Assessment of a Low-Cost Hydrogen Sensor for Detection and Monitoring of Biohydrogen Production during Sugarcane Straw/Vinasse Co-Digestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Acquisition
2.2. Sugarcane Straw Pretreatment
2.3. Vinasse Characterization
2.4. Inoculum Adaptation
2.5. Dark Fermentation, Biohydrogen Production, and Measurement
2.6. Data Analysis for Sensor Validation
3. Results and Discussion
3.1. Vinasse Characterization
3.2. Sensor Validation
3.3. Hydrogen Measurement and Detection
3.4. Advantages and Disadvantages of the Low-Cost Hydrogen Sensor
3.5. Future Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hay, J.X.W.; Wu, T.Y.; Juan, J.C.; Jahim, J.M. Biohydrogen Production through Photo Fermentation or Dark Fermentation Using Waste as a Substrate: Overview, Economics, and Future Prospects of Hydrogen Usage. Biofuels Bioprod. Biorefining 2013, 7, 334–352. [Google Scholar] [CrossRef]
- Guo, X.M.; Trably, E.; Latrille, E.; Carrre, H.; Steyer, J.P. Hydrogen Production from Agricultural Waste by Dark Fermentation: A Review. Int. J. Hydrogen Energy 2010, 35, 10660–10673. [Google Scholar] [CrossRef]
- Ghimire, A.; Frunzo, L.; Pirozzi, F.; Trably, E.; Escudie, R.; Lens, P.N.L.; Esposito, G. A Review on Dark Fermentative Biohydrogen Production from Organic Biomass: Process Parameters and Use of by-Products. Appl. Energy 2015, 144, 73–95. [Google Scholar] [CrossRef]
- Nayal, F.S.; Mammadov, A.; Ciliz, N. Environmental Assessment of Energy Generation from Agricultural and Farm Waste through Anaerobic Digestion. J. Environ. Manag. 2016, 184, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.V.; Baral, S.S.; Dey, R.; Mutnuri, S. Biogas Generation Potential by Anaerobic Digestion for Sustainable Energy Development in India. Renew. Sustain. Energy Rev. 2010, 14, 2086–2094. [Google Scholar] [CrossRef]
- Massé, D.I.; Talbot, G.; Gilbert, Y. On Farm Biogas Production: A Method to Reduce GHG Emissions and Develop More Sustainable Livestock Operations. Anim. Feed. Sci. Technol. 2011, 166, 436–445. [Google Scholar] [CrossRef]
- Ferrer, I.; Garfí, M.; Uggetti, E.; Ferrer-Martí, L.; Calderon, A.; Velo, E. Biogas Production in Low-Cost Household Digesters at the Peruvian Andes. Biomass Bioenergy 2011, 35, 1668–1674. [Google Scholar] [CrossRef]
- Garfí, M.; Gelman, P.; Comas, J.; Carrasco, W.; Ferrer, I. Agricultural Reuse of the Digestate from Low-Cost Tubular Digesters in Rural Andean Communities. Waste Manag. 2011, 31, 2584–2589. [Google Scholar] [CrossRef]
- Monlau, F.; Barakat, A.; Trably, E.; Dumas, C.; Steyer, J.P.; Carrère, H. Lignocellulosic Materials into Biohydrogen and Biomethane: Impact of Structural Features and Pretreatment. Crit. Rev. Environ. Sci. Technol. 2013, 43, 260–322. [Google Scholar] [CrossRef]
- Goveas, L.C.; Nayak, S.; Kumar, P.S.; Vinayagam, R.; Selvaraj, R.; Rangasamy, G. Recent Advances in Fermentative Biohydrogen Production. Int. J. Hydrogen Energy 2024, 54, 200–217. [Google Scholar] [CrossRef]
- Mohammadi, P.; Ibrahim, S.; Mohamad Annuar, M.S.; Law, S. Effects of Different Pretreatment Methods on Anaerobic Mixed Microflora for Hydrogen Production and COD Reduction from Palm Oil Mill Effluent. J. Clean. Prod. 2011, 19, 1654–1658. [Google Scholar] [CrossRef]
- Ghimire, A.; Frunzo, L.; Pontoni, L.; d’Antonio, G.; Lens, P.N.L.; Esposito, G.; Pirozzi, F. Dark Fermentation of Complex Waste Biomass for Biohydrogen Production by Pretreated Thermophilic Anaerobic Digestate. J. Environ. Manag. 2015, 152, 43–48. [Google Scholar] [CrossRef]
- Mahata, C.; Ray, S.; Das, D. Optimization of Dark Fermentative Hydrogen Production from Organic Wastes Using Acidogenic Mixed Consortia. Energy Convers. Manag. 2020, 219, 113047. [Google Scholar] [CrossRef]
- Sen, B.; Aravind, J.; Kanmani, P.; Lay, C.H. State of the Art and Future Concept of Food Waste Fermentation to Bioenergy. Renew. Sustain. Energy Rev. 2016, 53, 547–557. [Google Scholar] [CrossRef]
- Zhou, P.; Elbeshbishy, E.; Nakhla, G. Optimization of Biological Hydrogen Production for Anaerobic Co-Digestion of Food Waste and Wastewater Biosolids. Bioresour. Technol. 2013, 130, 710–718. [Google Scholar] [CrossRef]
- Boshagh, F.; Rostami, K. A Review of Measurement Methods of Biological Hydrogen. Int. J. Hydrogen Energy 2020, 45, 24424–24452. [Google Scholar] [CrossRef]
- Kyrpel, T.; Saska, V.; de Poulpiquet, A.; Luglia, M.; Soric, A.; Roger, M.; Tananaiko, O.; Giudici-Orticoni, M.T.; Lojou, E.; Mazurenko, I. Hydrogenase-Based Electrode for Hydrogen Sensing in a Fermentation Bioreactor. Biosens. Bioelectron. 2023, 225, 115106. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; He, J.; Gao, X.; Yang, T.; Zeng, X. Continuous Amperometric Hydrogen Gas Sensing in Ionic Liquids. Analyst 2018, 143, 4136–4146. [Google Scholar] [CrossRef] [PubMed]
- Fakra, D.A.H.; Andriatoavina, D.A.S.; Razafindralambo, N.A.M.N.; Amarillis, K.A.; Andriamampianina, J.M.M. A Simple and Low-Cost Integrative Sensor System for Methane and Hydrogen Measurement. Sens. Int. 2020, 1, 100032. [Google Scholar] [CrossRef]
- FAOSTAT. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 19 December 2023).
- Carvalho, J.L.N.; Nogueirol, R.C.; Menandro, L.M.S.; Bordonal, R.d.O.; Borges, C.D.; Cantarella, H.; Franco, H.C.J. Agronomic and Environmental Implications of Sugarcane Straw Removal: A Major Review. GCB Bioenergy 2017, 9, 1181–1195. [Google Scholar] [CrossRef]
- Tomasini, M.; Faber, M.d.O.; Ferreira-Leitão, V.S. Sequential Production of Hydrogen and Methane Using Hemicellulose Hydrolysate from Diluted Acid Pretreatment of Sugarcane Straw. Int. J. Hydrogen Energy 2023, 48, 9971–9987. [Google Scholar] [CrossRef]
- Sindhu, R.; Kuttiraja, M.; Binod, P.; Janu, K.U.; Sukumaran, R.K.; Pandey, A. Dilute Acid Pretreatment and Enzymatic Saccharification of Sugarcane Tops for Bioethanol Production. Bioresour. Technol. 2011, 102, 10915–10921. [Google Scholar] [CrossRef]
- Sindhu, R.; Gnansounou, E.; Binod, P.; Pandey, A. Bioconversion of Sugarcane Crop Residue for Value Added Products—An Overview. Renew. Energy 2016, 98, 203–215. [Google Scholar] [CrossRef]
- Hu, F.; Ragauskas, A. Pretreatment and Lignocellulosic Chemistry. Bioenergy Res. 2012, 5, 1043–1066. [Google Scholar] [CrossRef]
- Alvira, P.; Tomás-Pejó, E.; Ballesteros, M.; Negro, M.J. Pretreatment Technologies for an Efficient Bioethanol Production Process Based on Enzymatic Hydrolysis: A Review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef] [PubMed]
- Reis, C.E.R.; Hu, B. Vinasse from Sugarcane Ethanol Production: Better Treatment or Better Utilization? Front. Energy Res. 2017, 5, 7. [Google Scholar] [CrossRef]
- Carrilho, E.N.V.M.; Labuto, G.; Kamogawa, M.Y. Destination of Vinasse, a Residue from Alcohol Industry: Resource Recovery and Prevention of Pollution; Elsevier Inc.: Amsterdam, The Netherlands, 2016; ISBN 9780128039069. [Google Scholar]
- Fuess, L.T.; Rodrigues, I.J.; Garcia, M.L. Fertirrigation with Sugarcane Vinasse: Foreseeing Potential Impacts on Soil and Water Resources through Vinasse Characterization. J. Environ. Sci. Health Part A 2017, 52, 1063–1072. [Google Scholar] [CrossRef]
- Mikucka, W.; Zielińska, M. Distillery Stillage: Characteristics, Treatment, and Valorization. Appl. Biochem. Biotechnol. 2020, 192, 770–793. [Google Scholar] [CrossRef] [PubMed]
- Fuess, L.T.; Ferraz, A.D.N.; Machado, C.B.; Zaiat, M. Temporal Dynamics and Metabolic Correlation between Lactate-Producing and Hydrogen-Producing Bacteria in Sugarcane Vinasse Dark Fermentation: The Key Role of Lactate. Bioresour. Technol. 2018, 247, 426–433. [Google Scholar] [CrossRef]
- Magrini, F.E.; de Almeida, G.M.; da Maia Soares, D.; Fuentes, L.; Ecthebehere, C.; Beal, L.L.; da Silveira, M.M.; Paesi, S. Effect of Different Heat Treatments of Inoculum on the Production of Hydrogen and Volatile Fatty Acids by Dark Fermentation of Sugarcane Vinasse. Biomass Convers. Biorefinery 2021, 11, 2443–2456. [Google Scholar] [CrossRef]
- Freitas, P.V.; Da Silva, D.R.; Beluomini, M.A.; Da Silva, J.L.; Stradiotto, N.R. Determination of Phenolic Acids in Sugarcane Vinasse by HPLC with Pulse Amperometry. J. Anal. Methods Chem. 2018, 2018, 4869487. [Google Scholar] [CrossRef]
- Conceição, G.R.; da Silva, C.S.; do Vale, T.O.; dos Santos, J.N.; Matos, J.B.T.L.; Almeida, P.F.d.; Chinalia, F.A. Culture Operational Strategies for the Production of Methane and Algal Oil Using Ethanol Vinasse Effluent. J. Appl. Phycol. 2023, 35, 2135–2149. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. AOAC: Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Lane, H.; Eynon, L. Determination of Reducing Sugar by Means of Fehling’s Solution with Methylene Blue as Internal Indicator. J. Soc. Chem. Ind. 1923, 42, 32–37. [Google Scholar]
- Rice, E.W.; Baird, R.B.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2017. [Google Scholar]
- Garcia Martínez, E.; Fernandez Segovia, I.; Fuentes López, A. Determinación de Polifenoles Totales Por El Método de FolinCiocalteu; Food Technology Department, ETSIAMN, Universitat Politècnica de València: València, Spain, 2015. [Google Scholar]
- Davila-Vazquez, G.; Alatriste-Mondragón, F.; de León-Rodríguez, A.; Razo-Flores, E. Fermentative Hydrogen Production in Batch Experiments Using Lactose, Cheese Whey and Glucose: Influence of Initial Substrate Concentration and PH. Int. J. Hydrogen Energy 2008, 33, 4989–4997. [Google Scholar] [CrossRef]
- Purwanto, H.; Akiyama, T. Hydrogen Production from Biogas Using Hot Slag. Int. J. Hydrogen Energy 2006, 31, 491–495. [Google Scholar] [CrossRef]
- Abhiram, G.; McCurdy, M.; Davies, C.E.; Grafton, M.; Jeyakumar, P.; Bishop, P. An Innovative Lysimeter System for Controlled Climate Studies. Biosyst. Eng. 2023, 228, 105–119. [Google Scholar] [CrossRef]
- Pouresmaeil, S.; Nosrati, M.; Ebrahimi, S. Operating Control for Enrichment of Hydrogen-Producing Bacteria from Anaerobic Sludge and Kinetic Analysis for Vinasse Inhibition. J. Environ. Chem. Eng. 2019, 7, 103090. [Google Scholar] [CrossRef]
- Tavera-Romero, F.; Ríos-Maravilla, A.; Granados-Samaniego, J.; Turpin, S. Gas Measurement System for Bio-Hydrogen Production Based on Nejayote’s Dark Phase Fermentation. J. Phys. Conf. Ser. 2021, 1723, 012058. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Y.; Wu, N.; Zhang, Y.; Svoronos, S.; Pullammanappallil, P. Low-Cost, Arduino-Based, Portable Device for Measurement of Methane Composition in Biogas. Renew. Energy 2019, 138, 224–229. [Google Scholar] [CrossRef]
- Sharma, Y.; Li, B. Optimizing Hydrogen Production from Organic Wastewater Treatment in Batch Reactors through Experimental and Kinetic Analysis. Int. J. Hydrogen Energy 2009, 34, 6171–6180. [Google Scholar] [CrossRef]
- Logan, B.E.; Oh, S.E.; Kim, I.S.; Van Ginkel, S. Biological Hydrogen Production Measured in Batch Anaerobic Respirometers. Environ. Sci. Technol. 2002, 36, 2530–2535. [Google Scholar] [CrossRef]
- Wicher, E.; Seifert, K.; Zagrodnik, R.; Pietrzyk, B.; Laniecki, M. Hydrogen Gas Production from Distillery Wastewater by Dark Fermentation. Int. J. Hydrogen Energy 2013, 38, 7767–7773. [Google Scholar] [CrossRef]
- Daglia, M. Polyphenols as Antimicrobial Agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A Survey on Gas Sensing Technology. Sensors 2012, 12, 9635–9665. [Google Scholar] [CrossRef] [PubMed]
Analysis | Method |
---|---|
Ashes | AOAC 942.05 [35] |
Total Nitrogen | AOAC 981.10 [35] |
Total Sugars | Lane Eyn [36] |
Total Organic Carbon (TOC) | Standard Methods 5310 B High Temperature Combustion [37] |
Chemical Oxygen Demand (COD) | Standard Methods ED 23/5220 C—Closed Reflux—Volumetric [37] |
Total Solids | Gravimetry |
Total Polyphenols | Folin–Ciocalteu [38] |
Slaughterhouse Wastewater/Vinasse–HH Ratio | Initial COD (g COD/L) |
---|---|
70/30 | 13.8 |
50/50 | 21.9 |
30/70 | 28.4 |
0/100 | 41.1 |
Vinasse Dilution (%) | Sugarcane Vinasse/HH Volumetric Ratio | Average Substrate Concentration (g COD/L) |
---|---|---|
5 | 1:3 | 8.9 |
5 | 3:1 | 13.5 |
10 | 1:1 | 18.9 |
15 | 1:3 | 18.7 |
15 | 3:1 | 38.6 |
Analysis | Units | Results |
---|---|---|
Ashes | % mass | 8.16 |
Total Nitrogen | % mass | 0.5 |
Total Sugars | % mass | 27.73 |
TOC | mg C/L | 129,835.20 |
COD | mg O2/L | 228,220 |
Total Solids | % mass | 29.90 |
Total Polyphenols | % mass | 1.61 |
Sample | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Reference concentration (ppm) | 15.00 | 19.00 | 61.00 | 148.00 | 370.00 |
Mean of sensor readings (ppm) | 14.36 | 18.91 | 60.80 | 147.50 | 368.73 |
Standard deviation of readings (ppm) | 0.79 | 1.57 | 1.08 | 1.30 | 5.62 |
CV (%) | 5.0 | 8.0 | 2.0 | 1.0 | 2.0 |
SE (ppm) | 0.17 | 0.33 | 0.28 | 1.20 | 0.23 |
RMSE (ppm) | 0.76 | 1.18 | 1.29 | 1.31 | 4.55 |
MBE (ppm) | −0.09 | −0.27 | 0.41 | 3.25 | 1.06 |
ANOVA p-value (5% signifcance) | 0.021 | 0.002 | 0.024 | 0.042 | 8.5E-05 |
ANOVA F value | 3.70 | 7.04 | 3.55 | 3.01 | 13.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrera, A.; Gómez-Ríos, D.; Ramírez-Malule, H. Assessment of a Low-Cost Hydrogen Sensor for Detection and Monitoring of Biohydrogen Production during Sugarcane Straw/Vinasse Co-Digestion. AgriEngineering 2024, 6, 479-490. https://doi.org/10.3390/agriengineering6010029
Barrera A, Gómez-Ríos D, Ramírez-Malule H. Assessment of a Low-Cost Hydrogen Sensor for Detection and Monitoring of Biohydrogen Production during Sugarcane Straw/Vinasse Co-Digestion. AgriEngineering. 2024; 6(1):479-490. https://doi.org/10.3390/agriengineering6010029
Chicago/Turabian StyleBarrera, Andrés, David Gómez-Ríos, and Howard Ramírez-Malule. 2024. "Assessment of a Low-Cost Hydrogen Sensor for Detection and Monitoring of Biohydrogen Production during Sugarcane Straw/Vinasse Co-Digestion" AgriEngineering 6, no. 1: 479-490. https://doi.org/10.3390/agriengineering6010029
APA StyleBarrera, A., Gómez-Ríos, D., & Ramírez-Malule, H. (2024). Assessment of a Low-Cost Hydrogen Sensor for Detection and Monitoring of Biohydrogen Production during Sugarcane Straw/Vinasse Co-Digestion. AgriEngineering, 6(1), 479-490. https://doi.org/10.3390/agriengineering6010029