Occurrence of Multiple Glyphosate-Resistant Weeds in Brazilian Citrus Orchards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Dose–Response Assays
2.3. Shikimic Acid Accumulation
2.4. Statistical Analysis
3. Results
3.1. Dose–Response Assays
3.2. Shikimic Acid Accumulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA—United States Department of Agriculture. Citrus. 2023. Available online: https://apps.fas.usda.gov/psdonline/circulars/citrus.pdf (accessed on 31 March 2023).
- SIDRA—Sistema IBGE de Recuperação Automática. Levantamento Sistemático da Produção Agrícola—Fevereiro. 2023. Available online: https://sidra.ibge.gov.br/home/lspa/sao-paulo (accessed on 31 March 2023).
- Martinelli, R.; Rufino, L.R., Jr.; Alcántara-de la Cruz, R.; Monquero, P.A.; Azevedo, F.A. Ecological Mowing with Residual Herbicides: A Viable Weed Management Tool for Citrus Orchards. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3997512 (accessed on 31 March 2023).
- Atakan, E.; Pehlivan, S. Influence of weed management on the abundance of thrips species (Thysanoptera) and the predatory bug, Orius niger (Hemiptera: Anthocoridae) in citrus mandarin. Appl. Entomol. Zool. 2020, 55, 71–81. [Google Scholar] [CrossRef]
- Azevedo, F.A.; Almeida, R.F.; Martinelli, R.; Próspero, A.G.; Licerre, R.; Conceição, P.M.; Arantes, A.C.C.; Dovis, V.L.; Boaretto, R.M.; Mattos, D., Jr. No-Tillage and high-density planting for Tahiti acid lime grafted onto flying dragon trifoliate orange. Front. Sustain. Food Syst. 2020, 4, 108. [Google Scholar] [CrossRef]
- Martinelli, R.; Rufino, L.R., Jr.; Melo, A.C.; Alcántara-de la Cruz, R.; Silva, M.F.G.F.; Silva, J.R.; Boaretto, R.M.; Monquero, P.A.; Mattos, D., Jr.; Azevedo, F.A. Glyphosate excessive use chronically disrupts the shikimate pathway and can affect photosynthesis and yield in citrus trees. Chemosphere 2022, 308, 136468. [Google Scholar] [CrossRef] [PubMed]
- Fundecitrus—Produtos para Proteção da Citricultura. Available online: https://www.fundecitrus.com.br/protecitrus (accessed on 2 May 2023).
- Alcántara-de la Cruz, R.; Amaral, G.S.; Oliveira, G.M.; Rufino, L.R.; Azevedo, F.A.; Carvalho, L.B.; Silva, M.F.G.F. Glyphosate resistance in Amaranthus viridis in Brazilian citrus orchards. Agriculture 2020, 10, 304. [Google Scholar] [CrossRef]
- Martinelli, R.; Rufino, L.R., Jr.; Alcántara-de la Cruz, R.; da Conceição, P.M.; Monquero, P.A.; de Azevedo, F.A. Glyphosate excessive use affects citrus growth and yield: The vicious (and unsustainable) circle in Brazilian orchards. Agronomy 2022, 12, 453. [Google Scholar] [CrossRef]
- Duke, S.O. The history and current status of glyphosate. Pest Manag. Sci. 2018, 74, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Shaner, D.L.; Nadler-Hassar, T.; Henry, W.B.; Koger, C.H. A rapid in vivo shikimate accumulation assay with excised leaf discs. Weed Sci. 2005, 53, 769–774. [Google Scholar] [CrossRef]
- Duke, S.O. Glyphosate: Environmental fate and impact. Weed Sci. 2020, 68, 201–207. [Google Scholar] [CrossRef]
- Lacroix, R.; Kurrasch, D.M. Glyphosate toxicity: In vivo, in vitro, and epidemiological evidence. Toxicol. Sci. 2023, 192, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.B.; Alves, P.L.C.A.A.; Gonzalez-Torralva, F.; Cruz-Hipolito, H.E.; Rojano-Delgado, A.M.; De Prado, R.; Gil-Hammanes, J.; Barro, F.; Luque de Castro, M.D. Pool of resistance mechanisms to glyphosate in Digitaria insularis. J. Agric. Food Chem. 2012, 60, 615–622. [Google Scholar] [CrossRef]
- Moreira, M.S.; Nicolai, M.; Carvalho, S.J.P.; Christoffoleti, P.J. Glyphosate-resistance in Conyza canadensis and C. Bonariensis. Planta Daninha 2008, 25, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Caetano, R.S.X.; Christoffoleti, P.J.; Victoria-Filho, R. Weed seed bank of a ’Pera’ citrus orchard. Sci. Agric. 2001, 58, 509–517. [Google Scholar] [CrossRef] [Green Version]
- Passos, O.S.; Souza, J.D.S.; Bastos, D.C.; Girardi, E.A.; Gurgel, F.L.; Garcia, M.V.B.; Oliveira, R.P.; Soares Filho, W.S. Citrus industry in Brazil with emphasis on tropical areas. In Citrus-Health Benefits and Production Technology, 1st ed.; Sajid, M., Ed.; IntechOpen: London, UK, 2019; pp. 59–78. [Google Scholar]
- Andres, A.; Concenço, G.; Schreiber, F.; Agostinetto, D.; Vargas, L.; Behenck, G.; Antoniaci, C.; Alves, Y.S. Predictions for weed resistance to herbicides in Brazil: A botanical approach. In Herbicide Resistance in Weeds and Crops; Pacanoski, Z., Ed.; IntechOpen: London, UK, 2017; pp. 134–157. [Google Scholar]
- Heap, I. The International Herbicide-Resistant Weed Database. Available online: www.weedscience.org (accessed on 3 April 2023).
- Adegas, F.S.; Vargas, L.; Gazziero, D.L.P.; Karam, D.; Silva, A.F.; Agostinetto, D. Impacto econômico da resistência de planta daninhas a herbicidas no Brasil. EMBRAPA-Circular Técnica. 2017, 32, 1–11. [Google Scholar]
- Cromartie, T.H.; Polge, N. Method of Detecting Shikimic Acid. U.S. Patent 006482654B1, 8 February 2002. Available online: https://patents.google.com/patent/US6482654B1/en (accessed on 30 March 2023).
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-response analysis using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ADAPAR—Agência de Defesa Agropecuária do Paraná. Trade Label of Roundup Original DI. 2023. Available online: https://www.adapar.pr.gov.br/sites/adapar/arquivos_restritos/files/documento/2023-02/rounduporiginaldi.pdf (accessed on 3 April 2023).
- Assunção, J.; Chein, F. Climate change and agricultural productivity in Brazil: Future perspectives. Environ. Dev. Econ. 2016, 21, 581–602. [Google Scholar] [CrossRef] [Green Version]
- Batlla, D.; Benech-Arnold, R.L. Weed seed germination and the light environment: Implications for weed management. Weed Biol. Manag. 2014, 14, 77–87. [Google Scholar] [CrossRef]
- González-Torralva, F.; Cruz-Hipolito, H.; Bastida, F.; Mülleder, N.; Smeda, R.J.; De Prado, R. Differential susceptibility to glyphosate among the Conyza weed species in Spain. J. Agric. Food Chem. 2010, 58, 4361–4366. [Google Scholar] [CrossRef]
- Xie, H.S.; Hsiao, A.I.; Quick, W.A. Effect of shading on activity of imazamethabenz and fenoxaprop in wild oat (Avena fatua). Weed Sci. 1994, 42, 66–69. [Google Scholar] [CrossRef]
- Alcántara-de la Cruz, R.; Fernández-Moreno, P.T.; Ozuna, C.V.; Rojano-Delgado, A.M.; Cruz-Hipolito, H.E.; Domínguez-Valenzuela, J.A.; Barro, F.; De Prado, R. Target and non-target site mechanisms developed by glyphosate-resistant hairy beggarticks (Bidens pilosa L.) populations from Mexico. Front. Plant Sci. 2016, 7, 1492. [Google Scholar] [CrossRef] [Green Version]
- Brunharo, C.A.; Patterson, E.L.; Carrijo, D.R.; Melo, M.S.C.; Nicolai, M.; Gaines, T.A.; Nissen, S.J.; Christoffoleti, P.J. Confirmation and mechanism of glyphosate resistance in tall windmill grass (Chloris elata) from Brazil. Pest Manag. Sci. 2016, 72, 1758–1764. [Google Scholar] [CrossRef] [PubMed]
- Lucio, F.R.; Kalsing, A.; Adegas, F.S.; Rossi, C.V.S.; Correia, N.M.; Gazziero, D.L.P.; Silva, A.F. Dispersal and frequency of glyphosate-resistant and glyphosate-tolerant weeds in soybean-producing edaphoclimatic microregions in Brazil. Weed Technol. 2019, 33, 217–231. [Google Scholar] [CrossRef]
- Takano, H.K.; Oliveira, R.S., Jr.; Constantin, J.; Mangolim, C.A.; Machado, M.D.; Bevilaqua, M.R. Spread of glyphosate-resistant sourgrass (Digitaria insularis): Independent selections or merely propagule dissemination? Weed Biol. Manag. 2018, 18, 50–59. [Google Scholar] [CrossRef]
- Ferreira, E.A.; Galon, L.; Aspiazú, I.; Silva, A.A.; Concenço, G.; Silva, A.F.; Oliveira, J.A.; Vargas, L. Glyphosate translocation in hairy fleabane (Conyza bonariensis) biotypes. Planta Daninha 2008, 26, 637–643. [Google Scholar] [CrossRef] [Green Version]
- Moss, S. Integrated weed management (IWM): Why are farmers reluctant to adopt non-chemical alternatives to herbicides? Pest Manag. Sci. 2019, 75, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
- Livingston, M.; Fernandez-Cornejo, J.; Frisvold, G.B. Economic returns to herbicide resistance management in the short and long run: The role of neighbor efects. Weed Sci. 2016, 64, 595–608. [Google Scholar] [CrossRef]
Population | Species | Botanical Class | Orchard | Municipality | Coordinates | Year(s) |
---|---|---|---|---|---|---|
S-lim | Bidens pilosa | Dicotyledonous | Tahiti acid lime | Mogi-Mirim | 22°25′ S, 47°10′ W | 2018 and 2019 |
Chloris elata | Monocotyledonous | |||||
Conyza bonariensis | Dicotyledonous | |||||
Digitaria insularis | Monocotyledonous | |||||
S-UFSCar | Amaranthus deflexus | Dicotyledonous | No crop | São Carlos | 21°58′ S, 47°52′ W | 2019 |
Amaranthus hybridus | Dicotyledonous | |||||
Solanum americanum | Dicotyledonous | |||||
Tridax procumbens | Dicotyledonous | |||||
R-Ara | Conyza bonariensis | Dicotyledonous | Tahiti acid lime | Araras | 22°18′ S, 47°23′ W | 2019 |
Chloris elata | Monocotyledonous | |||||
Digitaria insularis | Monocotyledonous | |||||
Solanum americanum | Dicotyledonous | |||||
R-IAC | Amaranthus deflexus | Dicotyledonous | Pêra sweet orange | Cordeirópolis | 22 °20′ S, 47 °27′ W | 2018 and 2019 |
Amaranthus hybridus | Dicotyledonous | |||||
Bidens pilosa | Dicotyledonous | |||||
Conyza bonariensis | Dicotyledonous | |||||
Chloris elata | Monocotyledonous | |||||
Digitaria insularis | Monocotyledonous | |||||
Solanum americanum | Dicotyledonous | |||||
R1-lar | Amaranthus deflexus | Dicotyledonous | Pêra sweet orange | Mogi-Mirim | 22°25′ S, 47°09′ W | 2018 and 2019 |
Amaranthus hybridus | Dicotyledonous | |||||
Bidens pilosa | Dicotyledonous | |||||
Conyza bonariensis | Dicotyledonous | |||||
Chloris elata | Monocotyledonous | |||||
Digitaria insularis | Monocotyledonous | |||||
Solanum americanum | Dicotyledonous | |||||
Tridax procumbens | Dicotyledonous | |||||
R-NS | Bidens pilosa | Dicotyledonous | Hamlim orange | Olimpia †—Nossa Senhora | 20°51′ S, 48°58′ W | 2019 |
Chloris elata | Monocotyledonous | |||||
Tridax procumbens | Dicotyledonous | |||||
R-OdA | Amaranthus hybridus | Dicotyledonous | Pêra sweet orange | Olimpia †—Olhos D’água | 20° 46′ S, 49° 0′ W | 2019 |
Bidens pilosa | Dicotyledonous | |||||
Chloris elata | Monocotyledonous | |||||
Digitaria insularis | Monocotyledonous | |||||
R-PT | Amaranthus hybridus | Dicotyledonous | Pêra sweet orange | Olimpia †—Passatempo | 20° 43′ S, 49° 0′ W | 2019 |
Bidens Pilosa | Dicotyledonous | |||||
Conyza bonariensis | Dicotyledonous | |||||
Chloris elata | Monocotyledonous |
Species | Population | GR50 (CI95%) | RF | LD50 (CI95%) | RF |
---|---|---|---|---|---|
A. deflexus | S-UFSCar | 21.2 (3.5) | - | 64.9 (4.1) | - |
R-IAC | 25.6 (2.8) | 1.2 | 82.3 (6.7) | 1.3 | |
R-lar | 26.7 (1.6) | 1.3 | 113.1 (8.6) | 1.7 | |
A. hybridus | S-UFSCar | 40.9 (5.6) | - | 56.9 (0.9) | - |
R-IAC | 39.6 (2.8) | 1.0 | 46.7 (3.5) | 0.8 | |
R-lar | 41.9 (6.0) | 1.0 | 60.7 (2.1) | 0.5 | |
R-OdA | 45.6 (1.7) | 1.1 | 72.6 (8.7) | 1.3 | |
R-PT | 47.2 (4.6) | 1.2 | 68.2 (6.4) | 1.5 | |
B. pilosa | S-lim | 46.1 (3.7) | - | 109.6 (12.6) | - |
R-IAC | 22.1 (3.3) | 0.5 | 79.3 (8.3) | 0.7 | |
R-lar | 32.5 (1.8) | 0.7 | 87.2 (6.7) | 0.8 | |
R-NS | 74.4 (6.7) | 1.6 | 434.2 (32.1) | 4.0 | |
R-OdA | 102.5 (5.9) | 2.2 | 459.4 (27.5) | 4.2 | |
R-PT | 56.3 (4.9) | 1.2 | 355.8 (17.8) | 3.2 | |
C. bonariensis | S-lim | 39.4 (2.2) | - | 157.6 (8.6) | - |
R-Ara | 793.2 (63.6) | 20.1 | 1643.1 (142.1) | 10.4 | |
R-IAC | 1085.9 (136.5) | 27.6 | - | <9.3 | |
R-lar | 201.8 (34.2) | 5.1 | 732.5 (68.2) | 4.6 | |
R-PT | 912.5 (53.4) | 23.2 | - | <9.3 | |
C. elata | S-lim | 67.2 (14.6) | - | 105.0 (13.4) | - |
R-Ara | 193.4 (14.3) | 2.9 | 380.1 (24.3) | 3.6 | |
R-IAC | 174.9 (29.4) | 2.6 | 703.7 (15.6) | 6.7 | |
R-lar | 243.7 (39.4) | 3.6 | 534.4 (55.3) | 5.1 | |
R-NS | 125.3 (16.5) | 1.9 | 702.4 (53.8) | 6.7 | |
R-OdA | 157.2 (11.8) | 2.3 | 429.4 (28.1) | 4.1 | |
R-PT | 148.6 (13.6) | 2.2 | 370.7 (36.4) | 3.5 | |
D. insularis | S-lim | 114.9 (8.3) | - | 130.7 (0.8) | - |
R-Ara | 265.9 (13.7) | 2.3 | 1052.3 (54.1) | 8.1 | |
R-IAC | 658.9 (65.4) | 5.7 | 917.0 (35.6) | 7.0 | |
R-lar | 406.3 (80.9) | 3.5 | 995.6 (66.7) | 7.6 | |
R-OdA | 732.0 (62.4) | 6.4 | 1081.3 (71.8) | 8.3 | |
S. americanum | S-UFSCar | 22.4 (1.8) | - | 56.2 (1.9) | - |
R-Ara | 97.4 (40.8) | 4.3 | 387.3 (41.6) | 6.8 | |
R-IAC | 261.5 (25.4) | 11.6 | 757.3 (56.5) | 13.5 | |
R-lar | 728.2 (25.8) | 32.5 | 1430.7 (135.8) | 25.4 | |
T. procumbens | S-UFSCar | 25.2 (2.4) | - | 64.9 (3.8) | - |
R-lar | 34.3 (2.3) | 1.4 | 80.5 (6.7) | 1.2 | |
R-NS | 28.7 (3.4) | 1.1 | 72.0 (4.6) | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaral, G.d.S.; Alcántara-de la Cruz, R.; Martinelli, R.; Rufino Junior, L.R.; Carvalho, L.B.d.; Azevedo, F.A.d.; Silva, M.F.d.G.F.d. Occurrence of Multiple Glyphosate-Resistant Weeds in Brazilian Citrus Orchards. AgriEngineering 2023, 5, 1068-1078. https://doi.org/10.3390/agriengineering5020067
Amaral GdS, Alcántara-de la Cruz R, Martinelli R, Rufino Junior LR, Carvalho LBd, Azevedo FAd, Silva MFdGFd. Occurrence of Multiple Glyphosate-Resistant Weeds in Brazilian Citrus Orchards. AgriEngineering. 2023; 5(2):1068-1078. https://doi.org/10.3390/agriengineering5020067
Chicago/Turabian StyleAmaral, Gabriel da Silva, Ricardo Alcántara-de la Cruz, Rodrigo Martinelli, Luiz Renato Rufino Junior, Leonardo Bianco de Carvalho, Fernando Alves de Azevedo, and Maria Fátima das Graças Fernandes da Silva. 2023. "Occurrence of Multiple Glyphosate-Resistant Weeds in Brazilian Citrus Orchards" AgriEngineering 5, no. 2: 1068-1078. https://doi.org/10.3390/agriengineering5020067
APA StyleAmaral, G. d. S., Alcántara-de la Cruz, R., Martinelli, R., Rufino Junior, L. R., Carvalho, L. B. d., Azevedo, F. A. d., & Silva, M. F. d. G. F. d. (2023). Occurrence of Multiple Glyphosate-Resistant Weeds in Brazilian Citrus Orchards. AgriEngineering, 5(2), 1068-1078. https://doi.org/10.3390/agriengineering5020067