgriEngineering 7, no. 11: 361. https://doi.org/10.3390/agriengineering7110361
APA StyleAn, D. H., Kang, Y. S., Park, C. H., Je, G. I., & Ryu, C. S. (2025). Development of Prediction Models for Apple Fruit Diameter and Length Using Unmanned Aerial Vehicle-Based Multispectral Imagery. AgriEngineering, 7(11), 361. https://doi.org/10.3390/agriengineering7110361

