A Digital Twin Framework for Sensor Selection and Microclimate Monitoring in Greenhouses
Abstract
1. Introduction
- (1)
- A digital twin of a strawberry greenhouse was developed using Unity to create a 3D virtual environment that mirrors the physical layout, plant beds, and sensor positions.
- (2)
- The digital twin was integrated with sensor data capturing temperature and relative humidity from 56 distributed locations to enable continuous environmental Monitoring.
- (3)
- A reinforcement learning algorithm based on Thompson Sampling was employed to select the most informative sensor locations over time adaptively.
- (4)
- The accuracy of the selected sensor subsets was validated against the whole network using the Z-index, the Mean Absolute Error(MAE), and Root Mean Squared Error (RMSE).
- (5)
- An interactive interface combining a graphical user interface (GUI) and 3D visualization was implemented to support immersive user interaction and temporal queries.
2. Related Works
2.1. Optimal Sensor Placement in a Greenhouse
2.2. Digital Twin Applications in Agriculture
3. Materials and Methods
3.1. Experimental Setup: Data Collection from a Strawberry Greenhouse
3.2. Sensor Data Management
3.3. Optimal Sensor Identification Process
Validation of the Thompson Sampling Algorithm
3.4. The Digital-Twin Virtual Environment
4. Results
4.1. Selected Sensor Locations
4.2. Unity Greenhouse Environment
4.3. Data Transfer Assessment
5. Future Works and Discussions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maraveas, C.; Bartzanas, T. Application of Internet of Things (IoT) for Optimized Greenhouse Environments. Agriengineering 2021, 3, 954–970. [Google Scholar] [CrossRef]
- Maraveas, C.; Karavas, C.-S.; Loukatos, D.; Bartzanas, T.; Arvanitis, K.G.; Symeonaki, E. Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions. Agriculture 2023, 13, 1464. [Google Scholar] [CrossRef]
- Slob, N.; Hurst, W.; van de Zedde, R.; Tekinerdogan, B. Virtual reality-based digital twins for greenhouses: A focus on human interaction. Comput. Electron. Agric. 2023, 208, 107815. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F.; Hu, T.; Anwer, N.; Liu, A.; Wei, Y.; Wang, L.; Nee, A.Y.C. Enabling technologies and tools for digital twin. J. Manuf. Syst. 2021, 58, 3–21. [Google Scholar] [CrossRef]
- Iliuţă, M.-E.; Moisescu, M.-A.; Pop, E.; Ionita, A.-D.; Caramihai, S.-I.; Mitulescu, T.-C. Digital Twin—A Review of the Evolution from Concept to Technology and Its Analytical Perspectives on Applications in Various Fields. Appl. Sci. 2024, 14, 5454. [Google Scholar] [CrossRef]
- Wright, L.; Davidson, S. How to tell the difference between a model and a digital twin. Adv. Model. Simul. Eng. Sci. 2020, 7, 13. [Google Scholar] [CrossRef]
- Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- Tagarakis, A.C.; Benos, L.; Kyriakarakos, G.; Pearson, S.; Sørensen, C.G.; Bochtis, D. Digital Twins in Agriculture and Forestry: A Review. Sensors 2024, 24, 3117. [Google Scholar] [CrossRef]
- Escribà-Gelonch, M.; Liang, S.; van Schalkwyk, P.; Fisk, I.; Long, N.V.D.; Hessel, V. Digital Twins in Agriculture: Orchestration and Applications. J. Agric. Food Chem. 2024, 72, 10737–10752. [Google Scholar] [CrossRef]
- Peladarinos, N.; Piromalis, D.; Cheimaras, V.; Tserepas, E.; Munteanu, R.A.; Papageorgas, P. Enhancing Smart Agriculture by Implementing Digital Twins: A Comprehensive Review. Sensors 2023, 23, 7128. [Google Scholar] [CrossRef]
- Pylianidis, C.; Osinga, S.; Athanasiadis, I.N. Introducing digital twins to agriculture. Comput. Electron. Agric. 2021, 184, 105942. [Google Scholar] [CrossRef]
- Lema-Rumińska, J.; Kulus, D.; Tymoszuk, A.; Miler, N.; Wozny, A.; Wenda-Piesik, A. Physiological, Biochemical, and Biometrical Response of Cultivated Strawberry and Wild Strawberry in Greenhouse Gutter Cultivation in the Autumn-Winter Season in Poland—Preliminary Study. Agronomy 2021, 11, 1633. [Google Scholar] [CrossRef]
- de Miranda, F.R.; da Silva, V.B.; Santos, F.S.R.D.; Rossetti, A.G.; da Silva, C.D.F.B. Production of Strawberry Cultivars in Closed Hydroponic Systems and Coconut Fibre Substrate. Rev. Ciência Agronômica 2014, 45, 833–841. [Google Scholar] [CrossRef]
- DeLay, N.D.; Thompson, N.M.; Mintert, J.R. Precision Agriculture Technology Adoption and Technical Efficiency. J. Agric. Econ. 2021, 73, 195–219. [Google Scholar] [CrossRef]
- Lian, Y.; Wang, A.; Peng, S.; Jia, J.; Zong, L.; Yang, X.; Li, J.; Zheng, R.; Yang, S.; Liao, J.; et al. Optimization of Sensors Data Transmission Paths for Pest Monitoring Based on Intelligent Algorithms. Biosensors 2022, 12, 948. [Google Scholar] [CrossRef]
- Uyeh, D.D.; Iyiola, O.; Mallipeddi, R.; Asem-Hiablie, S.; Amaizu, M.; Ha, Y.; Park, T. Grid Search for Lowest Root Mean Squared Error in Predicting Optimal Sensor Location in Protected Cultivation Systems. Front. Plant Sci. 2022, 13, 920284. [Google Scholar] [CrossRef]
- Sánchez, D.C.; Sanchez-Londono, A.; Barbieri, G. A Digital Twin Architecture to Optimize Productivity within Controlled Environment Agriculture. Appl. Sci. 2021, 11, 8875. [Google Scholar] [CrossRef]
- Purcell, W.; Neubauer, T.; Mallinger, K. Digital Twins in agriculture: Challenges and opportunities for environmental sustainability. Curr. Opin. Env. Sustain. 2023, 61, 102152. [Google Scholar] [CrossRef]
- Ajani, O.S.; Aboyeji, E.; Mallipeddi, R.; Uyeh, D.D.; Ha, Y.; Park, T. A genetic programming-based optimal sensor placement for greenhouse monitoring and control. Front. Plant Sci. 2023, 14, 1152036. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, I.B.; Yeo, U.H.; Kim, R.W.; Kim, J.G. Optimal sensor placement for monitoring and controlling greenhouse internal environments. Biosyst. Eng. 2019, 188, 190–206. [Google Scholar] [CrossRef]
- Ferentinos, K.P.; Katsoulas, N.; Tzounis, A.; Bartzanas, T.; Kittas, C. Wireless sensor networks for greenhouse climate and plant condition assessment. Biosyst. Eng. 2017, 153, 70–81. [Google Scholar] [CrossRef]
- Uyeh, D.; Akinsoji, A.; Asem-Hiablie, S.; Bassey, B.; Osinuga, A.; Mallipeddi, R.; Amaizu, M.; Ha, Y.; Park, T. An online machine learning-based sensors clustering system for efficient and cost-effective environmental monitoring in controlled environment agriculture. Comput. Electron. Agric. 2022, 199. [Google Scholar] [CrossRef]
- Uyeh, D.; Bassey, B.; Mallipeddi, R.; Asem-Hiablie, S.; Amaizu, M.; Seungmin, W.; Ha, Y.; Park, T. A reinforcement learning approach for optimal placement of sensors in protected cultivation systems. IEEE Access 2021, 9, 100781–100800. [Google Scholar] [CrossRef]
- Lang, Y.; Zhang, Y.; Sun, T.; Chai, X.; Zhang, N. Digital twin-driven system for efficient tomato harvesting in greenhouses. Comput. Electron. Agric. 2025, 236, 110451. [Google Scholar] [CrossRef]
- Defraeye, T.; Shrivastava, C.; Berry, T.; Verboven, P.; Onwude, D.; Schudel, S.; Bühlmann, A.; Cronje, P.; Rossi, R.M. Digital twins are coming: Will we need them in supply chains of fresh horticultural produce? Trends Food Sci. Technol. 2021, 109, 245–258. [Google Scholar] [CrossRef]
- Ghandar, A.; Ahmed, A.; Zulfiqar, S.; Hua, Z.; Hanai, M.; Theodoropoulos, G. A Decision Support System for Urban Agriculture Using Digital Twin: A Case Study With Aquaponics. IEEE Access 2021, 9, 35691–35708. [Google Scholar] [CrossRef]
- Howard, D.A.; Ma, Z.; Veje, C.; Clausen, A.; Aaslyng, J.M.; Jørgensen, B.N. Greenhouse industry 4.0-digital twin technology for commercial greenhouses. Energy Inform. 2021, 4, 37. [Google Scholar] [CrossRef]
- Spyrou, O.; Hurst, W.; Verdouw, C. Virtual Reality-Based Digital Twins: A Case Study on Pharmaceutical Cannabis. Big Data Cogn. Comput. 2023, 7, 95. [Google Scholar] [CrossRef]
- Ko, T.-H.; Lee, H.-M.; Noh, D.-H.; JuHwan, C.; Byun, S.-W. Design and Implementation of a Digital Twin Platform in Vertical Farming Systems. In Proceedings of the 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN), Barcelona, Spain, 5–8 July 2022; pp. 366–368. [Google Scholar] [CrossRef]
- Clements, P.; Garlan, D.; Little, R.; Nord, R.; Stafford, J. Documenting software architectures: Views and beyond. In Proceedings of the 25th International Conference on Software Engineering, Portland, OR, USA, 3–10 May 2003; pp. 740–741. [Google Scholar] [CrossRef]
- Niu, Z. Research and Implementation of Internet of Things Communication System Based on MQTT Protocol. J. Phys. Conf. Ser. 2021, 2023, 12019. [Google Scholar] [CrossRef]
- Howard, D.A.; Ma, Z.; Aaslyng, J.M.; Jørgensen, B.N. Data Architecture for Digital Twin of Commercial Greenhouse Production. In Proceedings of the 2020 RIVF International Conference on Computing and Communication Technologies (RIVF), Ho Chi Minh City, Vietnam, 14–15 October 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Niranjanamurthy, M.; Archana, U.L.; Niveditha, K.T.; Jafar, S.A.; Shravan, N.S. The research study on DynamoDB—NoSQL database service. Int. J. Comput. Sci. Mob. Comput. 2014, 3, 268–279. [Google Scholar]
- Grant, J.; Boukouvalas, A.; Griffiths, R.-R.; Leslie, D.; Vakili, S.; De Cote, E.M. Adaptive Sensor Placement for Continuous Spaces. In Proceedings of the ICML 2019: 36th International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; Chaudhuri, K., Salakhutdinov, R., Eds.; ICML, 2019. Volume 97. Available online: https://proceedings.mlr.press/v97/grant19a.html (accessed on 14 September 2025).
- Wang, C.; Huang, V.; Chen, G.; Ma, H.; Chen, B.; Schmidt, J. Learning to Optimise Climate Sensor Placement Using a Transformer. Available online: https://api.semanticscholar.org/CorpusID:264306116 (accessed on 14 September 2025).
- Bua, C.; Borgianni, L.; Adami, D.; Giordano, S. Reinforcement Learning-Driven Digital Twin for Zero-Delay Communication in Smart Greenhouse Robotics. Agriculture 2025, 15, 1290. [Google Scholar] [CrossRef]
- Arnesano, M.; Revel, G.M.; Seri, F. A tool for the optimal sensor placement to optimize temperature monitoring in large sports spaces. Autom. Constr. 2016, 68, 223–234. [Google Scholar] [CrossRef]
- Shukla, S.; Hassan, M.F.; Tran, D.C.; Akbar, R.; Paputungan, I.V.; Khan, M.K. Improving latency in Internet-of-Things and cloud computing for real-time data transmission: A systematic literature review (SLR). Clust. Comput. 2023, 26, 2657–2680. [Google Scholar] [CrossRef]
- Drees, L.; Demie, D.T.; Paul, M.R.; Leonhardt, J.; Seidel, S.J.; Döring, T.F.; Roscher, R. Data-driven crop growth simulation on time-varying generated images using multi-conditional generative adversarial networks. Plant Methods 2024, 20, 1. [Google Scholar] [CrossRef]
- Li, W.; Zhu, D.; Wang, Q. A single view leaf reconstruction method based on the fusion of ResNet and differentiable render in plantgrowthdigitaltwinsystem. Comput. Electron. Agric. 2022, 193, 106712. [Google Scholar] [CrossRef]
- Jiqing, C.; Jiahua, W.; Zhikui, W.; Hu, Q.; Ganwei, C.; Chengzhi, T.; Chaoyang, Z. Detecting ripe fruits under natural occlusion and illumination conditions. Comput. Electron. Agric. 2021, 190, 106450. [Google Scholar] [CrossRef]
Paper | Virtual Environment | Reinforcement Learning | Sensor Selection/ Optimization | Seasonal Data Collection | Cloud Storage Infrastructure |
---|---|---|---|---|---|
Virtual Reality-Based Digital Twins: A Case Study on Pharmaceutical Cannabis [28] | |||||
Digital twin-driven system for efficient tomato harvesting in greenhouses [24] | |||||
Virtual reality-based digital twins for greenhouses: A focus on human interaction [3] | |||||
A Decision Support System for Urban Agriculture Using Digital Twin: A Case Study with Aquaponics [26]. | |||||
This paper |
GUI Components | Description |
---|---|
Query Selection | Users can select specific parameters for their analysis, focusing on choosing the month of interest. This temporal selection is crucial for analyzing seasonal variations in greenhouse conditions. |
Navigation Controls | Users can navigate through the 3D environment using controls integrated into the GUI. DT users can also navigate. The temperature and relative humidity are visualized by selecting the sensors, enabling the Monitoring of the spatial variation in the greenhouse microclimate. |
3D Components | Description |
---|---|
Greenhouse Structure | A virtual representation of the Greenhouse, modeled to scale based on the physical structure. |
Sensors | Virtual representations of the 56 sensors placed throughout the Greenhouse accurately reflect their positions in physical space. |
Strawberry Plants | 3D Models of strawberry plants provide visual cues about plant health and development. |
Plant Beds | A virtual representation of the five plant beds, modeled to the specifications of 15 m in length, 0.26 m in width, and placed at a height of 1.1 m. |
Strawberry Pots | Individual pots for each strawberry plant. |
Ground Sand | A textured representation of the greenhouse floor, adding to the visual realism of the environment. |
Season | Parameter | Rank 1 | Rank 2 | Rank 3 | Rank 4 | Rank 5 | Rank 6 | Rank 7 | Rank 8 | Rank 9 | Rank 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
Winter | RH (%) | F7 | A6 | F3 | E5 | G5 | A7 | C5 | H2 | A1 | F4 |
SV (m3/kg) | B3 | F5 | H4 | F3 | D7 | B1 | H1 | G1 | B4 | C5 | |
Td (°C) | C1 | A4 | F6 | B4 | B6 | G5 | E5 | F3 | F2 | F1 | |
Temp (°C) | C1 | C7 | E3 | H6 | F3 | F7 | D3 | C6 | F4 | B5 | |
W (kg/kg) | G6 | E2 | E7 | D5 | H1 | B5 | E3 | E5 | A3 | C1 | |
h (kJ/kg) | E2 | A3 | B2 | B3 | G1 | B4 | B7 | E7 | H6 | B5 | |
Spring | RH (%) | F4 | B3 | C4 | D4 | D5 | D7 | F6 | F7 | F5 | E4 |
SV (m3/kg) | E2 | G4 | D2 | E4 | E5 | B4 | H6 | G1 | D4 | D6 | |
Td (°C) | E4 | F5 | B1 | A7 | D1 | E2 | C5 | F6 | C2 | D7 | |
Temp (°C) | G1 | A2 | B6 | D2 | H2 | E7 | G2 | B4 | G4 | E5 | |
W (kg/kg) | C4 | E4 | H1 | H6 | G6 | C1 | G1 | F3 | D7 | A2 | |
h (kJ/kg) | F1 | D3 | F4 | D1 | D6 | E1 | C6 | A4 | E2 | C1 | |
Summer | RH (%) | G5 | A7 | D3 | G4 | G5 | H2 | E4 | D2 | D6 | C6 |
SV (m3/kg) | A4 | A6 | E6 | A3 | G4 | H7 | D2 | D7 | F6 | G2 | |
Td (°C) | E6 | G6 | A4 | G4 | F7 | C6 | A6 | D1 | B2 | G1 | |
Temp (°C) | H1 | H6 | H3 | G7 | A3 | D3 | F6 | C4 | G4 | G2 | |
W (kg/kg) | H4 | E3 | E2 | C1 | G7 | G1 | B1 | D6 | H1 | G3 | |
h (kJ/kg) | D4 | A2 | E4 | B3 | C3 | F5 | A6 | A5 | E6 | D5 | |
Autumn | RH (%) | C5 | A2 | H3 | H6 | A5 | F3 | G5 | G7 | H2 | A1 |
SV (m3/kg) | C1 | E4 | C6 | E3 | A5 | F1 | A6 | A2 | C2 | D1 | |
Td (°C) | A5 | F2 | E3 | B2 | E4 | C3 | E7 | H6 | D7 | B3 | |
Temp (°C) | C4 | C6 | D4 | F3 | H5 | B7 | F2 | G6 | E6 | G5 | |
W (kg/kg) | D4 | G2 | F1 | H4 | B2 | A5 | D2 | D6 | F3 | A4 | |
h (kJ/kg) | E1 | D4 | H7 | A5 | A2 | E6 | D5 | B2 | D1 | D7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akintan, O.; Babawale, S.; Olomo, A.; Adeyemo, R.; Opadotun, O.; Ajayi, J.T.; Mba, P.C.; Njoku, J.N.; Chesang, A.; Zahid, A.; et al. A Digital Twin Framework for Sensor Selection and Microclimate Monitoring in Greenhouses. AgriEngineering 2025, 7, 315. https://doi.org/10.3390/agriengineering7100315
Akintan O, Babawale S, Olomo A, Adeyemo R, Opadotun O, Ajayi JT, Mba PC, Njoku JN, Chesang A, Zahid A, et al. A Digital Twin Framework for Sensor Selection and Microclimate Monitoring in Greenhouses. AgriEngineering. 2025; 7(10):315. https://doi.org/10.3390/agriengineering7100315
Chicago/Turabian StyleAkintan, Oreofeoluwa, Sodiq Babawale, Ayooluwaposi Olomo, Ridwan Adeyemo, Oluwaseun Opadotun, John Temitope Ajayi, Patience Chizoba Mba, Judith Nkechinyere Njoku, Andrew Chesang, Azlan Zahid, and et al. 2025. "A Digital Twin Framework for Sensor Selection and Microclimate Monitoring in Greenhouses" AgriEngineering 7, no. 10: 315. https://doi.org/10.3390/agriengineering7100315
APA StyleAkintan, O., Babawale, S., Olomo, A., Adeyemo, R., Opadotun, O., Ajayi, J. T., Mba, P. C., Njoku, J. N., Chesang, A., Zahid, A., & Uyeh, D. D. (2025). A Digital Twin Framework for Sensor Selection and Microclimate Monitoring in Greenhouses. AgriEngineering, 7(10), 315. https://doi.org/10.3390/agriengineering7100315