Detection of Coffee Leaf Miner Using RGB Aerial Imagery and Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pest Monitoring
2.2. Aerial Data Collection
2.3. Model Development
3. Results
3.1. Exploratory Data Analysis
Monitoring of Coffee Leaf Miner Infestation and Image Selection
3.2. Machine Learning
Algorithm Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pancsira, J. International Coffee Trade: A literature review. J. Agric. Inform. 2022, 13, 26–35. [Google Scholar] [CrossRef]
- CONAB Companhia Nacional de Abastecimento. Historical Series—Arabica Coffee—Brazil. Available online: https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras#café-2 (accessed on 1 July 2024).
- Reis, P.R.; Souza, J.C.; Silva, R.A.; Santa-Cecília, L.V.C. Principais pragas do cafeeiro no Cerrado Mineiro: Reconhecimento e manejo. In Cafeicultura do Cerrado; Carvalho, G.R., Ferreira, A.D., Andrade, V.T., Botelho, C.E., Carvalho, J.P.F., Eds.; EPAMIG: Belo Horizonte, Brazil, 2021; pp. 321–346. [Google Scholar]
- Pereira, E.J.G.; Picanço, M.C.; Bacci, L.; Bacci, L.; Della Lucia, T.M.C.; Silva, E.M.; Fernandes, F.L. Natural mortality factors of Leucoptera coffeella (Lepidoptera:Lyonetiidae) on Coffea arabica. Biocontrol Sci. 2007, 17, 441–455. [Google Scholar] [CrossRef]
- Fernandes, F.L.; Mantovani, E.C.; Neto, H.B.; Nunes, V.V. Efeitos de variáveis ambientais, irrigação e vespas predadoras sobre Leucoptera coffeella (Guérin-Méneville) (Lepidoptera: Lyonetiidae) no cafeeiro. Neotrop. Entomol. 2009, 38, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Pantoja-Gomez, L.M.; Corrêa, A.S.; Oliveira, L.O.; Guedes, R.N.C. Common origin of Brazilian and Colombian populations of the Neotropical coffee leaf miner, Leucoptera coffeella (Lepidoptera: Lyonetiidae). J. Econ. Entomol. 2019, 112, 924–931. [Google Scholar] [CrossRef]
- Leite, S.A.; Santos, M.P.; Resende-Silva, G.A.; Costa, D.R.; Moreira, A.A.; Lemos, O.L.; Guedes, R.N.C.; Castellani, M.A. Area-wide survey of chlorantraniliprole resistance and control failure likelihood of the Neotropical coffee leaf miner Leucoptera coffeella (Lepidoptera: Lyonetiidae). J. Econ. Entomol. 2020, 113, 1399–1410. [Google Scholar] [CrossRef]
- Venzon, M. Agro-ecological Management of Coffee Pests in Brazil. Front. Sustain. Food Syst. 2021, 5, 721117. [Google Scholar] [CrossRef]
- Souza, J.C.; Reis, P.R.; Rigitano, R.L.D.O. Bicho-Mineiro do Cafeeiro: Biologia, Danos e Manejo Integrado; Boletim Técnico, EPAMIG: Belo Horizonte, Brazil, 1998; p. 48. [Google Scholar]
- Giraldo-Jaramillo, M.; Garcia-Gonzalez, J.; Rugno, J.B. Fertility life table of Leucoptera coffeela (Guérin-Mèneville) (Lepidoptera: Lyonetiidae) at seven temperatures in coffee. Am. J. Entomol. 2019, 3, 70–76. [Google Scholar] [CrossRef]
- Carvalho, C.F.; Carvalho, S.M.; Souza, B. Coffee; Souza, B., Vázquez, L.L., Marucci, R.C., Eds.; Natural Enemies of Insect Pests in Neotropical Agroecosystems; Springer Nature: Basel, Switzerland, 2019; pp. 277–292. [Google Scholar]
- Bento, N.L.; Ferraz, G.A.e.S.; Santana, L.S.; Silva, M.d.L.O.e. Coffee Growing with Remotely Piloted Aircraft System: Bibliometric Review. AgriEngineering 2023, 5, 2458–2477. [Google Scholar] [CrossRef]
- Velásquez, D.; Sánchez, A.; Sarmiento, S.; Toro, M.; Maiza, M.; Sierra, B. A Method for Detecting Coffee Leaf Rust through Wireless Sensor Networks, Remote Sensing, and Deep Learning: Case Study of the Caturra Variety in Colombia. Appl. Sci. 2020, 10, 697. [Google Scholar] [CrossRef]
- Soares, A.d.S.; Vieira, B.S.; Bezerra, T.A.; Martins, G.D.; Siquieroli, A.C.S. Early Detection of Coffee Leaf Rust Caused by Hemileia vastatrix Using Multispectral Images. Agronomy 2022, 12, 2911. [Google Scholar] [CrossRef]
- Pereira, F.V.; Martins, G.D.; Vieira, B.S.; de Assis, G.A.; Orlando, V.S.W. Multispectral images for monitoring the physiological parameters of coffee plants under different treatments against nematodes. Precis. Agric. 2022, 23, 2312–2344. [Google Scholar] [CrossRef]
- dos Santos, L.M.; Ferraz, G.A.e.S.; Bento, N.L.; Marin, D.B.; Rossi, G.; Bambi, G.; Conti, L. Use of Images Obtained by Remotely Piloted Aircraft and Random Forest for the Detection of Leaf Miner (Leucoptera coffeella) in Newly Planted Coffee Trees. Remote Sens. 2024, 16, 728. [Google Scholar] [CrossRef]
- Santos, L.M.d.; Ferraz, G.A.e.S.; Marin, D.B.; Carvalho, M.A.d.F.; Dias, J.E.L.; Alecrim, A.d.O.; Silva, M.d.L.O.e. Vegetation Indices Applied to Suborbital Multispectral Images of Healthy Coffee and Coffee Infested with Coffee Leaf Miner. AgriEngineering 2022, 4, 311–319. [Google Scholar] [CrossRef]
- Marin, D.B.; Schwerz, F.; Barata, R.A.P.; de Oliveira Faria, R.; Dias, J.E.L. Unmanned Aerial Vehicle to Evaluate Frost Damage in Coffee Plants. Precis. Agric. 2021, 22, 1845–1860. [Google Scholar] [CrossRef]
- Liu, K.; Li, Y.; Han, T.; Yu, X.; Ye, H.; Hu, H.; Hu, Z. Evaluation of grain yield based on digital images of rice canopy. Plant Methods 2019, 15, 28. [Google Scholar] [CrossRef] [PubMed]
- Torres-Sánchez, J.; Pena, J.M.; De Castro, A.I.; López-Granados, F. Multi-temporal mapping of the vegetation fraction in early season wheat fields using images from UAV. Comput. Electron. Agric. 2014, 103, 104–113. [Google Scholar] [CrossRef]
- Lu, J.; Cheng, D.; Geng, C.; Zhang, Z.; Xiang, Y.; Hu, T. Combining plant height, canopy coverage and vegetation index from UAV-based RGB images to estimate leaf nitrogen concentration of summer maize. Biosyst. Eng. 2021, 202, 42–54. [Google Scholar] [CrossRef]
- Sellaro, R.; Crepy, M.; Trupkin, S.A.; Karayekov, E.; Buchovsky, A.S.; Rossi, C.; Casal, J.J. Cryptochrome as a Sensor of the Blue/Green Ratio of Natural Radiation in Arabidopsis. Plant Physiol. 2010, 154, 401–409. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Levin, N.; Ben-Dor, E.; Singer, A. A digital camera as a tool to measure colour indices and related properties of sandy soils in semi-arid environments. Int. J. Remote Sens. 2005, 26, 5475–5492. [Google Scholar] [CrossRef]
- Mathieu, R.; Pouget, M.; Cervelle, B.; Escadafal, R. Relationships between Satellite-Based Radiometric Indices Simulated Using Laboratory Reflectance Data and Typic Soil Color of an Arid Environment. Remote Sens. Environ. 1998, 66, 17–28. [Google Scholar] [CrossRef]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Escadafal, R.; Belghith, A.; Ben-Moussa, H. Indices spectraux pou la télédetection de la dégradation des milieux naturels en Tunisie aride. In Symposium International sur les Mesures Physiques et Signatures en Télédétection, 6., 1994, Val d’Isère, France. Anaux... Toulouse; Centre National d’Etude Spatiale: Paris, France, 1994; pp. 253–259. [Google Scholar]
- Harris, C.R.; Millman, K.J.; Van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array Programming with Numpy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- McKinney, W. Data structures for statistical computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 56–61. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Ponzoni, F.J.; Shimabukuro, Y.E.; Kuplich, T.M. Sensoriamento Remoto Aplicado ao Estudo da Vegetação, 2nd ed.; Parêntese: São José dos Campos, Brazil, 2012; 160p. [Google Scholar]
- Santos, L.M.; Ferraz, G.A.F.; Santana, L.S.; Barbosa, B.D.S.; Xavier, L.A.G.; Andrade, M.T. Índice de Vegetação (ExGR) Aplicado a Imagens rgb Obtidas por UAV para Detecção de Doença em Cafeeiros, Proceedings of the X Simpósio de Pesquisa dos Cafés do Brasil, Vitoria, Brazil, 8 November 2019; Centro de Convenções de Vitoria: Vitoria, Brazil, 2019. [Google Scholar]
- Mincato, R.L.; Parreiras, T.C.; Lense, G.H.E.; Moreira, R.S.; Santana, D.B. Using unmanned aerial vehicle and machine learning algorithm to monitor leaf nitrogen in coffee. Coffee Sci. 2020, 15, e151736. [Google Scholar]
- Marin, D.B.; Ferraz, G.A.E.S.; Guimarães, P.H.S.; Schwerz, F.; Santana, L.S.; Barbosa, B.D.S.; Barata, R.A.P.; Faria, R.d.O.; Dias, J.E.L.; Conti, L.; et al. Remotely Piloted Aircraft and Random Forest in the Evaluation of the Spatial Variability of Foliar Nitrogen in Coffee Crop. Remote Sens. 2021, 13, 1471. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater Reliability: The Kappa Statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
Study Area | Latitude (South) | Longitude (West) | Cultivar | Planting (Year) | Elevation (Meters) |
---|---|---|---|---|---|
1—Presidente Olegário | 18°33′49.82″ | 46°19′45.51″ | IAC 125 (IBC 12) | 11 December 2020 | 1090 |
2—Varjão de Minas | 18°31′22.09″ | 46°3′46.36″ | IPR 100 | 12 December 2021 | 0926 |
3—Varjão de Minas | 18°31′18.35″ | 46°3′46.04″ | IPR 100 | 12 December 2021 | 0926 |
4—Carmo do Paranaíba | 18°57′57.99″ | 46°15′46.44″ | IPR 100 | 12 December 2020 | 1100 |
5—Carmo do Paranaíba | 19°0′6.52″ | 46°13′51.66″ | Catucai 144 | 12 January 2021 | 1100 |
6—Patrocínio | 18°59′10.86″ | 46°58′57.48″ | Paraíso | 12 December 2008 | 0987 |
7—Patrocínio | 18°56′28.57″ | 47°17′18.59″ | Paraíso | 12 December 2017 | 1070 |
8—Coromandel | 18°37′18.41″ | 46°49′52.43″ | Paraíso 2 | 12 December 2020 | 1140 |
Vegetation Index | Equation | Reference |
---|---|---|
Normalized Redness Intensity—NRI | [19] | |
Excess Green Index—EXG | 2 × RED | [20] |
Green Red Ratio Vegetation Index—GRRI | [21] | |
Green Blue Ratio Index—GBRI | [22] | |
Red Blue Ratio Index—RBRI | [22] | |
Woebbecke Index—WI | [23] | |
Normalized Pigment Chlorophyll Ratio Index—NPCI | [24] | |
Normalized Green–Red Difference Index—NGRDI | [25] | |
Redness Index—RI | [26] | |
Primary Colors Hue Index—HI | [27] | |
Green Leaf Index—GLI | [28] | |
Spectra Slope Saturation Index—SI | [29] | |
Normalized Blueness Intensity—NBI | [19] |
Algorithm | Hyperparameter | Value | Algorithm | Hyperparameter | Value |
---|---|---|---|---|---|
RF | Number of trees | 123 | Power t | 3 | |
Criterion | gini | SGD | Loss | hinge | |
Maximum depth | 17 | Penalty | l2 | ||
SVM | C | 5 | C | 2 | |
Kernel | rbf | LR | Tol | 0 | |
Degree | 10 | Max iter | 152 | ||
Gamma | scale | Intercept scaling | 0 |
Year | Minimum | Q1 | Mean | Q3 | Maximum | Sd |
---|---|---|---|---|---|---|
2023 | 0.000 | 0.000 | 10.58 | 25.00 | 75.00 | 19.54 |
VI | State of the Plants | Mean | Mediana | SD | Min | Max |
---|---|---|---|---|---|---|
EXG | healthy | 30.323 | 12.586 | 44.915 | −14.752 | 140.502 |
Infested | 22.042 | 15.458 | 26.812 | −2.347 | 130.963 | |
GBRI | healthy | 2.334 | 2.366 | 0.588 | 1.147 | 3.913 |
Infested | 2.215 | 2.150 | 0.468 | 1.308 | 3.226 | |
GLI | healthy | 0.205 | 0.225 | 0.063 | 0.034 | 0.274 |
Infested | 0.192 | 0.196 | 0.046 | 0.080 | 0.264 | |
GRRI | healthy | 1.279 | 1.301 | 0.134 | 1.014 | 1.572 |
Infested | 1.221 | 1.206 | 0.099 | 1.076 | 1.405 | |
HI | healthy | 3.537 | 2.538 | 4.062 | −0.304 | 23.929 |
Infested | 3.304 | 2.908 | 2.008 | −0.114 | 10.365 | |
NBI | healthy | 0.225 | 0.217 | 0.029 | 0.181 | 0.306 |
Infested | 0.223 | 0.221 | 0.023 | 0.190 | 0.290 | |
NGRDI | healthy | 0.115 | 0.127 | 0.050 | 0.006 | 0.201 |
Infested | 0.095 | 0.091 | 0.038 | 0.036 | 0.162 | |
NPCI | healthy | −0.218 | −0.226 | 0.065 | −0.342 | −0.059 |
Infested | −0.231 | −0.238 | 0.056 | −0.336 | −0.081 | |
NRI | healthy | 0.342 | 0.343 | 0.015 | 0.302 | 0.376 |
Infested | 0.351 | 0.350 | 0.013 | 0.324 | 0.372 | |
RBRI | healthy | 1.744 | 1.713 | 0.343 | 1.132 | 2.752 |
Infested | 1.757 | 1.728 | 0.289 | 1.188 | 2.510 | |
RI | healthy | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Infested | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
SI | healthy | 0.218 | 0.226 | 0.065 | 0.059 | 0.342 |
Infested | 0.231 | 0.238 | 0.056 | 0.081 | 0.336 | |
WI | healthy | −2.614 | −2.445 | 0.855 | −5.437 | −0.914 |
Infested | −3.385 | −3.127 | 1.221 | −6.909 | −1.880 |
Algorithm | Precision | Recall | Auc | f1_Score | Log_Loss | Kappa |
---|---|---|---|---|---|---|
SVM | 1 | 0.5 | 0.75 | 0.66 | 8.63489 | 0.60 |
RF | 0 | 0 | 0.5 | 0 | 8.63489 | 0 |
LR | 1 | 0.37 | 0.68 | 0.54 | 11.5131 | 0.44 |
SGD | 0.75 | 0.75 | 0.83 | 0.75 | 8.63489 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilela, E.F.; Silva, C.A.d.; Botti, J.M.C.; Martins, E.F.; Santana, C.C.; Marin, D.B.; Freitas, A.R.d.J.; Jaramillo-Giraldo, C.; Lopes, I.P.d.C.; Corrêdo, L.d.P.; et al. Detection of Coffee Leaf Miner Using RGB Aerial Imagery and Machine Learning. AgriEngineering 2024, 6, 3174-3186. https://doi.org/10.3390/agriengineering6030181
Vilela EF, Silva CAd, Botti JMC, Martins EF, Santana CC, Marin DB, Freitas ARdJ, Jaramillo-Giraldo C, Lopes IPdC, Corrêdo LdP, et al. Detection of Coffee Leaf Miner Using RGB Aerial Imagery and Machine Learning. AgriEngineering. 2024; 6(3):3174-3186. https://doi.org/10.3390/agriengineering6030181
Chicago/Turabian StyleVilela, Emerson Ferreira, Cileimar Aparecida da Silva, Jéssica Mayara Coffler Botti, Elem Fialho Martins, Charles Cardoso Santana, Diego Bedin Marin, Agnaldo Roberto de Jesus Freitas, Carolina Jaramillo-Giraldo, Iza Paula de Carvalho Lopes, Lucas de Paula Corrêdo, and et al. 2024. "Detection of Coffee Leaf Miner Using RGB Aerial Imagery and Machine Learning" AgriEngineering 6, no. 3: 3174-3186. https://doi.org/10.3390/agriengineering6030181
APA StyleVilela, E. F., Silva, C. A. d., Botti, J. M. C., Martins, E. F., Santana, C. C., Marin, D. B., Freitas, A. R. d. J., Jaramillo-Giraldo, C., Lopes, I. P. d. C., Corrêdo, L. d. P., Queiroz, D. M. d., Rossi, G., Bambi, G., Conti, L., & Venzon, M. (2024). Detection of Coffee Leaf Miner Using RGB Aerial Imagery and Machine Learning. AgriEngineering, 6(3), 3174-3186. https://doi.org/10.3390/agriengineering6030181