Evaluation of a System to Assess Herbicide Movement in Straw under Dry and Wet Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Conditions
2.2. System of Herbicide Application and Rain Simulation
2.3. Herbicide Analytical Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Prado, R.; Palma-Bautista, C.; Vázquez-García, J.G.; Alcántara-de la Cruz, R. Influence of herbicide environmental behavior on weed management. In Interactions of Biochar and Herbicides in the Environment, 1st ed.; Mendes, K., Ed.; CRC Press: Boca Raton, FL, USA, 2022; pp. 53–77. [Google Scholar]
- Havens, P.L.; Sims, G.K.; Erhardt-Zabik, S. Fate of herbicides in the environment. In Handbook of Weed Management Systems, 1st ed.; Smith, A.E., Ed.; Routledge: New York, NY, USA; pp. 245–278.
- Bertuzzo, E.; Thomet, M.; Botter, G.; Rinaldo, A. Catchment-scale herbicides transport: Theory and application. Adv. Water Resour. 2013, 52, 232–242. [Google Scholar] [CrossRef]
- Krähmer, H.; Walter, H.; Jeschke, P.; Haaf, K.; Baur, P.; Evans, R. What makes a molecule a pre-or a post-herbicide–how valuable are physicochemical parameters for their design? Pest Manag. Sci. 2021, 77, 4863–4873. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, S.; Jefferson, B.; Jarvis, P. Pesticide removal from drinking water sources by adsorption: A review. Environ. Technol. Rev. 2019, 8, 1–24. [Google Scholar] [CrossRef]
- Jayasumana, C.; Paranagama, P.; Agampodi, S.; Wijewardane, C.; Gunatilake, S.; Siribaddana, S. Drinking well water and occupational exposure to herbicides is associated with chronic kidney disease, in Padavi-Sripura, Sri Lanka. Environ. Health 2015, 14, 6. [Google Scholar] [CrossRef] [PubMed]
- Egan, J.F.; Bohnenblust, E.; Goslee, S.; Mortensen, D.; Tooker, J. Herbicide drift can affect plant and arthropod communities. Agric. Ecosyst. Environ. 2014, 185, 77–87. [Google Scholar] [CrossRef]
- Curran, W.S. Persistence of herbicides in soil. Crops Soils 2016, 49, 16–21. [Google Scholar] [CrossRef]
- Cessna, A.J.; McConkey, B.G.; Elliott, J.A. Herbicide transport in surface runoff from conventional and zero-tillage fields. J. Environ. Qual. 2013, 42, 782–793. [Google Scholar] [CrossRef]
- Fuentes-Llanillo, R.; Telles, T.S.; Junior, D.S.; de Melo, T.R.; Friedrich, T.; Kassam, A. Expansion of no-tillage practice in conservation agriculture in Brazil. Soil Tillage Res. 2021, 208, 104877. [Google Scholar] [CrossRef]
- Bordonal, R.O.; Carvalho, J.L.N.; Lal, R.; Figuereido, E.B.; Oliveira, B.G.; Scala, N.L., Jr. Sustainability of sugarcane production in Brazil. A review. Agron. Sustain. Dev. 2018, 38, 13. [Google Scholar] [CrossRef]
- Paraiso, M.L.D.S.; Gouveia, N. Health risks due to pre-harvesting sugarcane burning in São Paulo State, Brazil. Rev. Bras. Epidemiol. 2015, 18, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, D.A.; Rudorff, B.F.T.; Silva, W.F.; Adami, M.; Mello, M.P. Remote sensing images in support of environmental protocol: Monitoring the sugarcane harvest in São Paulo State, Brazil. Remote Sens. 2011, 3, 2682–2703. [Google Scholar] [CrossRef]
- Rachid, C.T.C.C.; Santos, A.L.; Piccolo, M.C.; Balieiro, F.C.; Coutinho, H.L.; Peixoto, R.S.; Tiedje, J.M.; Rosado, A.S. Effect of sugarcane burning or green harvest methods on the Brazilian Cerrado soil bacterial community structure. PLoS ONE 2013, 8, e59342. [Google Scholar] [CrossRef] [PubMed]
- Franczuk, J.; Kosterna, E.; Zaniewicz-Bajkowska, A. Weed-control effects on different types of cover-crop mulches. Acta Agric. Scand. B Soil Plant Sci. 2010, 60, 472–479. [Google Scholar] [CrossRef]
- Alcántara-de la Cruz, R.; Oliveira, G.M.; Carvalho, L.B.; Silva, M.F.G.F. Herbicide resistance in Brazil: Status, impacts, and future challenges. In Herbicides—Current Research and Case Studies in Use; Price, A., Kelton, J., Eds.; IntechOpen: London, UK, 2020. [Google Scholar]
- Gaines, T.A.; Slavov, G.T.; Hughes, D.; Küpper, A.; Sparks, C.D.; Oliva, J.; Vila-Aiub, M.M.; Garcia, M.A.; Merotto, A., Jr.; Neve, P. Investigating the origins and evolution of a glyphosate-resistant weed invasion in South America. Mol. Ecol. 2021, 30, 5360–5372. [Google Scholar] [CrossRef]
- Iqbal, R.; Raza, M.A.S.; Valipour, M.; Saleem, M.F.; Zaheer, M.S.; Ahmad, S.; Toleikiene, M.; Haider, I.; Nazar, M.A. Potential agricultural and environmental benefits of mulches—A review. Bull. Natl. Res. Cent. 2020, 44, 75. [Google Scholar] [CrossRef]
- Prado, A.B.C.A.; Obara, F.E.B.; Brunharo, C.A.G.; Melo, M.S.C.; Christoffoleti, P.J.; Alves, M.C. Dynamic of herbicides applied in preemergence on sugarcane straw under different water regimes. Rev. Bras. Herbic. 2013, 12, 179–187. [Google Scholar]
- Tonieto, T.A.P.; Regitano, J.B. Effects of straw decomposition degree on leaching and weed control efficacy of tebuthiuron and hexazinone in green sugarcane harvesting. Planta Daninha 2014, 32, 809–815. [Google Scholar] [CrossRef]
- Sun, K.; Gao, B.; Ro, K.S.; Novak, J.M.; Wang, Z.; Herbert, S.; Xing, B. Assessment of herbicide sorption by biochars and organic matter associated with soil and sediment. Environ. Pollut. 2012, 163, 167–173. [Google Scholar] [CrossRef]
- Takeshita, V.; Mendes, K.F.; Alonso, F.G.; Tornisielo, V.L. Effect of organic matter on the behavior and control effectiveness of herbicides in soil. Planta Daninha 2019, 37, e019214401. [Google Scholar] [CrossRef]
- Bonfleur, E.J.; Kookana, R.S.; Tornisielo, V.L.; Regitano, J.B. Organomineral interactions and herbicide sorption in Brazilian tropical and subtropical Oxisols under no-tillage. J. Agric. Food Chem. 2016, 64, 3925–3934. [Google Scholar] [CrossRef]
- Reddy, K.N.; Locke, M.A.; Wagner, S.C.; Zablotowicz, R.M.; Gaston, L.A.; Smeda, R.K. Chlorimuron ethyl sorption and desorption kinetics in soil and herbicide-desiccated cover crop residues. J. Agric. Food Chem. 1995, 10, 2752–2757. [Google Scholar] [CrossRef]
- Munhoz-Garcia, G.V.; Takeshita, V.; Pimpinato, R.F.; de Moraes, N.G.; Nalin, D.; Tornisielo, V.L. Cover crop straw interferes in the retention and availability of diclosulam and diuron in the environment. Agronomy 2023, 13, 1725. [Google Scholar] [CrossRef]
- Fontes, J.R.A.; Silva, A.A.; Vieira, R.F.; Ramos, M.M. Leaching of herbicides applied with irrigation water under no-till systems. Planta Daninha 2004, 22, 623–631. [Google Scholar] [CrossRef]
- Carbonari, C.A.; Gomes, G.L.G.C.; Trindade, M.L.B.; Edivaldo, J.R.M.; Velini, E.D. Dynamics of sulfentrazone in sugarcane straw. Weed Sci. 2016, 64, 201–206. [Google Scholar] [CrossRef]
- Fornarolli, D.A.; Rodrigues, B.N.; Lima, J.; Valério, M.A. Influence of the mulch on the behavior of atrazine. Planta Daninha 1998, 16, 97–107. [Google Scholar] [CrossRef]
- Souza, M.D. Desenvolvimento e Utilização de um Simulador de Chuvas Para Estudos de Atributos Físicos e Químicos do Solo Relacionados a Impactos Ambientais; Documentos, 37; Embrapa Meio Ambiente: Jaguariúna, Brazil, 2004. [Google Scholar]
- Futch, S.; Singh, M. Herbicide Mobility Using Soil Leaching Columns. Bull. Environ. Contam. Toxicol. 1999, 62, 520–529. [Google Scholar] [CrossRef]
- Silva Junior, A.C.D.; Gonçalves, C.G.; Queiroz, J.R.G.; Martins, D. Evaluation of leaching potential of tebuthiuron using bioindicator plants. Arq. Inst. Biol. 2018, 85, e0692015. [Google Scholar] [CrossRef]
- Mitscherlich, E.A. Das gesetz des minimums und das gesetz des abnehmenden bodenertrages. Landwirtsch. Jahrbücher 1909, 38, 537–552. [Google Scholar]
- Heidari, M.; Manju, M.A.; IJzerman-Boon, P.C.; van den Heuvel, E.R. D-Optimal Designs for the Mitscherlich Non-Linear Regression Function. Math. Methods Stat. 2022, 31, 1–17. [Google Scholar] [CrossRef]
- Jiang, L.; Dami, I.; Mathers, H.M.; Dick, W.A.; Doohan, D. The effect of straw mulch on simulated simazine leaching and runoff. Weed Sci. 2011, 59, 580–586. [Google Scholar] [CrossRef]
- Rossi, C.V.S.; Velini, E.D.; Luchini, L.C.; Negrisoli, E.; Correa, M.R.; Pivetta, J.P.; Costa, A.G.F.; Silva, F.M.L. Performance of metribuzin apllied on sugarcane straw. Planta Daninha 2013, 31, 223–230. [Google Scholar] [CrossRef]
- Tropaldi, L.; Carbonari, C.A.; de Brito, I.P.F.S.; de Matos, A.K.A.; de Moraes, C.P.; Velini, E.D. Dynamics of clomazone formulations combined with sulfentrazone in sugarcane (Saccharum spp.) straw. Agriculture 2021, 11, 854. [Google Scholar] [CrossRef]
- Vaz, L.R.L.; Barizon, R.R.M.; de Souza, A.J.; Regitano, J.B. Runoff of hexazinone and diuron in green cane systems. Water Air Soil Pollut. 2021, 232, 116. [Google Scholar] [CrossRef]
- Confessor, J.G.; Silva, L.L.; Araújo, P.M.S.D. An assessment of water and soil losses in pastures of the Brazilian Savanna using simulated rainfall. Soc. Nat. 2022, 34, e65618. [Google Scholar] [CrossRef]
- Jiang, F.; Zhan, Z.; Chen, J.; Lin, J.; Wang, M.K.; Ge, H.; Huang, Y. Rill erosion processes on a steep colluvial deposit slope under heavy rainfall in flume experiments with artificial rain. Catena 2018, 169, 46–58. [Google Scholar] [CrossRef]
- Patel, F.; Trezzi, M.M.; Nunes, A.L.; Bittencourt, H.V.H.; Diesel, F.; Pagnoncelli, F.D.B., Jr. The straw presence preceding soybean crop increases the persistence of residual herbicides. Adv. Weed Sci. 2023, 41, e020200051. [Google Scholar] [CrossRef]
- Albers, C.N.; Jacobsen, O.S.; Bester, K.; Jacobsen, C.S.; Carvalho, P.N. Leaching of herbicidal residues from gravel surfaces–A lysimeter-based study comparing gravels with agricultural topsoil. Environ. Pollut. 2020, 266, 115225. [Google Scholar] [CrossRef]
- Khalil, Y.; Flower, K.; Siddique, K.H.; Ward, P. Rainfall affects leaching of pre-emergent herbicide from wheat residue into the soil. PLoS ONE 2019, 14, e0210219. [Google Scholar] [CrossRef]
- Stewart, C.L.; Soltani, N.; Nurse, R.E.; Hamill, A.S.; Sikkema, P.H. Precipitation influences pre-and post-emergence herbicide efficacy in corn. Am. J. Plant Sci. 2012, 3, 1193. [Google Scholar] [CrossRef]
Herbicide | Trade Name | Dose | Formulation 1 |
---|---|---|---|
Atrazine | Nortox | 2515 | SC |
Diuron | Velpar K | 1481 | WG |
Fomesafen | Flex | 314 | SL |
Glyphosate | Roundup transorb R | 1207 | SL |
Haloxyfop-p-methyl | Verdict R | 75 | EC |
Hexazinone | Velpar K | 415 | WG |
Indaziflam | Alion | 94 | SC |
S-metolachlor | Dual gold | 1810 | EC |
Sulfentrazone | Boral | 755 | SC |
Analytical column | Synergi 2.5 μ Hydro-RP 100 Å, dimensions 50 × 4.6 mm | |
Injection volume | 20 μL | |
Mobile phase (pH 7.0) | Phase A (PA) = 0.5% ammonium acetate in water; Phase B (PB) = 0.5% ammonium acetate in methanol. | |
Gradient | 2 min = 20% PB and 80% PA 4 min = 95% PB and 5% PA 7 min = 95% PB and 5% PA 9 min = 20% PB and 80% PA 11 min = 20% PB and 80% PA | |
Flow | 0.6 mL min−1 | |
Temperature | 40 °C | |
Herbicide | Equation | RT |
Atrazine | y = −1.31 × 103x2 + 4.72 × 105x + 9.79 × 103; r2 = 0.9994 | 5.44 |
Diuron | y = −5.38x2 + 3.7 × 103x + 1.51 × 103; r2 = 0.9914 | 5.45 |
Fomesafen | y = −527x2 + 1.24 × 105x + 9.87 × 103; r2 = 0.9931 | 5.20 |
Glyphosate | y = 4.71 × 103x − 554; r2 = 0.9983 | 0.71 |
Haloxyfop-p-methyl | y = 2.14 × 105x + 7.86 × 104; r2 = 0.9978 | 5.85 |
Hexazinone | y = −2.18 × 104x2 + 2.04 × 106x + 5.8 × 105; r2 = 0.9964 | 5.27 |
Indaziflam | y = −3.75 × 104x2 + 3.06 × 106x + 7.69 × 104; r2 = 0.9995 | 5.68 |
S-metolachlor | y = −3.02 × 104x2 + 2.98 × 106x + 6.62 × 105; r2 = 0.9964 | 5.72 |
Sulfentrazone | y = 1.48 × 104x + 1.81 × 103; r2 = 0.9955 | 5.06 |
Herbicide | Condition | R2 | |||
---|---|---|---|---|---|
Atrazine | Dry straw | 1833.0 | 0 | 0.0120 | 0.9995 |
Wet Straw | 2277.3 | 0 | 0.0341 | 0.9999 | |
Diuron | Dry straw | 1121.0 | 0 | 0.0075 | 0.9999 |
Wet Straw | 1292.2 | 0 | 0.0378 | 1.0000 | |
Fomesafen | Dry straw | 273.3 | 0 | 0.0246 | 0.9998 |
Wet Straw | 253.0 | 0 | 0.0359 | 0.9999 | |
Glyphosate | Dry straw | 571.0 | 0 | 0.0240 | 0.9996 |
Wet Straw | 754.0 | 0 | 0.0428 | 0.9999 | |
Haloxyfop-p-methyl | Dry straw | 13.1 | 0 | 0.0226 | 0.9996 |
Wet Straw | 33.9 | 0 | 0.0575 | 1.0000 | |
Hexazinone | Dry straw | 280.5 | 0 | 0.0244 | 0.9995 |
Wet Straw | 344.9 | 0 | 0.0370 | 0.9999 | |
Indaziflam | Dry straw | 46.2 | 0 | 0.0066 | 0.9997 |
Wet Straw | 73.5 | 0 | 0.0341 | 0.9999 | |
S-metolachlor | Dry straw | 386.2 | 0 | 0.0205 | 1.0000 |
Wet Straw | 487.8 | 0 | 0.0376 | 0.9999 | |
Sulfentrazone | Dry straw | 592.3 | 0 | 0.0126 | 1.0000 |
Wet Straw | 740.6 | 0 | 0.0390 | 1.0000 |
Herbicide | Increase in Movement (%) |
---|---|
Haloxyfop-p-methyl | 60.9 |
Indaziflam | 56.3 |
Sulfentrazone | 24.9 |
Atrazine | 23.6 |
Glyphosate | 23.3 |
S-metolachlor | 20.0 |
Hexazinone | 17.8 |
Diuron | 9.8 |
Fomesafen | 9.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thais dos Santos, I.; Ferraz Santos de Brito, I.P.; Alves de Matos, A.K.; Pinheiro de Miranda, V.; Meirelles, G.C.; Oliveira de Abreu, P.; Alcántara-de la Cruz, R.; Velini, E.D.; Carbonari, C.A. Evaluation of a System to Assess Herbicide Movement in Straw under Dry and Wet Conditions. AgriEngineering 2024, 6, 858-868. https://doi.org/10.3390/agriengineering6010049
Thais dos Santos I, Ferraz Santos de Brito IP, Alves de Matos AK, Pinheiro de Miranda V, Meirelles GC, Oliveira de Abreu P, Alcántara-de la Cruz R, Velini ED, Carbonari CA. Evaluation of a System to Assess Herbicide Movement in Straw under Dry and Wet Conditions. AgriEngineering. 2024; 6(1):858-868. https://doi.org/10.3390/agriengineering6010049
Chicago/Turabian StyleThais dos Santos, Izabela, Ivana Paula Ferraz Santos de Brito, Ana Karollyna Alves de Matos, Valesca Pinheiro de Miranda, Guilherme Constantino Meirelles, Priscila Oliveira de Abreu, Ricardo Alcántara-de la Cruz, Edivaldo D. Velini, and Caio A. Carbonari. 2024. "Evaluation of a System to Assess Herbicide Movement in Straw under Dry and Wet Conditions" AgriEngineering 6, no. 1: 858-868. https://doi.org/10.3390/agriengineering6010049
APA StyleThais dos Santos, I., Ferraz Santos de Brito, I. P., Alves de Matos, A. K., Pinheiro de Miranda, V., Meirelles, G. C., Oliveira de Abreu, P., Alcántara-de la Cruz, R., Velini, E. D., & Carbonari, C. A. (2024). Evaluation of a System to Assess Herbicide Movement in Straw under Dry and Wet Conditions. AgriEngineering, 6(1), 858-868. https://doi.org/10.3390/agriengineering6010049