Phenological Monitoring of Irrigated Sugarcane Using Google Earth Engine, Time Series, and TIMESAT in the Brazilian Semi-Arid
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Sugarcane Harvest Dates in the Test Area
2.3. Orbital Data
2.4. Meteorological Data
2.5. TIMESAT Software
2.6. Statistical Analysis and Validation of the Data
3. Results
3.1. Time Series of Meteorological Data
3.2. Classification of Land Use and Land Cover
3.3. Normalized Difference Vegetation Index (NDVI) and Rainfall Time Series
3.4. Sugarcane Phenological Parameters Estimated with the TIMESAT Software
3.5. Statistical tests
3.6. Validation of Estimated Harvest Dates with TIMESAT Software
4. Discussion
4.1. Use of the MOD13Q1 Product
4.2. MOD13Q1 Product Pixel Treatments
4.3. Meteorological Variables and Sugarcane
4.4. Analysis of Classification of Land Use and Land Cover
4.5. Analysis of Normalized Difference Vegetation Index (NDVI) and Rainfall Time Series
4.6. Analysis of Sugarcane Phenological Parameters Estimated with the TIMESAT Software
4.7. Statistical Evaluation
4.8. Analysis of Estimated Harvest Dates with TIMESAT Software
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oliveira, D.M.; Cherubin, M.R.; Franco, A.L.; Santos, A.S.; Gelain, J.G.; Dias, N.M.; Diniz, T.R.; Almeida, A.N.; Feigl, B.J.; Davies, C.A.; et al. Is the expansion of sugarcane over pasturelands a sustainable strategy for Brazil’s bioenergy industry? Renew. Sustain. Energy Rev. 2019, 102, 346–355. [Google Scholar] [CrossRef]
- Shi, C.; Xie, C.; Zhang, Z.; Rackemann, D.; Wei, B.; Hang, F.; Lu, H.; Li, K.; Doherty, W.O. Sugar and value-added products derived from retentate concentrate of sugarcane juice. J. Clean. Prod. 2020, 278, 123915. [Google Scholar] [CrossRef]
- Almeida, L.J.M.; Silva, A.V.; Silva, J.S.L.; Silva, J.F.; Silva, J.H.B.; Pereira Neto, F.; Borba, M.A.; Barreto, S.S.C.; Rodrigues, H.A.; Sousa, V.F.O.; et al. Sugarcane productivity and economic viability in response to planting density. Braz. J. Biol. 2024, 84, 1–7. [Google Scholar] [CrossRef]
- Silva, D.F.d.S.; Bomtempo, J.V.; Alves, F.C. Innovation opportunities in the Brazilian sugar-energy sector. J. Clean. Prod. 2019, 218, 871–879. [Google Scholar] [CrossRef]
- União Nacional da Bioenergia—UDOP. Cogeração de Energia a Partir de Biomassa Cresce 8% no Primeiro Trimestre de 2024. Available online: https://www.udop.com.br/noticia/2024/05/24/cogeracao-de-energia-a-partir-de-biomassa-cresce-8-no-primeiro-trimestre-de-2024.html (accessed on 29 June 2024).
- CONAB (Companhia Nacional de Abastecimento). Monitoring the Brazilian Sugarcane Harvest; CONAB: Brasília, Brazil, 2024. Available online: www.conab.gov.br (accessed on 29 June 2024).
- AGROVALE (AgroIndústrias do Vale do São Francisco, S.A). AGROVALE: Juazeiro, Bahia, Brazil. 2024. Available online: https://agrovale.com/ (accessed on 1 August 2024).
- Heupel, K.; Spengler, D.; Itzerott, S.A. Progressive Crop-Type Classification Using Multitemporal Remote Sensing Data and Phenological Information. PFG–J. Photogramm. Remote Sens. Geoinf. Sci. 2018, 86, 53–69. [Google Scholar] [CrossRef]
- Mas, J.-F.; Soares de Araújo, F. Assessing Landsat Images Availability and Its Effects on Phenological Metrics. Forests 2021, 12, 574. [Google Scholar] [CrossRef]
- Rudorff, B.F.T.; Aguiar, D.A.; Silva, W.F.; Sugawara, L.M.; Adami, M.; Moreira, M.A. Studies on the Rapid Expansion of Sugarcane for Ethanol Production in São Paulo State (Brazil) Using Landsat Data. Remote Sens. 2010, 2, 1057–1076. [Google Scholar] [CrossRef]
- Kumar, S.; Meena, R.S.; Sheoran, S.; Jangir, C.K.; Jhariya, M.K.; Banerjee, A.; Raj, A. Chapter 5—Remote sensing for agriculture and resource management. In Natural Resources Conservation and Advances for Sustainability; Elsevier: San Diego, CA, USA, 2022; pp. 91–135. [Google Scholar]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing, 5th ed.; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- De Beurs, K.; Henebry, G. Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan. Remote Sens. Environ. 2004, 89, 497–509. [Google Scholar] [CrossRef]
- Morisette, J.T.; Richardson, A.D.; Knapp, A.L.; Fisher, J.I.; Graham, E.A.; Abatzoglou, J.; Wilson, B.E.; Breshears, D.D.; Henebry, G.M.; Hanes, J.M.; et al. Tracking the rhythm of the seasons in the face of global change: Phenological research in the 21st century. Front. Ecol. Environ. 2008, 7, 253–260. [Google Scholar] [CrossRef]
- Berra, E.F.; Gaulton, R. Remote sensing of temperate and boreal forest phenology: A review of progress, challenges and opportunities in the intercomparison of in-situ and satellite phenological metrics. For. Ecol. Manag. 2021, 480, 118663. [Google Scholar] [CrossRef]
- Jayawardhana, W.G.N.N.; Chathurange, M. Extraction of Agricultural Phenological Parameters of Sri Lanka Using MODIS, NDVI Time Series Data. Procedia Food Sci. 2016, 6, 235–241. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Jung, J.; Maeda, M.; Chang, A.; Bhandari, M.; Ashapure, A.; Landivar-Bowles, J. The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Curr. Opin. Biotechnol. 2021, 70, 15–22. [Google Scholar] [CrossRef]
- Ji, Z.; Pan, Y.; Zhu, X.; Wang, J.; Li, Q. Prediction of crop yield using phenological information extracted from remote sensing vegetation index. Sensors 2021, 21, 1406. [Google Scholar] [CrossRef]
- Xin, F.; Xiao, X.; Cabral, O.M.R.; White, P.M., Jr.; Guo, H.; Ma, J.; Li, B.; Zhao, B. Understanding the Land Surface Phenology and Gross Primary Production of Sugarcane Plantations by Eddy Flux Measurements, MODIS Images, and Data-Driven Models. Remote Sens. 2020, 12, 2186. [Google Scholar] [CrossRef]
- Park, S.; Robertson, M.; Inman-Bamber, N.G. Decline in the growth of a sugarcane crop with age under high input conditions. Field Crop. Res. 2005, 92, 305–320. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Herds and Value of Products of Animal Origin Hit Record in 2022. Available online: https://agenciadenoticias.ibge.gov.br/en/agencia-news/2184-news-agency/news/37941-rebanhos-e-valor-dos-principais-produto-de-origem-animal-foram-recordes-em-2023 (accessed on 26 September 2024).
- Maschio, R.; Coelho, R.D.; Barros, T.H.d.S.; Costa, J.d.O.; Duarte, S.N. Water rights in sugarcane irrigation: Influence of irrigation criteria and probability levels adopted for ETo and rainfall. Sci. Agric. 2024, 81, e20230139. [Google Scholar] [CrossRef]
- Saath, K.C.d.O.; Fachinello, A.L. Crescimento da demanda mundial de alimentos e restrições do fator terra no Brasil. Rev. Econ. Sociol. Rural 2018, 56, 195–212. [Google Scholar] [CrossRef]
- Grunow, M.; Gnther, H.O.; Westinner, R. Supply optimization for the production of raw sugar. Int. J. Prod. Econ. 2007, 110, 224–239. [Google Scholar] [CrossRef]
- Simões, W.L.; Calgaro, M.; Guimarães, M.J.M.; Mliveira, A.R.; Pinheiro, M.P.M.A. Sugarcane crops with controlled water deficit in the Submiddle São Francisco Valley, Brazil. Rev. Caatinga 2018, 31, 963–971. [Google Scholar] [CrossRef]
- Silva, A.S.; Costa, M.A.; Moura, G.B.A.; Lopes, P.M.O.; Guimarães, M.J.M.; Gomes, A.W.A. Agrometeorological-spectral model for estimating sugarcane productivity in Brazilian semi-arid. Irriga 2021, 26, 490–506. [Google Scholar] [CrossRef]
- Stasolla, M.; Neyt, X. Applying Sentinel-1 time series analysis to sugarcane harvest detection. In Proceedings of the IGARSS, Yokohama, Japan, 24 July–2 August 2019; pp. 1–4. [Google Scholar]
- Silva, A.S.d.; Moura, G.B.D.A.; Lopes, P.M.O.; Guimarães, M.J.M.; Bezerra, A.C.; Gomes, A.W.A. Predição da produtividade de cana-de-açúcar com base em modelo agrometeorológico no semiárido brasileiro. Nativa 2024, 10, 515–524. [Google Scholar] [CrossRef]
- Araya, S.; Ostendorf, B.; Lyle, G.; Lewis, M. CropPhenology: An R package for extracting crop phenology from time series remotely sensed vegetation index imagery. Ecol. Inform. 2018, 46, 45–56. [Google Scholar] [CrossRef]
- Lange, M.; Doktor, D. phenex: Auxiliary Functions for Phenological Data Analysis, R Package Version 1.4-5. 2017. Available online: https://cran.r-project.org/web/packages/phenex/phenex.pdf (accessed on 5 November 2022).
- Kong, D.; McVicar, T.R.; Xiao, M.; Zhang, Y.; Peña-Arancibia, J.L.; Filippa, G.; Xie, Y.; Gu, X. phenofit: An R package for extracting vegetation phenology from time series remote sensing. Methods Ecol. Evol. 2022, 13, 1508–1527. [Google Scholar] [CrossRef]
- Forkel, M.; Wutzler, T. Greenbrown—Land Surface Phenology and Trend Analysis. A Package for the R Software. Version 2.2. Available online: http://greenbrown.r-forge.r-project.org/ (accessed on 1 March 2023).
- Digital Earth Australia (DEA). Vegetation Phenology. Available online: https://docs.dea.ga.gov.au/notebooks/Real_world_examples/Vegetation_phenology.html (accessed on 29 June 2024).
- Jönsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Tan, B.; Morisette, J.T.; Wolfe, R.E.; Gao, F.; Ederer, G.A.; Nightingale, J.; Pedelty, J.A. An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 361–371. [Google Scholar] [CrossRef]
- Palmer, S.C.; Odermatt, D.; Hunter, P.D.; Brockmann, C.; Presing, M.; Balzter, H.; Tóth, V.R. Satellite remote sensing of phytoplankton phenology in Lake Balaton using 10 years of MERIS observations. Remote Sens. Environ. 2015, 158, 441–452. [Google Scholar] [CrossRef]
- Kong, D. rTIMESAT: Extract Remote Sensing Vegetation Phenology by TIMESAT Fortran Library. 2021. Available online: https://rdrr.io/github/kongdd/rTIMESAT/ (accessed on 20 June 2024).
- Rodigheri, G.; Sanches, I.D.; Richetti, J.; Tsukahara, R.Y.; Lawes, R.; Bendini, H.d.N.; Adami, M. Estimating Crop Sowing and Harvesting Dates Using Satellite Vegetation Index: A Comparative Analysis. Remote Sens. 2023, 15, 5366. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Myneni, R.B.; Keeling, C.D.; Tucker, C.J.; Asrar, G.; Nemani, R.R. Increased Plant Growth in the Northern High Latitudes from 1981 to 1991. Nature 1997, 386, 698–702. [Google Scholar] [CrossRef]
- Antunes, J.F.G.; Lamparelli, R.A.; De, C.; Rodrigues, L.H.A. Representação de ciclos harmônicos de séries temporais Modis para análise do cultivo da cana-de-açúcar. Pesqui. Agropecu. Bras. 2016, 51, 1868–1879. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Kumar, U.; Dasgupta, A. Analysis of Land Surface Temperature and Rainfall with Landscape Dynamics in Western Ghats, India; Indian Institute of Science: Bangalore, India, 2016. [Google Scholar]
- Justice, C.O.; Vermote, E.; Townshend, J.R.G.; Defries, R.; Roy, D.P. The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1228–1249. [Google Scholar] [CrossRef]
- Hilker, T.; Anderson, M.C.; Masek, J.G.; Wang, P. Fusing Landsat and MODIS Data for Vegetation Monitoring. IEEE Geosci. Remote Sens. Mag. 2015, 3, 47–60. [Google Scholar]
- Xavier, G.d.O.; de Almeida, T.; de Oliveira, C.M.M.; de Oliveira, P.D.S.; Costa, V.H.B.; Granado, L.M.A. Estimate and evaluation of reservoir metrics in Serra da Mesa dam (GO) using the Google Earth Engine platform. Rev. Ambiente Água 2020, 15. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. TIMESAT 3.1—Software Manual; Lund University: Lund, Sweden, 2004; p. 82. Available online: http://web.nateko.lu.se/timesat/timesat.asp (accessed on 1 May 2021).
- Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2012, 30, 833–845. [Google Scholar] [CrossRef]
- Eklundh, L.; Jönsson, P. TIMESAT 3.3 with Seasonal Trend Decomposition and Parallel Processing—Software Manual. 2017. Available online: https://web.nateko.lu.se/timesat/docs/TIMESAT33_SoftwareManual.pdf (accessed on 6 July 2024).
- Jena, S.D.; Poggi, M. Harvest planning in the Brazilian sugar cane industry via mixed integer programming. Eur. J. Oper. Res. 2013, 230, 374–384. [Google Scholar] [CrossRef]
- Usmana, M.; Akramb, N.; Imtiazc, S.; Muneeb, S. Haider Sugarcane: Diseases Due to Pests, Pest Management Strategies and Factors Influencing the Production of Sugarcane. Am. Sci. Res. J. Eng. Technol. Sci. ASRJETS 2020, 65, 126–139. [Google Scholar]
- Ruiz-Ramirez, J.; Hernandez-Rodriguez, G.E.; Zulueta-Rodriguez, R. Time series analysis forecasting in sugar cane production. Terra Latinoam. 2011, 29, 103–109. [Google Scholar]
- Cardozo, N.P.; Sentelhas, P.C. Climatic effects on sugarcane ripening under the infl uence of cultivars and crop age. Sci. Agric. 2013, 70, 449–456. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, L.X.; Ai, J.; Zhang, Z.F.; Deng, J.; Zhang, Y.B. Climate Variations in the Low-Latitude Plateau Contribute to Different Sugarcane (Saccharum spp.) Yields and Sugar Contents in China. Plants 2023, 12, 2712. [Google Scholar] [CrossRef] [PubMed]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Moraes, G.J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Sampaio, E.V.S.B. Características e potencialidades. In Uso Sustentável e Conservação dos Recursos Florestais da Caatinga; Gariglio, M.A., Sampaio, E.V.S.B., Cestaro, L.A., Kageyama, P.Y., Eds.; Serviço Florestal Brasileiro: Brasília, Brazil, 2010; pp. 29–48. [Google Scholar]
- Prado, D. As caatingas da América do Sul. In Ecologia e Conservação da Caatinga; Leal, I.R., Tabarelli, M., Silva, J.M.C., Eds.; Universitária da UFPE: Recife, Brazil, 2003; pp. 3–73. [Google Scholar]
- Nimer, E. Climatologia da região Nordeste do Brasil. Introdução à climatologia dinâmica. Rev. Bras. Geogr. 1972, 34, 3–51. [Google Scholar]
- Sá, P.C.C.d. Estimativa do Saldo de Radiação em Cultivo Irrigado de Cana-de-Açúcar Utilizando Dados de Sensoriamento Remoto Orbital. Master’s Thesis, Universidade Federal Rural do Semi-Árido, Mossoró, Brazil, 2016. [Google Scholar]
- Cruz, F.N.; Borba, G.L.; Abreu, L.R.D. Ciências da Natureza e Realidade: Interdisciplinar; Edufrn: Natal, Brazil, 2005. [Google Scholar]
- Medeiros, R.; Andrade, J.; Ramos, D.; Moura, M.; Pérez-Marin, A.M.; dos Santos, C.A.C.; da Silva, B.B.; Cunha, J. Remote Sensing Phenology of the Brazilian Caatinga and Its Environmental Drivers. Remote Sens. 2022, 14, 2637. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Kong, F.; Li, X.; Wang, H.; Xie, D.; Li, X.; Bai, Y. Land Cover Classification Based on Fused Data from GF-1 and MODIS NDVI Time Series. Remote Sens. 2016, 8, 741. [Google Scholar] [CrossRef]
- Wang, Y.; Zang, S.; Tian, Y. Mapping paddy rice with the random forest algorithm using MODIS and SMAP time series. Chaos Solitons Fractals 2020, 140, 110116. [Google Scholar] [CrossRef]
- Ramírez-Cuesta, J.; Minacapilli, M.; Motisi, A.; Consoli, S.; Intrigliolo, D.; Vanella, D. Characterization of the main land processes occurring in Europe (2000–2018) through a MODIS NDVI seasonal parameter-based procedure. Sci. Total Environ. 2021, 799, 149346. [Google Scholar] [CrossRef]
- Doussoulin-Guzmán, M.A.; Pérez-Porras, F.J.; Triviño-Tarradas, P.; Ríos-Mesa, A.F.; Porras, A.G.F.; Mesas-Carrascosa, F.J. Grassland Phenology Response to Climate Conditions in Biobio, Chile from 2001 to 2020. Remote Sens. 2022, 14, 475. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Kim, T.K. T test as a parametric statistic. Korean J. Anesthesiol. 2022, 68, 540–546. [Google Scholar] [CrossRef] [PubMed]
- QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2024. Available online: http://qgis.osgeo.org (accessed on 15 June 2021).
- Marcucci, M.; Sharma, S. Applied Multivariate Techniques. Technometrics 1997, 39, 100–101. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.K.; Kotb Abd-Elmabod, S.; Zhang, Z.; Merwad, A.-R.M.A. Exploring the Applicability of Regression Models and Artificial Neural Networks for Calculating Reference Evapotranspiration in Arid Regions. Sustainability 2023, 15, 15494. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar] [CrossRef]
- Willmott, C.J.; Ckleson, S.G.; Davis, R.E. Statistics for the evaluation and comparision of models. J. Geophys. Res. 1985, 90, 8995–9005. [Google Scholar] [CrossRef]
- Camargo, A.P.; Sentelhas, P.C. Avaliação do desempenho de diferentes métodos de estimativa da evapotranspiração potencial no estado de São Paulo, Brasil. Rev. Bras. Agrometeorol. 1997, 5, 89–97. [Google Scholar]
- Bezerra, A.C.; De A. Moura, G.B.; Lopes, P.M.O.; Ribeiro, E.P.; Galvíncio, J.D.; Ferraz, E.X. Como os Produtos MODIS têm sido Utilizados para Análise dos Parâmetros Biofísicos em Regiões Semiáridas? Uma Revisão Bibliométrica e de Literatura. Revista Brasileira de Cartografia. Rev. Bras. De Cartogr. [S. l.] 2022, 74, 597–615. [Google Scholar] [CrossRef]
- Orusa, T.; Viani, A.; Cammareri, D.; Borgogno Mondino, E. A Google Earth Engine Algorithm to Map Phenological Metrics in Mountain Areas Worldwide with Landsat Collection and Sentinel-2. Geomatics 2023, 3, 221–238. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.O. MODIS Vegetation Index (MOD 13) Algorithm Theoretical Basis Document. version 3. Available online: https://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf (accessed on 25 September 2024).
- Rouse, J.W.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; NASA/GSFC: Greenbelt, MD, USA, 1974.
- Moreira, M.A. Fundamentos do Sensoriamento Remoto e Metodologias de Aplicação, 4th ed.; Universidade Federal de Viçosa: Viçosa, MG, Brazil, 2011; 422p. [Google Scholar]
- Soares, J.V.; Batista, G.T.; Shimabukuro, Y.O. Histórico e descrição, Cap1. In o Sensor MODIS e suas Aplicações Ambientais no Brasil; Ed. Parênteses: São José dos Campos, Brazil, 2007; 423p. [Google Scholar]
- Latorre, M.L.; Shimabukuro, Y.O.; Anderson, L.O. Produtos para ecossistemas terrestres—MODLAND, Cap2. In o Sensor Modis e suas Aplicações Ambientais no Brasil; Ed. Parênteses: São José dos Campos, Brazil, 2007; 423p. [Google Scholar]
- Hoogenboom, G. Contribution of agrometeorology to the simulation of crop production and its application. Agric. For. Meteorol. 2000, 103, 137–157. [Google Scholar] [CrossRef]
- Pereira, A.R.; Angelocci, L.R.; Sentelhas, P.C. Agrometeorologia—Fundamentos e Aplicações Práticas; Ed. Agropecuárial: Guaíba, Brazil, 2002; 478p. [Google Scholar]
- Mavi, H.S.; Tupper, G.J. Agrometeorology—Principles and Application of Climate Studies in Agriculture; Food Products Press: New York, NY, USA, 2004; 364p. [Google Scholar]
- Pinto Santiago, E.J.; Oliveira, G.M.D.; Leitão, M.D.M.V.B.R.; Moura, M.S.B.D.; Gonçalves, I.S. Precipitação esperada, em diferentes níveis de probabilidade, na região de Juazeiro, BA. J. Environ. Anal. Prog. 2017, 2, 457–464. [Google Scholar] [CrossRef]
- Silva, O.; Khramov, D.; Sergieieva, K.; Vasyliev, V. Monitoring of Sugarcane Harvest in Brazil Based on Optical and SAR Data. Remote Sens. 2020, 12, 4080. [Google Scholar] [CrossRef]
- Sentelhas, P.C.; Monteiro, J.E.B.d. Agrometeorologia dos cultivos: Informações para uma agricultura sustentável. In Agrometeorologia dos Cultivos: o Fator Meteorológico na Produção Agrícola; Monteiro, J.E.B.A., Ed.; INMET: Brasília, Brazil, 2009; 530p. [Google Scholar]
- Bustamante, M.; Nobre, C.; Smeraldi, R.; Aguiar, A.P.; Barioni, L.; Ferreira, L.; de Freitas, L.K.; May, P.; Pinto, A.; Ometto, J. Estimating greenhouse gas emissions from cattle raising in Brazil. Clim. Chang. 2012, 115, 559–577. [Google Scholar] [CrossRef]
- Sentelhas, P.C. Duração do Período de Molhamento Foliar: Aspectos Operacionais da sua Medida, Variabilidade Espacial em Diferentes Culturas e sua Estimativa a Partir do Modelo de Penman-Monteith; ESALQ/USP: Piracicaba, Brazil, 2004; 161p. [Google Scholar]
- et Larose, M. La canne à sucre. In Collection Techniques Agricoles et Productions Tropicales; et Larose, M. Maisonneuve et larose: Paris, France, 1991. [Google Scholar]
- Marin, F.R.; Pellegrino, G.Q.; Assad, E.D.; Pinto, H.S.; Zullo Junior, J. Cana de açúcar, Cap7. In Agrometeorologia dos Cultivos: O Fator Meteorológico na Produção Agrícola; Monteiro, J.E.B.A., Ed.; INMET: Brasília, Brazil, 2009; 530p. [Google Scholar]
- Suguitani, C. Entendendo O Crescimento E Produção da Cana-de-Açúcar: Avaliação do Modelo Mosicas. TESE (Doutorado em Agronomia)—Escola Superior de Agricultura Luiz de Queiroz; Universidade de São Paulo: Piracicaba, Brazil, 2006. [Google Scholar]
- Santos, J.M.; Lopes, P.M.O.; Moura, G.B.A.; Slva, A.S.; Silva, J.L.B.; Oliveira Junior, J.G. Análise de canaviais irrigados com parâmetros biofísicos por sensoriamento remoto no Nordeste Brasileiro. Rev. Irrig. 2021, 26, 638–663. [Google Scholar] [CrossRef]
- Dotaniya, M.L.; Datta, S.C.; Biswas, D.R.; Dotaniya, C.K.; Meena, B.L.; Rajendiran, S.; Regar, K.L.; Lata, M. Use of sugarcane industrial by-products for improving sugarcane productivity and soil health. Int. J. Recycl. Org. Waste Agric. 2016, 5, 185–194. [Google Scholar] [CrossRef]
- Soares, J.M.; de S. Vieira, V.J.; Gomes Junior, W.F.; de Araújo Filho, A.A. Agrovale: Uma experiência de 25 anos em Irrigação da Cana-de-açúcar na região do Submédio São Francisco. Rev. ITEM 2003, 60, 5–62. [Google Scholar]
- Carvalho, H.F.S.; Moura, M.S.B.; Leitão, M.M.V.B.R.; Rodrigues, C.T.A.; Da Silva, T.G.F. Albedo de Caatinga Preservada Comparado com Cultivo de Cana-De-Açúcar Irrigada. In Anais do XX Congresso Brasileiro de Agrometeorologia, Embrapa. Juazeiro: Brazil, 2017.
- Souza, A.M.; Santos e Silva, C.M.; Bezerra, B.G. Albedo da Caatinga preservada e substituída por pastagem no Nordeste do Brasil. Atmosfera 2021, 12, 1622. [Google Scholar]
- Gunnula, W.; Kosittrakun, M.; Righetti, T.L.; Weerathaworn, P.; Prabpan, M. Normalized difference vegetation index relationships with rainfall patterns and yield in small plantings of rain-fed sugarcane. Aust. J. Crop Sci. 2011, 5, 1845–1851. [Google Scholar]
- Aguiar, D.A.D.; Silva, W.F.; Rizzi, R.; Rudorff, B.F.T.; Sugawara, L.M.; Paes, L.A.D. Monitoramento da colheita da cana. In O Sensor Modis E Suas Aplicações Ambientais No Brasil; Rudorff, B.F.T., Shimabukuro, Y.E., Ceballos, J.C., Eds.; Bookimage: São José dos Campos, Brazil, 2007; pp. 123–131. [Google Scholar]
- Ceddia, M.B.; Anjos LH, C.D.; Lima, E.; Ravelli Neto, A.; Silva, L.A.D. Sistemas de colheita da cana-de-açúcar e alterações nas propriedades físicas de um solo Podzólico Amarelo no Estado do Espírito Santo. Pesqui. Agropecu. Bras. Brasília 1999, 34, 1467–1473. [Google Scholar] [CrossRef]
- Rede Interuniversitária para o Desenvolvimento do Setor Sucroenergético (RIDESA). Catálogo Nacional de Variedades “RB” de Cana-de-Açúcar, Curitiba: Rede Interuniversitária Para o Desenvolvimento do Setor Sucroalcooleiro. Curitiba. 2010. Available online: https://www.ridesa.com.br/ (accessed on 21 September 2022).
- CONAB (Companhia Nacional de Abastecimento). Acompanhamento da Safra Brasileira de Cana-de-Açúcar, Safra 2018/19—Segundo Levantamento, Brasília, Brazil. 2018, 2020. Available online: https://www.conab.gov.br/info-agro/safras/cana (accessed on 27 April 2024).
- Baghdadi, N.; Cresson, R.; Todoroff, P.; Moinet, S. Multitemporal Observations of Sugarcane by TerraSAR-X Images. Sensors 2010, 10, 8899–8919. [Google Scholar] [CrossRef]
- Lisboa, I.P.; Damian, J.M.; Cherubin, M.R.; Barros, P.P.S.; Fiorio, P.R.; Cerri, C.C.; Cerri, C.E.P. Prediction of Sugarcane Yield Based on NDVI and Concentration of Leaf-Tissue Nutrients in Fields Managed with Straw Removal. Agronomy 2018, 8, 196. [Google Scholar] [CrossRef]
- Oré, G.; Alcântara, M.S.; Góes, J.A.; Teruel, B.; Oliveira, L.P.; Yepes, J.; Castro, V.; Bins, L.S.; Castro, F.; Luebeck, D.; et al. Predicting Sugarcane Harvest Date and Productivity with a Drone-Borne Tri-Band SAR. Remote Sens. 2022, 14, 1734. [Google Scholar] [CrossRef]
Crop Year | Varieties | Harvest | Harvest Season | Productivity (t.ha−1) |
---|---|---|---|---|
1998/1999 | SP 79-1011 | 1st | - | 146.00 |
1999/2000 | SP 79-1011 | 2nd | - | 105.00 |
2000/2001 | SP 79-1011 | 3rd | - | 113.00 |
2001/2002 | SP 79-1011 | 4th | - | 101.00 |
2002/2003 | SP 79-1011 | 5th | - | 117.00 |
2003/2004 | SP 79-1011 | 6th | - | 93.00 |
2004/2005 | SP 79-1011 | 7th | November/2005 | 98.00 |
2005/2006 PV | SP 79-1011 | 8th | October/2008 | 101.51 |
2006/2007 PV | SP 79-1011 | 9th | October/2008 | 113.20 |
2007/2008 PV | SP 79-1011 | 10th | October/2008 | 96.20 |
2008/2009 PV | SP 79-1011 | 11th | September/2009 | 82.73 |
2009/2010 PV | SP 79-1011 | 12th | September/2010 | 83.36 |
2010/2011 PV | SP 79-1011 | 13th | August/2011 | 84.48 |
2011/2012 PV | SP 79-1011 | 14th | July/2012 | 74.28 |
2012/2013 | - | - | Planting renewal | - |
2013/2014 | VAT 90-212 | 1st | June/2014 | 261.86 |
2014/2015 | VAT 90-212 | 2nd | July/2015 | 171.77 |
2015/2016 | VAT 90-212 | 3rd | July/2016 | 156.03 |
2016/2017 | VAT 90-212 | 4th | July/2017 | 148.83 |
Configuration | Values |
---|---|
Seasonal par. (0–1) | 1 (yes) |
No. of iterations | 2 |
Force Minimum Value | 0 (no) |
Adjustment method | Savitsky–Golay |
Seasonal Amplitude | Seasonal Amplitude |
Season start value | 0.2 |
End-of-season value | 0.2 |
r | Performance r | e | Performance e |
---|---|---|---|
>0.9 | Almost perfect | >0.85 | Great |
0.7–0.9 | Very high | 0.76–0.85 | Very Good |
0.5–0,7 | High | 0.66–0,75 | Good |
0.3–0.5 | Moderate | 0.61–0.65 | Average |
0.1–0.3 | Low | 0.51–0.60 | Passable |
0–0.1 | Very low | 0.41–0.50 | Bad |
- | - | Terrible |
Seasons | SOS | EOS | LOS (Days) | e | POS | f | I | F |
---|---|---|---|---|---|---|---|---|
1 | 17 November 2001 | 13 October 2002 | 332 | 25 April 2002 | 0.74 | 0.41 | 0.45 | 0.32 |
2 | 21 November 2002 | 21 November 2003 | 368 | 16 May 2003 | 0.82 | 0.47 | 0.38 | 0.46 |
3 | 11 January 2004 | 21 October 2004 | 285 | 27 May 2004 | 0.72 | 0.36 | 0.48 | 0.33 |
4 | 19 November 2004 | 05 November 2005 | 354 | 28 April 2005 | 0.81 | 0.53 | 0.39 | 0.32 |
5 | 04 Dezember 2005 | 03 October 2006 | 305 | 04 May 2006 | 0.75 | 0.43 | 0.37 | 0.39 |
6 | 24 November 2006 | 11 October 2007 | 322 | 12 May 2007 | 0.75 | 0.42 | 0.43 | 0.35 |
7 | 17 November 2007 | 14 October 2008 | 334 | 09 April 2008 | 0.75 | 0.46 | 0.40 | 0.33 |
8 | 16 November 2008 | 20 September 2009 | 309 | 08 June 2009 | 0.76 | 0.46 | 0.37 | 0.36 |
9 | 04 November 2009 | 19 September 2010 | 322 | 07 April 2010 | 0.77 | 0.47 | 0.40 | 0.32 |
10 | 26 October 2010 | 05 September 2011 | 317 | 10 April 2011 | 0.67 | 0.41 | 0.35 | 0.29 |
11 | 01 October 2011 | 20 July 2012 | 296 | 20 Match 2012 | 0.69 | 0.46 | 0.33 | 0.27 |
12 | 17 November 2012 | 19 October 2013 | 339 | 15 May 2013 | 0.77 | 0.32 | 0.33 | 0.69 |
13 | 14 Dezember 2013 | 19 June 2014 | 189 | 17 April 2014 | 0.80 | 0.33 | 0.71 | 0.31 |
14 | 26 July 2014 | 07 July 2015 | 349 | 14 February 2015 | 0.77 | 0.49 | 0.36 | 0.35 |
15 | 19 August 2015 | 02 July 2016 | 319 | 15 February 2016 | 0.80 | 0.49 | 0.40 | 0.36 |
16 | 17 August 2016 | 26 June 2017 | 316 | 27 February 2017 | 0.76 | 0.40 | 0.40 | 0.44 |
17 | 25 August 2017 | 02 July 2018 | 314 | 24 February 2018 | 0.78 | 0.37 | 0.48 | 0.45 |
18 | 30 August 2018 | 25 June 2019 | 301 | 01 Match 2019 | 0.76 | 0.38 | 0.49 | 0.37 |
19 | 19 September 2019 | 13 July 2020 | 301 | 13 Match 2020 | 0.78 | 0.43 | 0.42 | 0.40 |
Minimum | 189 | 0.67 | 0.33 | 0.33 | 0.27 | |||
Maximum | 368 | 0.82 | 0.53 | 0.71 | 0.46 | |||
Mean | 313 | 0.76 | 0.43 | 0.42 | 0.36 |
PAI | Hectares | r | R2 | ME | MAE (Days) | RMSE (Days) | Performance r | d | e | Performance e |
---|---|---|---|---|---|---|---|---|---|---|
1 | 11.64 | 0.99 | 0.99 | −7.51 | 7 | 10 | Almost Perfect | 0.99 | 0.99 | Great |
2 | 8.07 | 0.99 | 0.99 | −11.62 | 12 | 13 | Almost Perfect | 0.99 | 0.99 | Great |
3 | 9.89 | 0.99 | 0.99 | −3.45 | 5 | 8 | Almost perfect | 0.99 | 0.99 | Great |
4 | 10.27 | 0.99 | 0.99 | −2.06 | 4 | 5 | Almost perfect | 0.99 | 0.99 | Great |
5 | 11.19 | 0.99 | 0.99 | −12.52 | 26 | 32 | Almost perfect | 099 | 0.99 | Great |
6 | 10.16 | 0.99 | 0.99 | −23.56 | 26 | 33 | Almost perfect | 0.99 | 0.99 | Great |
7 | 11.10 | 0.99 | 0.99 | −8.38 | 8 | 9 | Almost perfect | 0.99 | 0.99 | Great |
8 | 9.71 | 0.99 | 0.99 | −22.07 | 25 | 35 | Almost perfect | 0.99 | 0.99 | Great |
9 | 9.26 | 0.99 | 0.99 | −26.01 | 27 | 37 | Almost perfect | 0.99 | 0.99 | Great |
10 | 6.88 | 0.99 | 0.99 | −23.43 | 26 | 34 | Almost perfect | 0.99 | 0.99 | Great |
11 | 7.51 | 0.99 | 0.99 | −25.30 | 27 | 37 | Almost perfect | 0.99 | 0.99 | Great |
12 | 7.85 | 0.99 | 0.99 | −28.53 | 29 | 40 | Almost perfect | 0.99 | 0.99 | Great |
13 | 7.97 | 0.99 | 0.99 | −24.90 | 28 | 39 | Almost perfect | 0.99 | 0.99 | Great |
Total area | 121.5 | 0.99 | 0.99 | −3.92 | 10 | 11 | Almost perfect | 0.99 | 0.99 | Great |
QA | Performance |
---|---|
0 | Good quality |
1 | Undefined quality |
2 | Produced, but most probably cloudy |
3 | Not produced due to other reasons than clouds |
6, 7 | Produced due to aerosol quantity |
9 | Atmospheric correction |
10 | Not produced due to cloud effects |
11, 12, 13 | Not produced due to shadow effects |
15 | Not produced due to shadow effects |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro Manrique, D.R.; Lopes, P.M.O.; Nascimento, C.R.; Ribeiro, E.P.; Silva, A.S.d. Phenological Monitoring of Irrigated Sugarcane Using Google Earth Engine, Time Series, and TIMESAT in the Brazilian Semi-Arid. AgriEngineering 2024, 6, 3799-3822. https://doi.org/10.3390/agriengineering6040217
Castro Manrique DR, Lopes PMO, Nascimento CR, Ribeiro EP, Silva ASd. Phenological Monitoring of Irrigated Sugarcane Using Google Earth Engine, Time Series, and TIMESAT in the Brazilian Semi-Arid. AgriEngineering. 2024; 6(4):3799-3822. https://doi.org/10.3390/agriengineering6040217
Chicago/Turabian StyleCastro Manrique, Diego Rosyur, Pabrício Marcos Oliveira Lopes, Cristina Rodrigues Nascimento, Eberson Pessoa Ribeiro, and Anderson Santos da Silva. 2024. "Phenological Monitoring of Irrigated Sugarcane Using Google Earth Engine, Time Series, and TIMESAT in the Brazilian Semi-Arid" AgriEngineering 6, no. 4: 3799-3822. https://doi.org/10.3390/agriengineering6040217
APA StyleCastro Manrique, D. R., Lopes, P. M. O., Nascimento, C. R., Ribeiro, E. P., & Silva, A. S. d. (2024). Phenological Monitoring of Irrigated Sugarcane Using Google Earth Engine, Time Series, and TIMESAT in the Brazilian Semi-Arid. AgriEngineering, 6(4), 3799-3822. https://doi.org/10.3390/agriengineering6040217