UAV-Based Classification of Intercropped Forage Cactus: A Comparison of RGB and Multispectral Sample Spaces Using Machine Learning in an Irrigated Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Image Acquisition
2.3. Machine Learning Algorithms
2.3.1. Gaussian Mixture Model (GMM)
2.3.2. K-Nearest Neighbors (KNN)
2.3.3. Random Forest (RF)
2.4. Application of the Algorithms
2.5. Training Samples
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pohl, S.C.; Lenz, D.M. Utilização de efluente tratado em complexo industrial automotivo. Eng. Sanit. Ambient. 2017, 22, 551–562. [Google Scholar] [CrossRef]
- Carvalho, A.A.; Montenegro, A.A.A.; de Lima, J.L.M.P.; Silva, T.G.F.D.; Pedrosa, E.M.R.; Almeida, T.A.B. Coupling Water Resources and Agricultural Practices for Sorghum in a Semiarid Environment. Water 2021, 13, 2288. [Google Scholar] [CrossRef]
- Mainardis, M.; Cecconet, D.; Moretti, A.; Callegari, A.; Goi, D.; Freguia, S.; Capodaglio, A.G. Wastewater Fertigation in Agriculture: Issues and Opportunities for Improved Water Management and Circular Economy. Environ. Pollut. 2022, 296, 118755. [Google Scholar] [CrossRef] [PubMed]
- Lira, E.C.; Felix, E.S.; Oliveira Filho, T.J.; Alves, R.C.; Lima, R.P.; Souza, J.T.A.; Oliveira, J.A.; Araújo, F.G.; Cavalcanti, M.T.; Araujo, J.S. Intercropping forage cactus genotypes with wood species in a semiarid environment. Agron. J. 2022, 114, 3173–3182. [Google Scholar] [CrossRef]
- Pimentel, C. Agronomic Practices to Improve Water Use Efficiency. Environ. Sci. Ecol. Curr. Res. 2022, 3, 1081. [Google Scholar] [CrossRef]
- Alves, C.P.; Jardim, A.M.D.R.F.; Araújo Júnior, G.D.N.; Souza, L.S.B.D.; Araújo, G.G.L.D.; Souza, C.A.A.D.; Salvador, K.R.D.S.; Leite, R.M.C.; Pinheiro, A.G.; Silva, T.G.F.D. How to Enhance the Agronomic Performance of Cactus-Sorghum Intercropped System: Planting Configurations, Density and Orientation. Ind. Crops Prod. 2022, 184, 115059. [Google Scholar] [CrossRef]
- Bhuyan, B.P.; Tomar, R.; Singh, T.P.; Cherif, A.R. Crop Type Prediction: A Statistical and Machine Learning Approach. Sustainability 2022, 15, 481. [Google Scholar] [CrossRef]
- Asadi, B.; Shamsoddini, A. Crop Mapping through a Hybrid Machine Learning and Deep Learning Method. Remote Sens. Appl. Soc. Environ. 2024, 33, 101090. [Google Scholar] [CrossRef]
- Shanmugapriya, P.; Rathika, S.; Ramesh, T.; Janaki, P. Applications of Remote Sensing in Agriculture—A Review. Int. J. Curr. Microbiol. App. Sci. 2019, 8, 2270–2283. [Google Scholar] [CrossRef]
- Chakraborty, S.K.; Chandel, N.S.; Jat, D.; Tiwari, M.K.; Rajwade, Y.A.; Subeesh, A. Deep Learning Approaches and Interventions for Futuristic Engineering in Agriculture. Neural Comput. Appl. 2022, 34, 20539–20573. [Google Scholar] [CrossRef]
- Badagliacca, G.; Messina, G.; Praticò, S.; Lo Presti, E.; Preiti, G.; Monti, M.; Modica, G. Multispectral Vegetation Indices and Machine Learning Approaches for Durum Wheat (Triticum Durum Desf.) Yield Prediction across Different Varieties. AgriEngineering 2023, 5, 2032–2048. [Google Scholar] [CrossRef]
- Lourenço, V.R.; Montenegro, A.A.A.; Carvalho, A.A.D.; Sousa, L.D.B.D.; Almeida, T.A.B.; Almeida, T.F.S.D.; Vilar, B.P. Spatial Variability of Biophysical Multispectral Indexes under Heterogeneity and Anisotropy for Precision Monitoring. Rev. Bras. Eng. Agríc. Ambient. 2023, 27, 848–857. [Google Scholar] [CrossRef]
- Dericquebourg, E.; Hafiane, A.; Canals, R. Generative-Model-Based Data Labeling for Deep Network Regression: Application to Seed Maturity Estimation from UAV Multispectral Images. Remote Sens. 2022, 14, 5238. [Google Scholar] [CrossRef]
- Cao, X.; Liu, Y.; Yu, R.; Han, D.; Su, B. A Comparison of UAV RGB and Multispectral Imaging in Phenotyping for Stay Green of Wheat Population. Remote Sens. 2021, 13, 5173. [Google Scholar] [CrossRef]
- Peng, Z.-R.; Wang, D.; Wang, Z.; Gao, Y.; Lu, S. A Study of Vertical Distribution Patterns of PM2.5 Concentrations Based on Ambient Monitoring with Unmanned Aerial Vehicles: A Case in Hangzhou, China. Atmos. Environ. 2015, 123, 357–369. [Google Scholar] [CrossRef]
- Stark, D.J.; Vaughan, I.P.; Evans, L.J.; Kler, H.; Goossens, B. Combining Drones and Satellite Tracking as an Effective Tool for Informing Policy Change in Riparian Habitats: A Proboscis Monkey Case Study. Remote Sens. Ecol. Conserv. 2018, 4, 44–52. [Google Scholar] [CrossRef]
- Santana, D.C.; Theodoro, G.D.F.; Gava, R.; De Oliveira, J.L.G.; Teodoro, L.P.R.; De Oliveira, I.C.; Baio, F.H.R.; Da Silva Junior, C.A.; De Oliveira, J.T.; Teodoro, P.E. A New Approach to Identifying Sorghum Hybrids Using UAV Imagery Using Multispectral Signature and Machine Learning. Algorithms 2024, 17, 23. [Google Scholar] [CrossRef]
- Pallathadka, H.; Mustafa, M.; Sanchez, D.T.; Sekhar Sajja, G.; Gour, S.; Naved, M. Impact of Machine Learning on Management, Healthcare, and Agriculture. Mater. Today Proc. 2023, 80, 2803–2806. [Google Scholar] [CrossRef]
- Abioye, E.A.; Hensel, O.; Esau, T.J.; Elijah, O.; Abidin, M.S.Z.; Ayobami, A.S.; Yerima, O.; Nasirahmadi, A. Precision Irrigation Management Using Machine Learning and Digital Farming Solutions. AgriEngineering 2022, 4, 70–103. [Google Scholar] [CrossRef]
- Fleacă, E.; Fleacă, B.; Maiduc, S. Aligning Strategy with Sustainable Development Goals (SDGs): Process Scoping Diagram for Entrepreneurial Higher Education Institutions (HEIs). Sustainability 2018, 10, 1032. [Google Scholar] [CrossRef]
- Yadav, J.; Chauhan, U.; Sharma, D. Importance of Drone Technology in Indian Agriculture, Farming. In Advances in Electronic Government, Digital Divide, and Regional Development; Khan, M.A., Gupta, B., Verma, A.R., Praveen, P., Peoples, C.J., Eds.; IGI Global: Hershey, PA, USA, 2023; pp. 35–46. ISBN 978-1-66846-418-2. [Google Scholar]
- Iqbal, I.M.; Balzter, H.; Firdaus-e-Bareen; Shabbir, A. Mapping Lantana camara and Leucaena leucocephala in Protected Areas of Pakistan: A Geo-Spatial Approach. Remote Sens. 2023, 15, 1020. [Google Scholar] [CrossRef]
- Sivakumar, M.; TYJ, N.M. A Literature Survey of Unmanned Aerial Vehicle Usage for Civil Applications. J. Aerosp. Technol. Manag. 2021, 13, e4021. [Google Scholar] [CrossRef]
- Zhang, J.; He, Y.; Yuan, L.; Liu, P.; Zhou, X.; Huang, Y. Machine Learning-Based Spectral Library for Crop Classification and Status Monitoring. Agronomy 2019, 9, 496. [Google Scholar] [CrossRef]
- Souza, R.; Souza, E.S.; Netto, A.M.; Almeida, A.Q.D.; Barros Júnior, G.; Silva, J.R.I.; Lima, J.R.D.S.; Antonino, A.C.D. Assessment of the Physical Quality of a Fluvisol in the Brazilian Semiarid Region. Geoderma Reg. 2017, 10, 175–182. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Silva, L.A.P.; de Souza, C.M.P.; Silva, C.R.; Filgueiras, R.; Sena-Souza, J.P.; Fernandes Filho, E.I.; Leite, M.E. Mapping the effects of climate change on reference evapotranspiration in future scenarios in the Brazilian Semiarid Region—South America. Rev. Bras. De Geogr. Física 2023, 16, 1001–1012. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO—Food and Agriculture Organization of the United Nations: Roma, Italy, 1998. [Google Scholar]
- Karasiak, N. Dzetsaka: Classification Plugin for Qgis. Available online: https://github.com/nkarasiak/dzetsaka (accessed on 20 December 2023).
- Fitz, P.R. Classificação de imagens de satélite e índices espectrais de vegetação: Uma análise comparativa. Geosul 2020, 35, 171–188. [Google Scholar] [CrossRef]
- Balieiro, B.T.D.S.; Veloso, G.A. Análise multitemporal da cobertura do solo da Terra Indígena Ituna-Itatá através da classificação supervisionada de imagens de satélites. Cerrados 2022, 20, 261–282. [Google Scholar] [CrossRef]
- Reynolds, D.A. Gaussian Mixture Models. Encycl. Biom. 2009, 741, 659–663. [Google Scholar]
- Mucherino, A.; Papajorgji, P.J.; Pardalos, P.M. K-Nearest Neighbor Classification. In Data Mining in Agriculture; Springer Optimization and Its Applications; Springer New York: New York, NY, USA, 2009; Volume 34, pp. 83–106. ISBN 978-0-387-88614-5. [Google Scholar]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for Land Cover Classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Pal, M. Random Forest Classifier for Remote Sensing Classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (GreenWave Effect) of Natural Vegetation; NASA: Washington, DC, USA, 1974. [Google Scholar]
- Lu, T.; Wan, L.; Wang, L. Fine Crop Classification in High Resolution Remote Sensing Based on Deep Learning. Front. Environ. Sci. 2022, 10, 991173. [Google Scholar] [CrossRef]
- Qubaa, A.R.; Aljawwadi, T.A.; Hamdoon, A.N.; Mohammed, R.M. Using UAVs/Drones and Vegetation Indices in the Visible Spectrum to Monitor Agricultural Lands. Iraqi J. Agric. Sci. 2021, 52, 601–610. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Miao, J.; Zhu, W. Precision–Recall Curve (PRC) Classification Trees. Evol. Intel. 2022, 15, 1545–1569. [Google Scholar] [CrossRef]
- Li, M.; Shamshiri, R.R.; Weltzien, C.; Schirrmann, M. Crop monitoring using Sentinel-2 and UAV multispectral imagery: A comparison case study in Northeastern Germany. Remote Sens. 2022, 14, 4426. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Liu, Z.; Zhu, J.; Qin, F. Evaluation of a deep-learning model for multispectral remote sensing of land use and crop classification. Crop J. 2022, 10, 1435–1451. [Google Scholar] [CrossRef]
- Sarma, A.S.; Nidamanuri, R.R. Transfer Learning for Plant-Level Crop Classification Using Drone-Based Hyperspectral Imagery. In Proceedings of the 2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS), Hyderabad, India, 27–29 January 2023; IEEE: Hyderabad, India, 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Souza, J.T.A.; Ribeiro, J.E.D.S.; Araújo, J.S.; Ramos, J.P.D.F.; Nascimento, J.P.D.; Medeiros, L.T.V.D. Gas Exchanges and Water-Use Efficiency of Nopalea Cochenillifera Intercropped under Edaphic Practices. Com. Sci. 2020, 11, e3035. [Google Scholar] [CrossRef]
- Wan, H.; Wang, H.; Scotney, B.; Liu, J. A Novel Gaussian Mixture Model for Classification. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; IEEE: Bari, Italy, 2019; pp. 3298–3303. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, J.; Guo, S.; Ye, Z.; Deng, H.; Hou, X.; Zhang, H. Urban Tree Classification Based on Object-Oriented Approach and Random Forest Algorithm Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery. Remote Sens. 2022, 14, 3885. [Google Scholar] [CrossRef]
- Rodriguez-Garlito, E.C.; Paz-Gallardo, A. Efficiently Mapping Large Areas of Olive Trees Using Drones in Extremadura, Spain. IEEE J. Miniat. Air Space Syst. 2021, 2, 148–156. [Google Scholar] [CrossRef]
- Fathololoumi, S.; Vaezi, A.R.; Alavipanah, S.K.; Ghorbani, A.; Biswas, A. Comparison of Spectral and Spatial-Based Approaches for Mapping the Local Variation of Soil Moisture in a Semi-Arid Mountainous Area. Sci. Total Environ. 2020, 724, 138319. [Google Scholar] [CrossRef]
- Silva Júnior, J.C.; Medeiros, V.; Garrozi, C.; Montenegro, A.A.A.; Gonçalves, G.E. Random Forest Techniques for Spatial Inter-polation of Evapotranspiration Data from Brazilian’s Northeast. Comput. Electron. Agric. 2019, 166, 105017. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Thakur, R.; Panse, P. Classification Performance of Land Use from Multispectral Remote Sensing Images using Decision Tree, K-Nearest Neighbor, Random Forest and Support Vector Machine Using EuroSAT Data. Int. J. Intell. Syst. Appl. Eng. 2022, 10, 67–77. [Google Scholar]
- Pantoja, D.A.; Spenassato, D.; Emmendorfer, L.R. Comparison Between Classification Algorithms: Gaussian Mixture Model—GMM and Random Forest—RF, for Landsat 8 Images. RGSA 2023, 16, e03234. [Google Scholar] [CrossRef]
Gaussian Mixture Model—Multispectral | ||||||
G | M | UP | P | MC | BS | Reference × Predictions |
0 | 0 | 6 | 0 | 3 | 2139 | Bare Soil (BS) |
0 | 84 | 98 | 50 | 1742 | 57 | Mulch Covers (MC) |
87 | 140 | 240 | 1810 | 34 | 0 | Forage cactus (P) |
0 | 160 | 1308 | 214 | 101 | 0 | Underdeveloped Forage cactus (UP) |
9 | 1777 | 318 | 241 | 26 | 2 | Moringa (M) |
1747 | 0 | 11 | 36 | 0 | 0 | Gliricidia (G) |
K-Nearest Neighbors—Multispectral | ||||||
G | M | UP | P | MC | BS | Reference × Predictions |
0 | 2 | 8 | 0 | 16 | 2171 | Bare Soil (BS) |
0 | 112 | 60 | 45 | 1802 | 27 | Mulch Covers (MC) |
79 | 84 | 165 | 1883 | 13 | 0 | Forage cactus (P) |
0 | 209 | 1577 | 217 | 48 | 0 | Underdeveloped Forage cactus (UP) |
6 | 1754 | 170 | 196 | 27 | 0 | Moringa (M) |
1758 | 0 | 1 | 10 | 0 | 0 | Gliricidia (G) |
Random Forest—Multispectral | ||||||
G | M | UP | P | MC | BS | Reference × Predictions |
0 | 2 | 4 | 0 | 7 | 2164 | Bare Soil (BS) |
0 | 101 | 56 | 38 | 1796 | 33 | Mulch Covers (MC) |
58 | 89 | 175 | 1910 | 16 | 0 | Forage cactus (P) |
0 | 171 | 1562 | 191 | 53 | 1 | Underdeveloped Forage cactus (UP) |
5 | 1797 | 183 | 196 | 34 | 0 | Moringa (M) |
1780 | 1 | 1 | 16 | 0 | 0 | Gliricidia (G) |
Gaussian Mixture—Multispectral | |||||||
Average | G | M | UP | P | MC | BS | Parameters |
0.8488 | 0.9738 | 0.7488 | 0.7336 | 0.7832 | 0.8577 | 0.9958 | Precision |
0.8479 | 0.9479 | 0.8223 | 0.6603 | 0.7699 | 0.914 | 0.9732 | Recall |
0.8476 | 0.9607 | 0.7839 | 0.695 | 0.7765 | 0.8849 | 0.9844 | F1 score |
K-Nearest Neighbors—Multispectral | |||||||
Average | G | M | UP | P | MC | BS | Parameters |
0.8822 | 0.9938 | 0.8147 | 0.7689 | 0.8467 | 0.8807 | 0.9882 | Precision |
0.8826 | 0.9539 | 0.8117 | 0.7961 | 0.8009 | 0.9454 | 0.9877 | Recall |
0.882 | 0.9734 | 0.8132 | 0.7822 | 0.8232 | 0.9119 | 0.9879 | F1 score |
Random Forest—Multispectral | |||||||
Average | G | M | UP | P | MC | BS | Parameters |
0.887 | 0.99 | 0.8113 | 0.7897 | 0.8496 | 0.8874 | 0.994 | Precision |
0.8875 | 0.9658 | 0.8316 | 0.7885 | 0.8124 | 0.9423 | 0.9845 | Recall |
0.887 | 0.9778 | 0.8213 | 0.7891 | 0.8306 | 0.914 | 0.9893 | F1 score |
Gaussian Mixture Model—RGB | ||||||
G | M | UP | P | MC | BS | Reference × Predictions |
0 | 10 | 28 | 0 | 1 | 2136 | Bare Soil (BS) |
0 | 136 | 139 | 113 | 1764 | 51 | Mulch Covers (MC) |
124 | 119 | 278 | 1717 | 32 | 0 | Forage cactus (P) |
17 | 189 | 1157 | 185 | 51 | 11 | Underdeveloped Forage cactus (UP) |
9 | 1707 | 378 | 221 | 58 | 0 | Moringa (M) |
1693 | 0 | 1 | 115 | 0 | 0 | Gliricidia (G) |
K-Nearest Neighbors—RGB | ||||||
G | M | UP | P | MC | BS | Reference × Predictions |
0 | 6 | 39 | 0 | 15 | 2165 | Bare Soil (BS) |
0 | 117 | 80 | 60 | 1768 | 23 | Mulch Covers (MC) |
149 | 81 | 190 | 1818 | 17 | 0 | Forage cactus (P) |
1 | 237 | 1467 | 216 | 61 | 9 | Underdeveloped Forage cactus (UP) |
7 | 1720 | 205 | 207 | 45 | 1 | Moringa (M) |
1686 | 0 | 0 | 50 | 0 | 0 | Gliricidia (G) |
Random Forest—RGB | ||||||
G | M | UP | P | MC | BS | Reference × Predictions |
0 | 2 | 30 | 0 | 8 | 2144 | Bare Soil (BS) |
0 | 116 | 81 | 59 | 1761 | 27 | Mulch Covers (MC) |
139 | 83 | 186 | 1809 | 20 | 0 | Forage cactus (P) |
1 | 253 | 1466 | 229 | 62 | 23 | Underdeveloped Forage cactus (UP) |
6 | 1707 | 216 | 195 | 55 | 4 | Moringa (M) |
1697 | 0 | 2 | 59 | 0 | 0 | Gliricidia (G) |
Gaussian Mixture—RGB | |||||||
Average | G | M | UP | P | MC | BS | Parameters |
0.8188 | 0.9359 | 0.7193 | 0.7186 | 0.7564 | 0.8007 | 0.9821 | Precision |
0.82 | 0.9186 | 0.7899 | 0.584 | 0.7303 | 0.9255 | 0.9718 | Recall |
0.8172 | 0.9272 | 0.753 | 0.6444 | 0.7431 | 0.8586 | 0.9769 | F1 score |
K-Nearest Neighbors—RGB | |||||||
Average | G | M | UP | P | MC | BS | Parameters |
0.8563 | 0.9712 | 0.7872 | 0.7368 | 0.8062 | 0.8633 | 0.973 | Precision |
0.8562 | 0.9148 | 0.7959 | 0.7405 | 0.7733 | 0.9276 | 0.985 | Recall |
0.8558 | 0.9422 | 0.7915 | 0.7387 | 0.7894 | 0.8943 | 0.979 | F1 score |
Random Forest—RGB | |||||||
Average | G | M | UP | P | MC | BS | Parameters |
0.8533 | 0.9653 | 0.782 | 0.7207 | 0.8087 | 0.8615 | 0.9817 | Precision |
0.8533 | 0.9208 | 0.7899 | 0.74 | 0.7695 | 0.9239 | 0.9754 | Recall |
0.8529 | 0.9425 | 0.7859 | 0.7303 | 0.7886 | 0.8916 | 0.9785 | F1 score |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, O.B.d.; Montenegro, A.A.d.A.; Silva Neto, M.A.d.; Sousa, L.d.B.d.; Almeida, T.A.B.; de Lima, J.L.M.P.; Carvalho, A.A.d.; Silva, M.V.d.; Medeiros, V.W.C.d.; Soares, R.G.F.; et al. UAV-Based Classification of Intercropped Forage Cactus: A Comparison of RGB and Multispectral Sample Spaces Using Machine Learning in an Irrigated Area. AgriEngineering 2024, 6, 509-525. https://doi.org/10.3390/agriengineering6010031
Andrade OBd, Montenegro AAdA, Silva Neto MAd, Sousa LdBd, Almeida TAB, de Lima JLMP, Carvalho AAd, Silva MVd, Medeiros VWCd, Soares RGF, et al. UAV-Based Classification of Intercropped Forage Cactus: A Comparison of RGB and Multispectral Sample Spaces Using Machine Learning in an Irrigated Area. AgriEngineering. 2024; 6(1):509-525. https://doi.org/10.3390/agriengineering6010031
Chicago/Turabian StyleAndrade, Oto Barbosa de, Abelardo Antônio de Assunção Montenegro, Moisés Alves da Silva Neto, Lizandra de Barros de Sousa, Thayná Alice Brito Almeida, João Luis Mendes Pedroso de Lima, Ailton Alves de Carvalho, Marcos Vinícius da Silva, Victor Wanderley Costa de Medeiros, Rodrigo Gabriel Ferreira Soares, and et al. 2024. "UAV-Based Classification of Intercropped Forage Cactus: A Comparison of RGB and Multispectral Sample Spaces Using Machine Learning in an Irrigated Area" AgriEngineering 6, no. 1: 509-525. https://doi.org/10.3390/agriengineering6010031
APA StyleAndrade, O. B. d., Montenegro, A. A. d. A., Silva Neto, M. A. d., Sousa, L. d. B. d., Almeida, T. A. B., de Lima, J. L. M. P., Carvalho, A. A. d., Silva, M. V. d., Medeiros, V. W. C. d., Soares, R. G. F., Silva, T. G. F. d., & Vilar, B. P. (2024). UAV-Based Classification of Intercropped Forage Cactus: A Comparison of RGB and Multispectral Sample Spaces Using Machine Learning in an Irrigated Area. AgriEngineering, 6(1), 509-525. https://doi.org/10.3390/agriengineering6010031