Visualization of Lidar-Based 3D Droplet Distribution Detection for Air-Assisted Spraying
Abstract
:1. Introduction
2. Material and Method
2.1. Installation of LiDAR
2.2. Spraying System
2.3. Data Processing
2.3.1. Point Cloud Calculation from LiDAR
2.3.2. Triangulation for Point Cloud of Droplet
3. Results
3.1. Segmentation Points Cloud
3.2. Repeatability of Multiple Spraying
3.3. Triangulation of Different Parameters
4. Discussion
4.1. Droplet Distribution
4.2. LiDAR Droplet Detection Method
4.3. Accuracy of 3D Model Based on Evaluated Speed
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Liu, Y.; He, X.; Liu, W. Precision Variable-Rate Spraying Robot by Using Single 3D LIDAR in Orchards. Agronomy 2022, 12, 2509. [Google Scholar] [CrossRef]
- Li, T.; Qi, P.; Wang, Z.; Xu, S.; Huang, Z.; Han, L.; He, X. Evaluation of the Effects of Airflow Distribution Patterns on Deposit Coverage and Spray Penetration in Multi-Unit Air-Assisted Sprayer. Agronomy 2022, 12, 944. [Google Scholar] [CrossRef]
- Wegener, J.K.; von Hörsten, D.; Pelzer, T.; Osteroth, H.J. Basic Research into Different Parameters Influencing the Quality of Vertical Distribution by Crop Sprayers. Landtechnik 2016, 71, 4–13. [Google Scholar] [CrossRef]
- Dekeyser, D.; Duga, A.T.; Verboven, P.; Endalew, A.M.; Hendrickx, N.; Nuyttens, D. Assessment of Orchard Sprayers Using Laboratory Experiments and Computational Fluid Dynamics Modelling. Biosyst. Eng. 2013, 114, 157–169. [Google Scholar] [CrossRef]
- Duga, A.T.; Delele, M.A.; Ruysen, K.; Dekeyser, D.; Nuyttens, D.; Bylemans, D.; Nicolai, B.M.; Verboven, P. Development and Validation of a 3D CFD Model of Drift and Its Application to Air-Assisted Orchard Sprayers. Biosyst. Eng. 2017, 154, 62–75. [Google Scholar] [CrossRef]
- Duga, A.T.; Dekeyser, D.; Ruysen, K.; Bylemans, D.; Nuyttens, D.; Nicolai, B.M.; Verboven, P. Numerical Analysis of the Effects of Wind and Sprayer Type on Spray Distribution in Different Orchard Training Systems. Bound. Layer Meteorol. 2015, 157, 517–535. [Google Scholar] [CrossRef]
- Kashdan, J.T.; Shrimpton, J.S.; Whybrew, A. Two-Phase Flow Characterization by Automated Digital Image Analysis. Part 2: Application of PDIA for Sizing Sprays. Part. Part. Syst. Charact. 2004, 21, 15–23. [Google Scholar] [CrossRef]
- Kashdan, J.T.; Shrimpton, J.S.; Whybrew, A. A Digital Image Analysis Technique for Quantitative Characterisation of High-Speed Sprays. Opt. Lasers Eng. 2007, 45, 106–115. [Google Scholar] [CrossRef]
- De Cock, N.; Massinon, M.; Nuyttens, D.; Dekeyser, D.; Lebeau, F. Measurements of Reference ISO Nozzles by High-Speed Imaging. Crop Prot. 2016, 89, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Dorr, G.J.; Hewitt, A.J.; Adkins, S.W.; Hanan, J.; Zhang, H.; Noller, B. A Comparison of Initial Spray Characteristics Produced by Agricultural Nozzles. Crop Prot. 2013, 53, 109–117. [Google Scholar] [CrossRef]
- Krabill, W.B.; Collins, J.G.; Link, L.E.; Swift, R.N.; Butler, M.L. Airborne Laser Topographic Mapping Results. Photogramm. Eng. Remote Sens. 1984, 50, 685–694. [Google Scholar]
- Chen, Y.; Zhu, H.; Ozkan, H.E. Development of LIDAR-guided sprayer to synchronize spray outputs with canopy structures. In Proceedings of the American Society of Agricultural and Biological Engineers Annual International Meeting, Louisville, KY, USA, 7–10 August 2011; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2011; Volume 1, pp. 11–24. [Google Scholar]
- Gené-Mola, J.; Gregorio, E.; Guevara, J.; Auat, F.; Sanz-Cortiella, R.; Escolà, A.; Llorens, J.; Morros, J.-R.R.; Ruiz-Hidalgo, J.; Vilaplana, V.; et al. Fruit Detection in an Apple Orchard Using a Mobile Terrestrial Laser Scanner. Biosyst. Eng. 2019, 187, 171–184. [Google Scholar] [CrossRef]
- Qiu, Q.; Sun, N.; Bai, H.; Wang, N.; Fan, Z.; Wang, Y.; Meng, Z.; Li, B.; Cong, Y. Field-Based High-Throughput Phenotyping for Maize Plant Using 3d LIDAR Point Cloud Generated with a “Phenomobile”. Front. Plant Sci. 2019, 10, 554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, L.; Wang, S.; Wang, Z.; Jin, L.; He, X. Method of 3D Voxel Prescription Map Construction in Digital Orchard Management Based on LiDAR-RTK Boarded on a UGV. Drones 2023, 7, 242. [Google Scholar] [CrossRef]
- Seol, J.; Kim, J.; Son, H. Il Field Evaluations of a Deep Learning-Based Intelligent Spraying Robot with Flow Control for Pear Orchards. Precis. Agric. 2022, 23, 712–732. [Google Scholar] [CrossRef]
- Seol, J.; Kim, J.; Son, H. Il Spray Drift Segmentation for Intelligent Spraying System Using 3D Point Cloud Deep Learning Framework. IEEE Access 2022, 10, 77263–77271. [Google Scholar] [CrossRef]
- Stoughton, T.E.; Miller, D.R.; Yang, X.; Ducharme, K.M. A Comparison of Spray Drift Predictions to Lidar Data. Agric. For. Meteorol. 1997, 88, 15–26. [Google Scholar] [CrossRef]
- Gregorio, E.; Torrent, X.; Planas, S.; Rosell-Polo, J.R. Assessment of Spray Drift Potential Reduction for Hollow-Cone Nozzles: Part 2. LiDAR Technique. Sci. Total Environ. 2019, 687, 967–977. [Google Scholar] [CrossRef]
- Li, L.; Zhang, R.; Chen, L.; Liu, B.; Zhang, L.; Tang, Q.; Ding, C.; Zhang, Z.; Hewitt, A.J. Spray Drift Evaluation with Point Clouds Data of 3D LiDAR as a Potential Alternative to the Sampling Method. Front. Plant Sci. 2022, 13, 939733. [Google Scholar] [CrossRef]
- Tian, L.; Xiongkui, H.; Zhichong, W.; Huang, Z.; Han, L. Method for Measuring the 3D Spatial Distribution of Spray Volume Based on LIDAR. Trans. Chin. Soc. Agric. Eng. 2021, 37, 42–49. [Google Scholar] [CrossRef]
- Liu, B.; Li, L.; Zhang, R.; Tang, Q.; Ding, C.; Xu, G.; Hewitt, A.J.; Chen, L. Analysis of the Spatial and Temporal Distribution of a Spray Cloud Using Commercial LiDAR. Biosyst. Eng. 2022, 223, 78–96. [Google Scholar] [CrossRef]
- Mathworks Matrix Representation of Geometric Transformations. Available online: https://ww2.mathworks.cn/help/releases/R2022b/images/matrix-representation-of-geometric-transformations (accessed on 27 March 2023).
- Torr, P.H.S.; Zisserman, A. MLESAC: A New Robust Estimator with Application to Estimating Image Geometry. Comput. Vis. Image Underst. 2000, 78, 138–156. [Google Scholar] [CrossRef] [Green Version]
- Mathworks Pcsegdist. Available online: https://ww2.mathworks.cn/help/releases/R2022b/vision/ref/pcsegdist.htm (accessed on 27 March 2023).
- Mathworks AlphaTriangulation. Available online: https://ww2.mathworks.cn/help/releases/R2022b/matlab/ref/alphashape.alphatriangulation.html (accessed on 27 March 2023).
- Zhang, Y.; Hamza, A. Vertex-based anisotropic smoothing of 3D mesh data. In Proceedings of the 2006 Canadian Conference on Electrical and Computer Engineering, Ottawa, ON, Canada, 7–10 May 2006; pp. 202–205. [Google Scholar]
- Gil, E.; Llorens, J.; Llop, J.; Fàbregas, X.; Gallart, M. Use of a Terrestrial LIDAR Sensor for Drift Detection in Vineyard Spraying. Sensors 2013, 13, 516–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregorio, E.; Rosell-Polo, J.R.; Sanz, R.; Rocadenbosch, F.; Solanelles, F.; Garcerá, C.; Chueca, P.; Arnó, J.; del Moral, I.; Masip, J.; et al. LIDAR as an Alternative to Passive Collectors to Measure Pesticide Spray Drift. Atmos. Environ. 2014, 82, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Gregorio, E.; Rocadenbosch, F.; Sanz, R.; Rosell-Polo, J. Eye-Safe Lidar System for Pesticide Spray Drift Measurement. Sensors 2015, 15, 3650–3670. [Google Scholar] [CrossRef] [Green Version]
- Sassen, K.; Zhao, H. Lidar Multiple Scattering in Water Droplet Clouds: Toward an Improved Treatment. Opt. Rev. 1995, 2, 394–400. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhang, Y.; Li, T.; Müller, J.; He, X. Visualization of Lidar-Based 3D Droplet Distribution Detection for Air-Assisted Spraying. AgriEngineering 2023, 5, 1136-1146. https://doi.org/10.3390/agriengineering5030072
Wang Z, Zhang Y, Li T, Müller J, He X. Visualization of Lidar-Based 3D Droplet Distribution Detection for Air-Assisted Spraying. AgriEngineering. 2023; 5(3):1136-1146. https://doi.org/10.3390/agriengineering5030072
Chicago/Turabian StyleWang, Zhichong, Yang Zhang, Tian Li, Joachim Müller, and Xiongkui He. 2023. "Visualization of Lidar-Based 3D Droplet Distribution Detection for Air-Assisted Spraying" AgriEngineering 5, no. 3: 1136-1146. https://doi.org/10.3390/agriengineering5030072
APA StyleWang, Z., Zhang, Y., Li, T., Müller, J., & He, X. (2023). Visualization of Lidar-Based 3D Droplet Distribution Detection for Air-Assisted Spraying. AgriEngineering, 5(3), 1136-1146. https://doi.org/10.3390/agriengineering5030072