Bioactive Compound Extraction of Hemp (Cannabis sativa L.) Leaves through Response Surface Methodology Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Hemp Leaf Material
2.3. Hemp Leaf Extraction
2.4. Optimization with Response Surface Methodology (RSM), Experimental Design, and Model Validation
2.5. Bioactive Compound Determination
2.5.1. Total Polyphenol Content (TPC)
2.5.2. HPLC Quantification of Polyphenolic Compounds
2.5.3. Ascorbic Acid Content (AAC)
2.5.4. Total Carotenoids Content (TCC)
2.6. Antioxidant Capacity of the Extracts
2.6.1. Ferric-Reducing Antioxidant Power (FRAP) Assay
2.6.2. DPPH• Antiradical Activity Assay
2.6.3. Hydrogen Peroxide (H2O2) Scavenging Assay
2.7. Biological and Physicochemical Parameters of the Extracts
2.7.1. Assessment of In Vitro Anti-Inflammatory Activity
2.7.2. Color Evaluation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Total Polyphenol Content and Antioxidant Activity of the Extracts
3.2. Other Bioactive Compounds, and Biological and Physicochemical Determination of Extracts
3.3. Optimal Extraction Conditions
3.4. Principal Component Analysis (PCA) and Multivariate Correlation Analysis (MCA)
3.5. Partial Least Squares (PLS) Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karas, J.A.; Wong, L.J.M.; Paulin, O.K.A.; Mazeh, A.C.; Hussein, M.H.; Li, J.; Velkov, T. The Antimicrobial Activity of Cannabinoids. Antibiotics 2020, 9, 406. [Google Scholar] [CrossRef] [PubMed]
- McPartland, J.M.; Guy, G.W.; Hegman, W. Cannabis Is Indigenous to Europe and Cultivation Began during the Copper or Bronze Age: A Probabilistic Synthesis of Fossil Pollen Studies. Veg. Hist. Archaeobotany 2018, 27, 635–648. [Google Scholar] [CrossRef]
- Farinon, B.; Molinari, R.; Costantini, L.; Merendino, N. The Seed of Industrial Hemp (Cannabis sativa L.): Nutritional Quality and Potential Functionality for Human Health and Nutrition. Nutrients 2020, 12, 1935. [Google Scholar] [CrossRef] [PubMed]
- Irakli, M.; Tsaliki, E.; Kalivas, A.; Kleisiaris, F.; Sarrou, E.; Cook, C.M. Effect οf Genotype and Growing Year on the Nutritional, Phytochemical, and Antioxidant Properties of Industrial Hemp (Cannabis sativa L.) Seeds. Antioxidants 2019, 8, 491. [Google Scholar] [CrossRef] [PubMed]
- André, A.; Leupin, M.; Kneubühl, M.; Pedan, V.; Chetschik, I. Evolution of the Polyphenol and Terpene Content, Antioxidant Activity and Plant Morphology of Eight Different Fiber-Type Cultivars of Cannabis sativa L. Cultivated at Three Sowing Densities. Plants 2020, 9, 1740. [Google Scholar] [CrossRef] [PubMed]
- Scorletti, E.; Byrne, C.D. Omega-3 Fatty Acids, Hepatic Lipid Metabolism, and Nonalcoholic Fatty Liver Disease. Annu. Rev. Nutr. 2013, 33, 231–248. [Google Scholar] [CrossRef]
- Da Porto, C.; Decorti, D.; Tubaro, F. Fatty Acid Composition and Oxidation Stability of Hemp (Cannabis sativa L.) Seed Oil Extracted by Supercritical Carbon Dioxide. Ind. Crops Prod. 2012, 36, 401–404. [Google Scholar] [CrossRef]
- Kaul, N.; Kreml, R.; Austria, J.A.; Richard, M.N.; Edel, A.L.; Dibrov, E.; Hirono, S.; Zettler, M.E.; Pierce, G.N. A Comparison of Fish Oil, Flaxseed Oil and Hempseed Oil Supplementation on Selected Parameters of Cardiovascular Health in Healthy Volunteers. J. Am. Coll. Nutr. 2008, 27, 51–58. [Google Scholar] [CrossRef]
- Florensa-Zanuy, E.; Garro-Martínez, E.; Adell, A.; Castro, E.; Díaz, Á.; Pazos, Á.; Mac-Dowell, K.S.; Martín-Hernández, D.; Pilar-Cuéllar, F. Cannabidiol Antidepressant-like Effect in the Lipopolysaccharide Model in Mice: Modulation of Inflammatory Pathways. Biochem. Pharmacol. 2021, 185, 114433. [Google Scholar] [CrossRef]
- Vieira, G.; Cavalli, J.; Gonçalves, E.C.D.; Braga, S.F.P.; Ferreira, R.S.; Santos, A.R.S.; Cola, M.; Raposo, N.R.B.; Capasso, R.; Dutra, R.C. Antidepressant-Like Effect of Terpineol in an Inflammatory Model of Depression: Involvement of the Cannabinoid System and D2 Dopamine Receptor. Biomolecules 2020, 10, 792. [Google Scholar] [CrossRef]
- Jha, N.K.; Sharma, C.; Hashiesh, H.M.; Arunachalam, S.; Meeran, M.N.; Javed, H.; Patil, C.R.; Goyal, S.N.; Ojha, S. β-Caryophyllene, A Natural Dietary CB2 Receptor Selective Cannabinoid Can Be a Candidate to Target the Trinity of Infection, Immunity, and Inflammation in COVID-19. Front. Pharmacol. 2021, 12, 590201. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Mousavi Khaneghah, A.; Gavahian, M.; Marszałek, K.; Eş, I.; Munekata, P.E.S.; Ferreira, I.C.F.R.; Barba, F.J. Understanding the Potential Benefits of Thyme and Its Derived Products for Food Industry and Consumer Health: From Extraction of Value-Added Compounds to the Evaluation of Bioaccessibility, Bioavailability, Anti-Inflammatory, and Antimicrobial Activities. Crit. Rev. Food Sci. Nutr. 2019, 59, 2879–2895. [Google Scholar] [CrossRef]
- Sharma, P.; Vishvakarma, R.; Gautam, K.; Vimal, A.; Kumar Gaur, V.; Farooqui, A.; Varjani, S.; Younis, K. Valorization of Citrus Peel Waste for the Sustainable Production of Value-Added Products. Bioresour. Technol. 2022, 351, 127064. [Google Scholar] [CrossRef]
- Koski, A.; Pekkarinen, S.; Hopia, A.; Wähälä, K.; Heinonen, M. Processing of Rapeseed Oil: Effects on Sinapic Acid Derivative Content and Oxidative Stability. Eur. Food Res. Technol. 2003, 217, 110–114. [Google Scholar] [CrossRef]
- Quiles, J.L.; Ramírez-Tortosa, M.C.; Gómez, J.A.; Huertas, J.R.; Mataix, J. Role of Vitamin E and Phenolic Compounds in the Antioxidant Capacity, Measured by ESR, of Virgin Olive, Olive and Sunflower Oils after Frying. Food Chem. 2002, 76, 461–468. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Masteikova, R.; Lazauskas, R.; Bernatoniene, J. Cannabis sativa L. Bioactive Compounds and Their Protective Role in Oxidative Stress and Inflammation. Antioxidants 2022, 11, 660. [Google Scholar] [CrossRef]
- Rea, K.A.; Casaretto, J.A.; Al-Abdul-Wahid, M.S.; Sukumaran, A.; Geddes-McAlister, J.; Rothstein, S.J.; Akhtar, T.A. Biosynthesis of Cannflavins A and B from Cannabis sativa L. Phytochemistry 2019, 164, 162–171. [Google Scholar] [CrossRef]
- Werz, O.; Seegers, J.; Schaible, A.M.; Weinigel, C.; Barz, D.; Koeberle, A.; Allegrone, G.; Pollastro, F.; Zampieri, L.; Grassi, G.; et al. Cannflavins from Hemp Sprouts, a Novel Cannabinoid-Free Hemp Food Product, Target Microsomal Prostaglandin E2 Synthase-1 and 5-Lipoxygenase. PharmaNutrition 2014, 2, 53–60. [Google Scholar] [CrossRef]
- Bautista, J.L.; Yu, S.; Tian, L. Flavonoids in Cannabis sativa: Biosynthesis, Bioactivities, and Biotechnology. ACS Omega 2021, 6, 5119–5123. [Google Scholar] [CrossRef] [PubMed]
- Hourfane, S.; Mechqoq, H.; Bekkali, A.Y.; Rocha, J.M.; El Aouad, N. A Comprehensive Review on Cannabis Sativa Ethnobotany, Phytochemistry, Molecular Docking and Biological Activities. Plants 2023, 12, 1245. [Google Scholar] [CrossRef]
- da Silva, R.F.; Carneiro, C.N.; do C. de Sousa, C.B.; J. V. Gomez, F.; Espino, M.; Boiteux, J.; de los Á. Fernández, M.; Silva, M.F.; de S. Dias, F. Sustainable Extraction Bioactive Compounds Procedures in Medicinal Plants Based on the Principles of Green Analytical Chemistry: A Review. Microchem. J. 2022, 175, 107184. [Google Scholar] [CrossRef]
- More, P.R.; Jambrak, A.R.; Arya, S.S. Green, Environment-Friendly and Sustainable Techniques for Extraction of Food Bioactive Compounds and Waste Valorization. Trends Food Sci. Technol. 2022, 128, 296–315. [Google Scholar] [CrossRef]
- Jurinjak Tušek, A.; Šamec, D.; Šalić, A. Modern Techniques for Flavonoid Extraction—To Optimize or Not to Optimize? Appl. Sci. 2022, 12, 11865. [Google Scholar] [CrossRef]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Kalompatsios, D.; Athanasiadis, V.; Palaiogiannis, D.; Lalas, S.I.; Makris, D.P. Valorization of Waste Orange Peels: Aqueous Antioxidant Polyphenol Extraction as Affected by Organic Acid Addition. Beverages 2022, 8, 71. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Athanasiadis, V.; Makrygiannis, I.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. An Investigation into Crithmum Maritimum L. Leaves as a Source of Antioxidant Polyphenols. Compounds 2023, 3, 532–551. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Athanasiadis, V.; Kotsou, K.; Bozinou, E.; Lalas, S.I. Response Surface Optimization for the Enhancement of the Extraction of Bioactive Compounds from Citrus limon Peel. Antioxidants 2023, 12, 1605. [Google Scholar] [CrossRef]
- Ayour, J.; Alahyane, A.; Harrak, H.; Neffa, M.; Taourirte, M.; Benichou, M. Assessment of Nutritional, Technological, and Commercial Apricot Quality Criteria of the Moroccan Cultivar “Maoui” Compared to Introduced Spanish Cultivars “Canino” and “Delpatriarca” towards Suitable Valorization. J. Food Qual. 2021, 2021, e6679128. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Mantiniotou, M.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Investigation of the Polyphenol Recovery of Overripe Banana Peel Extract Utilizing Cloud Point Extraction. Eng 2023, 4, 3026–3038. [Google Scholar] [CrossRef]
- Shehata, E.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Extraction Optimisation Using Water/Glycerol for the Efficient Recovery of Polyphenolic Antioxidants from Two Artemisia Species. Sep. Purif. Technol. 2015, 149, 462–469. [Google Scholar] [CrossRef]
- Kasouni, A.I.; Chatzimitakos, T.G.; Stalikas, C.D.; Trangas, T.; Papoudou-Bai, A.; Troganis, A.N. The Unexplored Wound Healing Activity of Urtica dioica L. Extract: An In Vitro and In Vivo Study. Molecules 2021, 26, 6248. [Google Scholar] [CrossRef] [PubMed]
- Cesa, S.; Carradori, S.; Bellagamba, G.; Locatelli, M.; Casadei, M.A.; Masci, A.; Paolicelli, P. Evaluation of Processing Effects on Anthocyanin Content and Colour Modifications of Blueberry (Vaccinium Spp.) Extracts: Comparison between HPLC-DAD and CIELAB Analyses. Food Chem. 2017, 232, 114–123. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, J.S.F.; de Souza, E.L.; Oliveira, J.R.; Gomes, A.C.A.; Kotzebue, L.R.V.; da Silva Agostini, D.L.; de Oliveira, D.L.V.; Mazzetto, S.E.; da Silva, A.L.; Cavalcanti, M.T. Microencapsulation of Sweet Orange Essential Oil (Citrus aurantium Var. Dulcis) by Liophylization Using Maltodextrin and Maltodextrin/Gelatin Mixtures: Preparation, Characterization, Antimicrobial and Antioxidant Activities. Int. J. Biol. Macromol. 2020, 143, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, X.; Sang, S.; McClements, D.J.; Chen, L.; Long, J.; Jiao, A.; Jin, Z.; Qiu, C. Polyphenols as Plant-Based Nutraceuticals: Health Effects, Encapsulation, Nano-Delivery, and Application. Foods 2022, 11, 2189. [Google Scholar] [CrossRef] [PubMed]
- Koraqi, H.; Petkoska, A.T.; Khalid, W.; Sehrish, A.; Ambreen, S.; Lorenzo, J.M. Optimization of the Extraction Conditions of Antioxidant Phenolic Compounds from Strawberry Fruits (Fragaria × ananassa Duch.) Using Response Surface Methodology. Food Anal. Methods 2023, 16, 1030–1042. [Google Scholar] [CrossRef] [PubMed]
- Aazza, S. Application of Multivariate Optimization for Phenolic Compounds and Antioxidants Extraction from Moroccan Cannabis sativa Waste. J. Chem. 2021, 2021, e9738656. [Google Scholar] [CrossRef]
- Drinić, Z.; Vidović, S.; Vladić, J.; Koren, A.; Kiprovski, B.; Sikora, V. Effect of Extraction Solvent on Total Polyphenols Content and Antioxidant Activity of Cannabis sativa L. Lek. Sirovine 2018, 38, 17–21. [Google Scholar] [CrossRef]
- Swapnil, P.; Meena, M.; Singh, S.K.; Dhuldhaj, U.P.; Harish; Marwal, A. Vital Roles of Carotenoids in Plants and Humans to Deteriorate Stress with Its Structure, Biosynthesis, Metabolic Engineering and Functional Aspects. Curr. Plant Biol. 2021, 26, 100203. [Google Scholar] [CrossRef]
- Spano, M.; Di Matteo, G.; Ingallina, C.; Botta, B.; Quaglio, D.; Ghirga, F.; Balducci, S.; Cammarone, S.; Campiglia, E.; Giusti, A.M.; et al. A Multimethodological Characterization of Cannabis sativa L. Inflorescences from Seven Dioecious Cultivars Grown in Italy: The Effect of Different Harvesting Stages. Molecules 2021, 26, 2912. [Google Scholar] [CrossRef]
- Thoo, Y.; Ng, S.Y.; Khoo, M.; Mustapha, W.; Ho, C. A Binary Solvent Extraction System for Phenolic Antioxidants and Its Application to the Estimation of Antioxidant Capacity in Andrographis paniculata Extracts. Int. Food Res. J. 2013, 20, 1103–1111. [Google Scholar]
- Awad, A.M.; Kumar, P.; Ismail-Fitry, M.R.; Jusoh, S.; Ab Aziz, M.F.; Sazili, A.Q. Green Extraction of Bioactive Compounds from Plant Biomass and Their Application in Meat as Natural Antioxidant. Antioxidants 2021, 10, 1465. [Google Scholar] [CrossRef] [PubMed]
- Sik, B.; Hanczné, E.L.; Kapcsándi, V.; Ajtony, Z. Conventional and Nonconventional Extraction Techniques for Optimal Extraction Processes of Rosmarinic Acid from Six Lamiaceae Plants as Determined by HPLC-DAD Measurement. J. Pharm. Biomed. Anal. 2020, 184, 113173. [Google Scholar] [CrossRef]
- Borges, A.; José, H.; Homem, V.; Simões, M. Comparison of Techniques and Solvents on the Antimicrobial and Antioxidant Potential of Extracts from Acacia Dealbata and Olea Europaea. Antibiotics 2020, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, O.; Pinho, S.P. Solubility of Flavonoids in Pure Solvents. Ind. Eng. Chem. Res. 2012, 51, 6586–6590. [Google Scholar] [CrossRef]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of Extraction Time, Temperature and Solvent on Concentration and Antioxidant Activity of Grape Marc Phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Toledo, R.T. Oxygen Radical Absorbance Capacities of Grape/Wine Industry Byproducts and Effect of Solvent Type on Extraction of Grape Seed Polyphenols. J. Food Compos. Anal. 2006, 19, 41–48. [Google Scholar] [CrossRef]
- Lapornik, B.; Prošek, M.; Golc Wondra, A. Comparison of Extracts Prepared from Plant By-Products Using Different Solvents and Extraction Time. J. Food Eng. 2005, 71, 214–222. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Ali Redha, A.; Salauddin, M.; Harahap, I.A.; Rupasinghe, H.P.V. Factors Affecting the Extraction of (Poly)Phenols from Natural Resources Using Deep Eutectic Solvents Combined with Ultrasound-Assisted Extraction. Crit. Rev. Anal. Chem. 2023, 1–22. [Google Scholar] [CrossRef]
- Osorio-Tobón, J.F. Recent Advances and Comparisons of Conventional and Alternative Extraction Techniques of Phenolic Compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef] [PubMed]
- Pham, H.N.T.; Tang Nguyen, V.; Van Vuong, Q.; Bowyer, M.C.; Scarlett, C.J. Bioactive Compound Yield and Antioxidant Capacity of Helicteres hirsuta Lour. Stem as Affected by Various Solvents and Drying Methods. J. Food Process. Preserv. 2017, 41, e12879. [Google Scholar] [CrossRef]
- Ferrante, C.; Recinella, L.; Ronci, M.; Menghini, L.; Brunetti, L.; Chiavaroli, A.; Leone, S.; Di Iorio, L.; Carradori, S.; Tirillini, B.; et al. Multiple Pharmacognostic Characterization on Hemp Commercial Cultivars: Focus on Inflorescence Water Extract Activity. Food Chem. Toxicol. 2019, 125, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Izzo, L.; Castaldo, L.; Narváez, A.; Graziani, G.; Gaspari, A.; Rodríguez-Carrasco, Y.; Ritieni, A. Analysis of Phenolic Compounds in Commercial Cannabis sativa L. Inflorescences Using UHPLC-Q-Orbitrap HRMS. Molecules 2020, 25, 631. [Google Scholar] [CrossRef]
Independent Variables | Coded Units | Coded Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Liquid–solid ratio (mL/g) | X1 | 20 | 35 | 50 |
T (°C) | X2 | 20 | 50 | 80 |
t (min) | X3 | 30 | 90 | 150 |
Design Point | Independent Variables | Responses | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TPC (mg GAE/g dw) | FRAP (μmol AAE/g) | DPPH (μmol AAE/g) | Hydrogen Peroxide (μmol AAE/g) | ||||||||
X1 (R, mL/g) | X2 (T, °C) | X3 (t, min) | Actual | Predicted | Actual | Predicted | Actual | Predicted | Actual | Predicted | |
1 | −1 (20) | −1 (20) | 0 (90) | 7.28 | 7.17 | 41.49 | 40.54 | 18.68 | 17.91 | 110.91 | 110.75 |
2 | −1 (20) | 1 (80) | 0 (90) | 8.53 | 8.50 | 37.72 | 37.70 | 18.43 | 19.14 | 120.25 | 120.77 |
3 | 1 (50) | −1 (20) | 0 (90) | 8.78 | 8.81 | 45.36 | 45.38 | 25.52 | 24.81 | 229.85 | 229.33 |
4 | 1 (50) | 1 (80) | 0 (90) | 8.32 | 8.43 | 39.90 | 40.85 | 12.05 | 12.82 | 198.05 | 198.21 |
5 | 0 (35) | −1 (20) | −1 (30) | 8.42 | 8.42 | 43.61 | 43.88 | 26.94 | 27.48 | 164.02 | 174.19 |
6 | 0 (35) | −1 (20) | 1 (150) | 8.59 | 8.67 | 42.64 | 43.30 | 18.07 | 19.01 | 163.36 | 153.88 |
7 | 0 (35) | 1 (80) | −1 (30) | 9.60 | 9.52 | 45.67 | 45.01 | 22.29 | 21.35 | 148.92 | 158.40 |
8 | 0 (35) | 1 (80) | 1 (150) | 8.51 | 8.51 | 35.07 | 34.80 | 14.92 | 14.38 | 158.73 | 148.57 |
9 | −1 (20) | 0 (50) | −1 (30) | 8.58 | 8.69 | 44.69 | 45.37 | 24.15 | 24.38 | 98.58 | 88.58 |
10 | 1 (50) | 0 (50) | −1 (30) | 9.77 | 9.74 | 49.63 | 49.34 | 27.34 | 27.52 | 238.56 | 228.92 |
11 | −1 (20) | 0 (50) | 1 (150) | 8.53 | 8.56 | 39.64 | 39.94 | 19.69 | 19.52 | 106.19 | 115.83 |
12 | 1 (50) | 0 (50) | 1 (150) | 9.21 | 9.10 | 44.65 | 43.97 | 17.17 | 16.94 | 161.51 | 171.51 |
13 | 0 (35) | 0 (50) | 0 (90) | 9.20 | 9.21 | 45.51 | 45.88 | 18.70 | 18.19 | 146.60 | 149.81 |
14 | 0 (35) | 0 (50) | 0 (90) | 9.20 | 9.21 | 46.01 | 45.88 | 18.56 | 18.19 | 153.46 | 149.81 |
15 | 0 (35) | 0 (50) | 0 (90) | 9.23 | 9.21 | 46.11 | 45.88 | 17.32 | 18.19 | 149.36 | 149.81 |
Design Point | Independent Variables | Pelargonin | Ferulic Acid | Luteolin-7-Glucoside | Kaempferol-3-Glucoside | ||
---|---|---|---|---|---|---|---|
X1 (R, mL/g) | X2 (T, °C) | X3 (t, min) | |||||
1 | −1 (20) | −1 (20) | 0 (90) | 0.41 | 0.07 | 0.25 | 0.18 |
2 | −1 (20) | 1 (80) | 0 (90) | 0.46 | 0.11 | 0.22 | 0.21 |
3 | 1 (50) | −1 (20) | 0 (90) | 0.55 | 0.16 | 0.33 | 0.44 |
4 | 1 (50) | 1 (80) | 0 (90) | 0.88 | 0.17 | 0.34 | 0.44 |
5 | 0 (35) | −1 (20) | −1 (30) | 0.68 | 0.13 | 0.26 | 0.31 |
6 | 0 (35) | −1 (20) | 1 (150) | 0.75 | 0.12 | 0.32 | 0.31 |
7 | 0 (35) | 1 (80) | −1 (30) | 1.31 | 0.14 | 0.27 | 0.31 |
8 | 0 (35) | 1 (80) | 1 (150) | 0.47 | 0.14 | 0.26 | 0.31 |
9 | −1 (20) | 0 (50) | −1 (30) | 0.83 | 0.09 | 0.18 | 0.18 |
10 | 1 (50) | 0 (50) | −1 (30) | 1.53 | 0.16 | 0.31 | 0.43 |
11 | −1 (20) | 0 (50) | 1 (150) | 0.74 | 0.09 | 0.2 | 0.19 |
12 | 1 (50) | 0 (50) | 1 (150) | 1.08 | 0.17 | 0.33 | 0.44 |
13 | 0 (35) | 0 (50) | 0 (90) | 1.27 | 0.13 | 0.25 | 0.33 |
14 | 0 (35) | 0 (50) | 0 (90) | 1.26 | 0.13 | 0.26 | 0.34 |
15 | 0 (35) | 0 (50) | 0 (90) | 1.27 | 0.13 | 0.27 | 0.32 |
Design Point | Independent Variables | Carotenoids (μg CtE/g) | Ascorbic Acid (μg/g) | Anti-Inflammatory Activity (%) | ||
---|---|---|---|---|---|---|
X1 (R, mL/g) | X2 (T, °C) | X3 (t, min) | ||||
1 | −1 (20) | −1 (20) | 0 (90) | 288.02 | 410.18 | 35.5 |
2 | −1 (20) | 1 (80) | 0 (90) | 322.56 | 442.06 | 75.12 |
3 | 1 (50) | −1 (20) | 0 (90) | 328.2 | 434.54 | 7.82 |
4 | 1 (50) | 1 (80) | 0 (90) | 305.28 | 407.05 | 50.48 |
5 | 0 (35) | −1 (20) | −1 (30) | 283.27 | 402.03 | 8.30 |
6 | 0 (35) | −1 (20) | 1 (150) | 342.12 | 455.64 | 17.16 |
7 | 0 (35) | 1 (80) | −1 (30) | 361.57 | 526.94 | 67.51 |
8 | 0 (35) | 1 (80) | 1 (150) | 290.71 | 381.12 | 62.66 |
9 | −1 (20) | 0 (50) | −1 (30) | 333.51 | 444.19 | 64.10 |
10 | 1 (50) | 0 (50) | −1 (30) | 353.67 | 264.83 | 9.68 |
11 | −1 (20) | 0 (50) | 1 (150) | 338.83 | 215.88 | 63.37 |
12 | 1 (50) | 0 (50) | 1 (150) | 371.12 | 323.14 | 33.29 |
13 | 0 (35) | 0 (50) | 0 (90) | 360.51 | 248.93 | 53.64 |
14 | 0 (35) | 0 (50) | 0 (90) | 371.29 | 272.56 | 48.31 |
15 | 0 (35) | 0 (50) | 0 (90) | 365.66 | 257.03 | 49.60 |
Responses | Second-Order Polynomial Equations (Models) | R2 | P | Eq. |
---|---|---|---|---|
TPC | Y = –1.98 + 0.2X1 + 0.13X2 + 0.001X3 − 0.002X12 − 0.001X22 + 0.0001X32 − 0.001X1X2 − 0.0001X1X3 − 0.0001X2X3 | 0.9873 | 0.0003 | (11) |
FRAP | Y = 24.37 + 0.47X1 + 0.52X2 + 0.04X3 − 0.004X12 − 0.004X22 − 0.0001X32 − 0.001X1X2 + 0.0001X1X3 − 0.001X2X3 | 0.9795 | 0.0011 | (12) |
DPPH | Y = 21.73 + 0.21X1 + 0.21X2 + 0.04X3 − 0.16X12 − 0.001X22 + 0.001X32 − 0.007X1X2 − 0.002X1X3 + 0.0002X2X3 | 0.9784 | 0.0012 | (13) |
Hydrogen Peroxide | Y = –5.72 + 5.37X1 − 0.76X2 + 0.74X3 + 0.02X12 + 0.01X22 − 0.001X32 − 0.02X1X2 − 0.02X1X3 + 0.002X2X3 | 0.966 | 0.0036 | (14) |
Responses | Optimal Conditions | |||
---|---|---|---|---|
Maximum Predicted Response | R (mL/g) (X1) | T (°C) (X2) | t (min) (X3) | |
TPC (mg GAE/g) | 9.80 ± 0.20 | 44 | 55 | 30 |
FRAP (μmol AAE/g) | 49.34 ± 2.02 | 50 | 50 | 30 |
DPPH (μmol AAE/g) | 30.41 ± 2.38 | 47 | 30 | 30 |
Hydrogen Peroxide (μmol AAE/g) | 241.67 ± 27.80 | 50 | 26 | 50 |
Variables | PLS Model Values | Experimental Values |
---|---|---|
TPC (mg GAE/g) | 9.74 | 9.76 ± 0.47 |
FRAP (μmol AAE/g) | 49.34 | 49.79 ± 3.24 |
DPPH (μmol AAE/g) | 27.52 | 27.43 ± 0.63 |
Hydrogen Peroxide (μmol AAE/g) | 228.92 | 230.95 ± 9.7 |
Parameters | Optimal Extract |
---|---|
Carotenoids (μg CtE/g) | 356.98 ± 24.63 |
Ascorbic Acid (μg/g) | 282.23 ± 10.72 |
Anti-Inflammatory Activity (%) | 17.58 ± 0.69 |
L* | 44.8 ± 0.2 |
C* | 29.5 ± 0.5 |
Hue | 71.4 ± 0.1 |
Polyphenolic compounds (mg/g) | |
Pelargonin | 1.51 ± 0.07 |
Ferulic Acid | 0.17 ± 0.01 |
Luteolin-7-glucoside | 0.35 ± 0.02 |
Kaempferol-3-glucoside | 0.45 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzimitakos, T.; Athanasiadis, V.; Makrygiannis, I.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Bioactive Compound Extraction of Hemp (Cannabis sativa L.) Leaves through Response Surface Methodology Optimization. AgriEngineering 2024, 6, 1300-1318. https://doi.org/10.3390/agriengineering6020075
Chatzimitakos T, Athanasiadis V, Makrygiannis I, Kalompatsios D, Bozinou E, Lalas SI. Bioactive Compound Extraction of Hemp (Cannabis sativa L.) Leaves through Response Surface Methodology Optimization. AgriEngineering. 2024; 6(2):1300-1318. https://doi.org/10.3390/agriengineering6020075
Chicago/Turabian StyleChatzimitakos, Theodoros, Vassilis Athanasiadis, Ioannis Makrygiannis, Dimitrios Kalompatsios, Eleni Bozinou, and Stavros I. Lalas. 2024. "Bioactive Compound Extraction of Hemp (Cannabis sativa L.) Leaves through Response Surface Methodology Optimization" AgriEngineering 6, no. 2: 1300-1318. https://doi.org/10.3390/agriengineering6020075
APA StyleChatzimitakos, T., Athanasiadis, V., Makrygiannis, I., Kalompatsios, D., Bozinou, E., & Lalas, S. I. (2024). Bioactive Compound Extraction of Hemp (Cannabis sativa L.) Leaves through Response Surface Methodology Optimization. AgriEngineering, 6(2), 1300-1318. https://doi.org/10.3390/agriengineering6020075