The Effect of Vortex Generators on Spray Deposition and Drift from an Agricultural Aircraft
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vortex Generators
2.2. Drift Study Setup
2.3. Processing of Deposition Samples
2.4. Data Analysis
3. Results and Discussion
3.1. Monofilament Lines
3.2. Mylar Cards
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teske, M.E.; Thistle, H.W.; Eav, B. New ways to predict aerial spray deposition and drift. J. For. 1998, 96, 25–31. [Google Scholar] [CrossRef]
- Klein, R.; Golus, J.; Cox, A.; Alexander, L.; Carpenter, P.; Cooper, S.; Glass, C.; Gummer Andersen, P.; Magri, B.; Robinson, T. Spray droplet size and how it is affected by pesticide formulation, concentrations, carriers, nozzle tips, pressure and additives. In Proceedings of the International Advances in Pesticide Application, Robinson College, Cambridge, UK, 9–11 January 2008; Association of Applied Biologists: Wellesbourne, UK, 2008; pp. 231–237. [Google Scholar]
- Van den Berg, F.; Kubiak, R.; Benjey, W.; Majewski, M.; Yates, S.; Reeves, G.; Smelt, J.; Van der Linden, A.M.A. Emission of Pesticides into the Air. Water Soil Air Pollut. 1999, 115, 195–218. [Google Scholar] [CrossRef]
- Salyani, M.; Cromwell, R.P. Drift losses from citrus spray applications. In Proceedings of the Florida State Horticultural Society, Fort Lauderdale, FL, USA, 1993; pp. 13–18. [Google Scholar]
- Yates, W.E.; Akesson, N.B.; Cowden, R.E. Criteria for minimizing drift residues on crops downwind from aerial applications. Trans. ASAE 1974, 17, 627–632. [Google Scholar] [CrossRef]
- Threadgill, E.; Smith, D. Effects of physical and meteorological parameters on the drift of controlled-size droplets. Trans. ASAE 1975, 18, 51–56. [Google Scholar]
- Hewitt, A.J. Developments in international harmonization of pesticide drift management. Phytoparasitica 2001, 29, 93–96. [Google Scholar] [CrossRef]
- Caldwell, D.M. Quantification of Spray Drift from Aerial Applications of Pesticide. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2006. [Google Scholar]
- Reed, W.H. An Analytical Study of the Effect of Airplane Wake on the Lateral Dispersion of Aerial Sprays; Technical Note; National Advisory Committee for Aeronautics: Washington, DC, USA, 1953. [Google Scholar]
- Trayford, R.; Welch, L. Aerial spraying: A simulation of factors influencing the distribution and recovery of liquid droplets. J. Agric. Eng. Res. 1977, 22, 183–196. [Google Scholar] [CrossRef]
- Parkin, C.; Wheeler, P. Influence of spray induced vortices on the movement of drops in wind tunnels. J. Agric. Eng. Res. 1996, 63, 35–44. [Google Scholar] [CrossRef]
- Hewitt, A.J.; Johnson, D.R.; Fish, J.D.; Hermansky, C.G.; Valcore, D.L. Development of the spray drift task force database for aerial applications. Environ. Toxicol. Chem. 2002, 21, 648–658. [Google Scholar] [CrossRef] [PubMed]
- Parkin, C.; Spillman, J. The use of wing-tip sails on a spraying aircraft to reduce the amount of material carried off-target by a crosswind. J. Agric. Eng. Res. 1980, 25, 65–74. [Google Scholar] [CrossRef]
- Hoffmann, W. Influence of aircraft wingtip modifications on spray deposition and movement. In Influence of Aircraft Wingtip Modifications on Spray Deposition and Movement; American Society of Agricultural Engineers: Milwaukee, WI, USA, 2000; pp. 1–14. [Google Scholar]
- Hoffmann, W.; Tom, H.H. Effects of lowering spray boom in flight on swath width and drift. Appl. Eng. 2000, 16, 217–220. [Google Scholar] [CrossRef]
- Ryan, S.D.; Gerber, A.G.; Holloway, A.G.L. A computational study on spray dispersal in the wake of an aircraft. Trans. ASABE 2013, 56, 847–868. [Google Scholar]
- King, J.; Xue, X. A fast analysis of pesticide spray dispersion by an agricultural aircraft very near the ground. Agriculture 2022, 12, 433. [Google Scholar] [CrossRef]
- Borchers, I.; Drobietz, R.; Gruenewald, M.; Mau, K.; Reichenberger, J. Noise Reducing Vortex Generators on Aircraft Wing Control Surfaces. U.S. Patent 6,491,262 B2, 10 December 2002. [Google Scholar]
- Brüderlin, M.; Zimmer, M.; Hosters, N.; Behr, M. Numerical simulation of vortex generators on a winglet control surface. Aerosp. Sci. Technol. 2017, 71, 651–660. [Google Scholar] [CrossRef]
- Zhdanov, O.; Orlianskyi, V. Check for updates Researching Influence of Vortex Generators on Aircraft Aerodynamic Characteristics. In Proceedings of the 2nd International Workshop on Advances in Civil Aviation Systems Development; Springer Nature: Kyiv, Ukraine, 2024; pp. 410–422. [Google Scholar]
- Aeronautical Testing Service. Aeronautical Testing Service, Inc. 1999. Available online: https://www.aerotestsvc.com/ (accessed on 22 January 2024).
- Micro Vortex Generators for Single and Twin Engine Aircraft. Micro Aero Dynamics Inc. Available online: https://microaero.com/ (accessed on 9 January 2024).
- Tebbiche, H.; Boutoudj, M. Aerodynamic drag reduction by turbulent flow control with vortex generators. In Proceedings of the 5th International Symposium on Aircraft Materials, Marrakech, Morocco, 23–26 April 2014. [Google Scholar]
- Vignesh, V.; Emani, S.; Guven, U.; Velidi, G.; Yadav, R. Numerical Simulation of Aerodynamic Lift of a Clark Y Airfoil with Vortex Generators. In Proceedings of the International Conference on Modelling, Optimisation and Computing, Roorkee, India, 5 December 2011; pp. 1–5. [Google Scholar]
- Hansen, M.O.L.; Velte, C.M.; Øye, S.; Hansen, R.; Sørensen, N.N.; Madsen, J.; Mikkelsen, R. Aerodynamically shaped vortex generators. Wind. Energy 2016, 19, 563–567. [Google Scholar] [CrossRef]
- Lin, J. Control of turbulent boundary-layer separation using micro-vortex generators. In Proceedings of the 30th Fluid Dynamics Conference, Norfolk, VA, USA, 20 June–1 July 1999; p. 3404. [Google Scholar]
- Methal, Z.; Talib, A.S.A.; Bakar, M.S.A.; Rahman, M.R.A.; Sulaiman, M.S.; Saad, M.R. Improving the Aerodynamic Performance of WIG Aircraft with a Micro-Vortex Generator (MVG) in Low-Speed Condition. Aerospace 2023, 10, 617. [Google Scholar] [CrossRef]
- Fritz, B.; Hoffmann, W. Update to the USDA-ARS Fixed-Wing Spray Nozzle Models. Trans. ASABE 2015, 58, 281–295. [Google Scholar]
- ASAE S572.2; Spray Nozzle Classification by Droplet Spectra. ASABE: St. Joseph, MI, USA, 2020.
- Fritz, B.; Hoffmann, W.; Jank, P. A fluorescent tracer method for evaluating spray transport and fate of field and laboratory spray applications. J. ASTM Int. 2011, 8, 1–9. [Google Scholar]
- SAS. SAS Version 9.4; SAS Institute Inc.: Cary, NC, USA, 2012. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 6th ed.; The Iowa State University Press: Ames, IA, USA, 1967; p. 593. [Google Scholar]
- Ott, L.R. An Introduction to Statistical Methods and Data Analysis; Duxbury Press: Belmont, CA, USA, 1993. [Google Scholar]
- Sokal, R.R.; Rohlf, R.R. Biometry—The Principles and Practice of Statistics in Biological Research; W. H. Freeman and Company: New York, NY, USA, 1969. [Google Scholar]
- Warton, D.I.; Hui, F.K.C. The arcsine is asinine: The analysis of proportions in ecology. Ecology 2011, 92, 3–10. [Google Scholar] [CrossRef] [PubMed]
- LeRoux, E.J.; Reimer, C. Variation between samples of immature stages, and of mortalities from some factors, of the eye-spotted bud moth, Spilonota ocellana (D. & S.) (Lepidoptera: Olethreutidae), and the Pistol casebearer, Coleophora serratella (L.) (Lepidoptera: Coleophoridae), on Apple in Quebec. Can. Entomol. 1959, 91, 428–449. [Google Scholar]
- SAS. JMP Version 14; SAS Institute: Cary, NC, USA, 2018. [Google Scholar]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer Science and Business Media: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
Wind Speed (m/s) and Direction by Height | |||
---|---|---|---|
Treatment | Rep | 2 m | 10 m |
VG | 1 | 2.53 @ 142.6° | 3.24 @ 131° |
No VG | 1 | 2.16 @ 173.5° | 2.92 @ 147.3° |
VG | 2 | 2.11 @ 165.9° | 2.74 @ 155.9° |
No VG | 2 | 2.45 @ 181.9° | 3.17 @ 168.7° |
VG | 3 | 2.95 @ 183.6° | 3.49 @ 175.3° |
No VG | 3 | 2.31 @ 188.4° | 2.89 @ 174.3° |
VG | 4 | 2.32 @ 174.3° | 3.14 @ 160.8° |
No VG | 4 | 2.74 @ 151.0° | 3.48 @ 140.5° |
VG | 5 | 2.99 @ 176.6° | 4.03 @ 153.7° |
No VG | 5 | 2.53 @ 175.7° | 3.31 @ 156.6° |
VG | No VG | |||
---|---|---|---|---|
Height (m) | Mean ± STD | Mean ± STD | F1, 17.7 | p > |
2 | 20.76 ± 13.3 | 37.24 ± 21.6 | 3.53 | 0.07 |
5 | 36.32 ± 32.0 | 47.35 ± 30.1 | 1.97 | 0.17 |
10 | 18.88 ± 14.9 | 31.40 ± 17.2 | 2.35 | 0.14 |
VG | No VG | |||
---|---|---|---|---|
Distance (m) | Mean ± STD | Mean ± STD | F1, 335 | p > F a |
Upwind deposition | ||||
−25 | 0.00 ± 0.0 | 0.00 ± 0.0 | 0.02 | 0.90 |
In-swath deposition | ||||
−20 | 0.00 ± 0.0 | 0.00 ± 0.0 | 0.02 | 0.90 |
−15 | 12.03 ± 25.7 | 0.00 ± 0.0 | 6.08 | 0.01 |
−10 | 28.10 ± 12.8 | 26.43 ± 25.9 | 1.32 | 0.25 |
−5 | 33.35 ± 19.7 | 50.22 ± 20.4 | 9.02 | 0.003 |
0 | 79.21 ± 16.7 | 60.69 ± 25.6 | 7.10 | 0.008 |
Downwind deposition | ||||
1 | 68.01 ± 19.2 | 59.31 ± 17.4 | 1.83 | 0.18 |
2 | 60.24 ± 18.9 | 57.34 ± 21.2 | 0.06 | 0.81 |
5 | 45.05 ± 20.1 | 65.54 ± 20.7 | 10.46 | 0.001 |
10 | 22.57 ± 10.6 | 48.65 ± 16.4 | 13.66 | 0.003 |
20 | 8.19 ± 7.1 | 21.01 ± 11.5 | 7.46 | 0.007 |
50 | 1.49 ± 3.2 | 2.59 ± 4.1 | 0.78 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, D.E.; Latheef, M.A. The Effect of Vortex Generators on Spray Deposition and Drift from an Agricultural Aircraft. AgriEngineering 2024, 6, 1683-1696. https://doi.org/10.3390/agriengineering6020097
Martin DE, Latheef MA. The Effect of Vortex Generators on Spray Deposition and Drift from an Agricultural Aircraft. AgriEngineering. 2024; 6(2):1683-1696. https://doi.org/10.3390/agriengineering6020097
Chicago/Turabian StyleMartin, Daniel E., and Mohamed A. Latheef. 2024. "The Effect of Vortex Generators on Spray Deposition and Drift from an Agricultural Aircraft" AgriEngineering 6, no. 2: 1683-1696. https://doi.org/10.3390/agriengineering6020097
APA StyleMartin, D. E., & Latheef, M. A. (2024). The Effect of Vortex Generators on Spray Deposition and Drift from an Agricultural Aircraft. AgriEngineering, 6(2), 1683-1696. https://doi.org/10.3390/agriengineering6020097