Performance of Vegetation Indices to Estimate Green Biomass Accumulation in Common Bean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Green Biomass, Plant Height and Plant Width
2.2. Satellite Images
2.3. Vegetation Indices
2.4. Multiple Linear Regression Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Band | Name | Wave-Length (nm) |
---|---|---|
1 | Coastal blue | 431–452 |
2 | Blue | 465–515 |
3 | Green I | 513–549 |
4 | Green | 547–583 |
5 | Yellow | 600–620 |
6 | Red | 650–680 |
7 | Red-edge | 697–713 |
8 | NIR | 845–885 |
Parameters | Standard Deviation | Coefficient of Variation | Mean | Minimum | Maximum |
---|---|---|---|---|---|
Height | 16.45 | 46.34 | 35.49 | 8.00 | 62.00 |
Width | 12.92 | 30.62 | 42.20 | 16.20 | 64.40 |
NDVI | 0.147 | 20.64 | 0.71 | 0.40 | 0.90 |
NDRE | 0.107 | 21.86 | 0.49 | 0.29 | 0.65 |
Green biomass | 248.24 | 78.78 | 315.10 | 20.00 | 147.50 |
References
- De Oliveira, L.F.C.; Oliveira, M.D.C.; Wendland, A.; Heinemann, A.B.; Guimarães, C.M.; Ferreira, E.D.B.; Quintela, E.D.; Barbosa, F.R.; Carvalho, M.D.; Lobo, M., Jr.; et al. Conhecendo a Fenologia do Feijoeiro e Eus Aspectos Fitotécnicos. Brasília: Embrapa. 2018. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1085830/conhecendo-a-fenologia-do-feijoeiro-e-seus-aspectos-fitotecnicos (accessed on 1 November 2022).
- CONAB—Companhia Nacional de Abastecimento. Grãos, Safra 2021/2022. Primeiro Levantamento, Agosto de 2022. Available online: https://www.conab.gov.br/info-agro/safras/graos (accessed on 1 November 2022).
- De Santana, A.V.; Heinemann, A.B.; Stone, L.F.; Nascente, A.S. Índice de refletância na estimativa da área foliar e biomassa das folhas em feijão-comum. Colloq. Agrar. Pres. Prudente 2016, 12, 7–19. [Google Scholar] [CrossRef]
- Sampaio, M.I.R.; Kunz, A.; Hillebrand, F.L.; Zamberlan, J.F.; Idalino, F.D. Análise dos índices de vegetação NDVI e NDRE em imagens obtidas por meio de sensor embarcado em um RPAS para as culturas da soja (Glycine max) e milho (Zea mays) irrigados. Rev. Bras. De Geomática 2021, 9, 350–362. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A Review on UAV-Based Applications for Precision Agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef]
- Trentin, C.B.; Trentin, A.B.; Saldanha, D.L. Relação entre a biomassa da vegetação campestre nativa e dados de sensoriamento remoto orbital. Geographia 2019, 21, 98. [Google Scholar] [CrossRef]
- Brandão, Z.N.; Bezerra, M.V.C.; da Silva, B.B. Uso do NDVI para determinação da biomassa na chapada do Araripe. In Proceedings of the Xiii Simpósio Brasileiro de Sensoriamento Remoto, Florianopolis, Brazil, 21–26 April 2007; INPE: Florianópolis, Brazil, 2007; pp. 21–26. Available online: http://marte.dpi.inpe.br/col/dpi.inpe.br/sbsr@80/2006/11.15.13.39.22/doc/75-81.pdf (accessed on 22 November 2022).
- Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting grain yield in Rice using multi-temporal vegetation índices from UAV based multispectral and digital imagery. J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Debastiani, A.B.; Moura, M.M.; Rex, F.E.; Sanquetta, C.R.; Corte, A.P.D.; Pinto, N. Regressões robusta e linear para estimativa de biomassa via imagem sentinel em uma floresta tropical. Biofix Sci. J. 2019, 4, 81–87. [Google Scholar] [CrossRef]
- Jorge, J.; Vallbé, M.; Soler, J.A. Detection of irrigation in homogeneities in an olive grove using the NDRE vegetation index obtained from UAV images. Eur. J. Remote Sens. 2019, 52, 169–177. [Google Scholar] [CrossRef]
- Trentin, C.; Bredemeier, C.; Vian, A.L.; Drum, M.A.; Santos, F.L. Biomass production and wheat grain yield and its relationship with NDVI as a function of nitrogen availability. Rev. Bras. De Ciências Agrárias—Braz. J. Agric. Sci. 2021, 16, 1–7. [Google Scholar] [CrossRef]
- De Macedo, F.L.; de Oliveira Sousa, A.M.; Gonçalves, A.C.; Silva, H.R.; Rodrigues, R.A.F. Função alométrica de biomassa com imagens de satélite de alta resolução espacial. Ciência Florest. 2018, 28, 960–969. [Google Scholar] [CrossRef]
- Bayaraa, B.; Hirano, A.; Purevtseren, M.; Vandansambuu, B.; Damdin, B.; Natsagdorj, E. Applicability of different vegetation indices for pasture biomass estimation in the north-central region of Mongolia. Geocarto Int. 2022, 37, 7415–7430. [Google Scholar] [CrossRef]
- Carneiro, F.M.; Oliveira, M.F.; Almeida, S.L.H.; Filho, A.L.B.; Furlani, C.E.A.; Rolim, G.S.; Ferraudo, A.S.; Silva, R.P. Biophysical characteristics of soybean estimated by remote sensing associated with artificial intelligence. Biosci. J. 2022, 38, 1981–3163. [Google Scholar] [CrossRef]
- Venancio, L.P.; Mantovani, E.C.; Amaral, C.H.; Neale, C.M.U.; Gonçalves, I.Z.; Filgueiras, R.; Eugenio, F.C. Potential of using spectral vegetation indices for corn green biomass estimation based on their relationship with the photosynthetic vegetation sub-pixel fraction. Agric. Water Manag. 2020, 236, 106155. [Google Scholar] [CrossRef]
- Köppen, W.; Geiger, R. Klimate der Erde; Verlag Justus Perthes: Gotha, Germany, 1928. [Google Scholar]
- Dantas, A.A.A.; Carvalho, L.G.; Ferreira, E. Classificação e tendências climáticas em Lavras, MG. Ciência Agrotec. 2007, 31, 1862–1866. [Google Scholar] [CrossRef]
- Kotchenova, Y.S.; Vermote, E.F. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces. Appl. Opt. 2007, 46, 4455–4464. [Google Scholar] [CrossRef]
- Rouse, J.W. Monitoring the Vernal Advancement and Retrogradation of Natural Vegetation (Green Wave Effect) of Natural Vegetation; Texas A&M University: College Station, TX, USA; National Aeronautics and Space Administration: Washington, DC, USA, 1974; p. 371.
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Hott, M.C.; Andrade, R.G.; de Magalhaes, W.C.P., Jr.; Benites, F.R.G. Uso de veículo aéreo não tripulado (VANT) para estimativa de vigor e de correlações agronômicas em genótipos de capim cynodon. In Engenharia Sanitária e Ambiental; Atena Editora: Ponta Grossa, Brazil, 2018; Volume Chapter 22, pp. 235–244. Available online: https://www.infoteca.cnptia.embrapa.br/handle/doc/1119158 (accessed on 10 December 2022).
- Zhang, Y.; Xia, C.; Zhang, X.; Cheng, X.; Feng, G.; Wang, Y.; Gao, Q. Estimating the maize biomass by crop height and narrowband vegetation índices derived from UAV-based hyperespectral images. Ecol. Indic. 2021, 129, 107985. [Google Scholar] [CrossRef]
- Sakurai, K.; Toda, Y.; Kajiya-Kanegae, H.; Ohmori, Y.; Yamasaki, Y.; Takahashi, H.; Takanashi, H.; Tsuda, M.; Tsujimoto, H.; Kaga, A.; et al. Time-series multi-spectral imaging in soybean for improving biomass and genomic prediction accuracy. bioRxiv 2021. [CrossRef]
- Workman, J., Jr.; Burns, D.A.; Ciurczak, E.W. (Eds.) Handbook of Near-Infrared Analysis; Marcel Dekker, Inc.: New York, NY, USA, 1992; pp. 274–276. [Google Scholar]
- Pegoraro, R.F.; Oliveira, D.; Moreira, C.G.; Kongo, M.K.; Portugal, A.F. Partição de biomassa e absorção de nutrientes pelo feijoeiro comum. Rev. Caatinga 2014, 27, 41–52. [Google Scholar]
- Gomes, A.A.; Araújo, A.P.; Rossielo, R.O.P.; Pimentel, C. Acumulação de biomassa, características fisiológicas e rendimento de grãos em cultivares de feijoeiro irrigado e sob sequeiro. Pesqui. Agropecuária Bras. 2000, 35, 1927–1937. [Google Scholar] [CrossRef]
- Andrade, C.A.B.; Scapim, C.A.; Braccini, A.L.; Martorelli, D.T. Produtividade, crescimento e partição de matéria seca em duas cultivares de feijão. Acta Sci. Agron. 2009, 31, 683–688. [Google Scholar] [CrossRef]
- Ramos, A.; Bovi, M.L.A.; Folegatti, M.V.; Diotto, A.V. Estimativas da área foliar e da biomassa aérea da pupunheira por meio de relações alométricas. Hortic. Bras. 2008, 26, 138–143. [Google Scholar] [CrossRef]
- Trevisan, L.R.; Brichi, L.; Gomes, T.M.; Rossi, F. Estimating Black Oat Biomass Using Digital Surface Models and a Vegetation Index Derived from RGB-Based Aerial Images. Remote Sens. 2023, 15, 1363. [Google Scholar] [CrossRef]
- Shendryk, Y.; Sofonia, J.; Garrard, R.; Rist, Y.; Skocaj, D.; Thorburn, P. Fine-scale prediction of biomass and leaf nitrogen content in sugarcane using UAV LiDAR and multispectral imaging. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102177. [Google Scholar] [CrossRef]
- Devia, C.A.; Rojas, J.P.; Petro, E.; Martinez, C.; Mondragon, I.F.; Patino, D.; Rebolledo, M.C.; Colorado, J. High-Throughput Biomass Estimation in Rice Crops Using UAV Multispectral Imagery. J. Intell. Robot. Syst. 2019, 96, 573–589. [Google Scholar] [CrossRef]
- Shu, M.; Shen, M.; Dong, Q.; Yang, X.; Li, B.; Ma, Y. Estimating the maize above-ground biomass by constructing the tridimensional concept model based on UAV-based digital and multi-spectral images. Field Crops Res. 2022, 282, 108491. [Google Scholar] [CrossRef]
- Zheng, C.; Abd-Elrahman, A.; Whitaker, V.; Dalid, C. Prediction of Strawberry Dry Biomass from UAV Multispectral Imagery Using Multiple Machine Learning Methods. Remote Sens. 2022, 14, 4511. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, R.; Xiao, Y.; Cui, Y.; Chen, Z.; Zong, X.; Yang, T. Faba bean above-ground biomass and bean yield estimation based on consumer-grade unmanned aerial vehicle RGB images and ensemble learning. Precis. Agric. 2023. [CrossRef]
- Luz, L.R.; Giongo, V.; dos Santos, A.M.; de Carvalho Lopes, R.J.; de Lima, C., Jr. Biomass and vegetation index by remote sensing in different caatinga forest areas. Ciência Rural. 2022, 52, e20201104. [Google Scholar] [CrossRef]
- Dancey, C.; Reidy, J. Estatística sem matemática para psicologia: Usando SPSS para Windows. In Desvendando os Mistérios do Coeficiente de Correlação de Pearson (r); Filho, D.B.F., Júnior, J.A.S., Eds.; Revista Política Hoje: Recife, Brazil, 2009; Volume 18, Available online: https://periodicos.ufpe.br/revistas/politicahoje/article/viewFile/3852/3156Test (accessed on 15 December 2022).
- Monteiro, P.F.C.; Filho, R.A.; Xavier, A.C.; Monteiro, R.O.C. Índices de vegetação simulados de diferentes sensores na estimativa das variáveis biofísicas do feijoeiro. Pesqui. Agropecuária Bras. 2013, 48, 433–441. [Google Scholar] [CrossRef]
- Qiao, L.; Tang, W.; Gao, D.; Zhao, R.; An, L.; Li, M.; Sun, H.; Song, D. UAV-based chlorophyll content by evaluating vegetation index responses under different crop coverages. Comput. Electron. Agric. 2022, 196, 106775. [Google Scholar] [CrossRef]
- Atkinson Amorim, J.G.; Schreiber, L.V.; de Souza, M.R.Q.; Negreiros, M.; Susin, A.; Bredemeier, C.; Trentin, C.; Vian, A.L.; de Oliveira Andrades-Filho, C.; Doering, D.; et al. Biomass estimation of spring wheat with machine learning methods using UAV-based multispectral imaging. Int. J. Remote Sens. 2022, 43, 4758–4773. [Google Scholar] [CrossRef]
- Jamieson, P.D.; Porter, J.R.; Wilson, D.R. A test of the computer simulation model ARCWHEAT 1 on wheat crops grown in New Zealand. Field Crops Res. 1991, 27, 337–350. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Yu, D.; Lord, N.; Polk, J.; Dhakal, K.; Li, S.; Yin, Y.; Duncan, S.E.; Wang, H.; Zhang, B.; Huang, H. Physical and chemical properties of edamame during bean development and application of spectroscopy-based machine learning methods to predict optimal harvest time. Food Chem. 2022, 368, 130799. [Google Scholar] [CrossRef] [PubMed]
- Nagler, P.L.; Daughtry, C.S.T.; Goward, S.N. Planta litter and soil reflectance. Remote Sens. Environ. 2000, 71, 207–215. [Google Scholar] [CrossRef]
- Monteiro, P.F.C.; Filho, R.A.; Xavier, A.C.; Monteiro, R.O.C. Assessing biophysical variable parameters of bean crop with hyperspectral measurements. Sci. Agric. 2012, 69, 87–94. [Google Scholar] [CrossRef]
- Epiphano, J.C.N.; Gleriani, J.M.; Formaggio, A.R.; Rudorff, B.F.T. Índices de vegetação no sensoriamento remoto da cultura do feijão. Pesqui. Agropecuária Bras. 1996, 31, 445–454. [Google Scholar]
- Filho, R.A.; Cunha, C.A.H.; Rudorff, B.F.T.; Moreira, A.M. Comportamento Espectral da Cultura do Feijão (IAC—Carioca 80) Irrigado com Diferentes Lâminas de Água. Anais X SBSR, Foz do Iguaçu, INPE, p. 3–10. 2001. Available online: http://marte.sid.inpe.br/col/dpi.inpe.br/lise/2001/09.12.16.28/doc/0003.10.007.pdf (accessed on 20 December 2022).
- Venancio, L.P.; Filgueiras, R.; Cunha, F.F.; Silva, F.C.S.; Santos, R.A.; Mantovani, E.C. Mapeamento dos estádios fenológicos da cultura do milho utilizando o NDVI derivado dos sensores OLI e MODIS. Semin. Ciências Agrárias 2020, 41, 1517–1534. [Google Scholar] [CrossRef]
- Coelho, A.H.R.; Franco, A.H.B.M.; Franco, W.S.; Anjos, C.S. Caracterização dos Estádios Fenológicos da Soja no Município de Sorriso-MT Utilizando NDVI e Classificação de Imagens não Supervisionada. Anais […], Santos, INPE, p. 1116–1119. 2019. Available online: https://proceedings.science/sbsr-2019/papers/caracterizacao-dos-estadios-fenologivos-da-soja-no-municipio-de-sorriso-mt-utilizando-ndvi-e-classificacao-de-imagens-na?lang=pt-br (accessed on 10 January 2023).
- Pontes, P.P.B.; Rocha, J.V.; Lamparelli, R.A.C. Análise Temporal de Índices de Vegetação como Subsídio à Previsão de Safras de Cana-De-Açúcar. Anais […], Goiânia, INPE, p. 217–224. 2005. Available online: http://marte.sid.inpe.br/col/ltid.inpe.br/sbsr/2004/11.21.21.12/doc/217.pdf (accessed on 10 January 2023).
- Silva, G.F.C.; Nanni, M.R.; da Silva, C.A., Jr.; Crusiol, L.G.T.; Furlanetto, R.H.; Facco, C.U.; Campos, T.L.L.; Souza, J.S.; Sacioto, M. Comportamento Espectral dos Diferentes Estágios Fenológicos na Cultura do Feijão. Anais […], Santos, INPE, p. 6490–6597. 2017. Available online: http://marte2.sid.inpe.br/attachment.cgi/sid.inpe.br/marte2/2017/10.27.15.48.49/doc/60157.pdf (accessed on 17 January 2023).
- Filla, V.A.; Coelho, A.P.; Bettiol, J.V.T.; Leal, F.T.; Lemos, L.B.; Rosalen, D.L. Model performance in estimating the yield of common bean cultivars. Rev. Ciência Agronômica 2023, 54. [Google Scholar] [CrossRef]
- Tenreiro, T.R.; Vila-García, M.; Gómez, J.A.; Berni-Jirménez, J. Using NDVI for the assesmen of canopy cover in agricultural crops within modelling research. Comput. Electron. Agric. 2021, 182, 106038. [Google Scholar] [CrossRef]
- Prudente, V.H.R.; Mercante, E.; Johann, J.A.; Souza, C.H.W.D.; Cattani, C.E.V.; Mendes, I.S.; Caon, I.L. Use of terrestrial remote sensing to estimate soybeans and beans biophysical parameters. Geocarto Int. 2021, 36, 773–790. [Google Scholar] [CrossRef]
- Sankaran, S.; Quirós, J.J.; Miklas, P.N. Unmanned aerial system and satellite-based high resolution imagery for high-throughput phenotyping in dry bean. Comput. Electron. Agric. 2019, 165, 104965. [Google Scholar] [CrossRef]
Variable | By Variable | Correlation () | Significance |
---|---|---|---|
Green biomass | Height (cm) | 0.7230 | <0.001 |
Green biomass | Width (cm) | 0.7184 | <0.001 |
Green biomass | NDVI | 0.7035 | <0.001 |
Green biomass | NDRE | 0.6155 | <0.001 |
Models | Coefficient of Correlation (r) | Coefficient of Determination (R2) | Standard Error | RMSE |
---|---|---|---|---|
M1 | 0.75 | 0.56 | 165.37 | 1.38 |
M2 | 0.74 | 0.54 | 168.73 | 1.33 |
M3 | 0.73 | 0.53 | 170.38 | 5.82 |
M4 | 0.74 | 0.54 | 168.27 | 2.63 |
M1 * | 0.96 | 0.93 | 25.16 | 24.58 |
M2 * | 0.96 | 0.92 | 25.43 | 24.85 |
M3 * | 0.90 | 0.81 | 40.61 | 39.95 |
M4 * | 0.96 | 0.92 | 25.91 | 25.48 |
Combinations | Coefficients | Standard Error | p-Value | |
---|---|---|---|---|
M4 | Intersection | −187.7240 | 48.1623 | 0.0001 |
Height (cm) | 6.0684 | 1.7652 | 0.0007 | |
Width (cm) | 6.8111 | 2.2474 | 0.0028 | |
M3 | Intersection | −533.6658 | 62.7488 | 0.0000 |
NDVI | 2023.9552 | 273.3690 | 0.0000 | |
NDRE | −11,198.3932 | 372.1840 | 0.0015 | |
M2 | Intersection | −188.0222 | 68.8877 | 0.0070 |
Height (cm) | 6.0654 | 1.8376 | 0.0012 | |
Width (cm) | 6.8059 | 2.4114 | 0.0053 | |
NDRE | 1.2650 | 208.4227 | 0.9952 | |
M1 | Intersection | −339.2907 | 72.9043 | 0.0000 |
Height (cm) | 4.8573 | 1.7904 | 0.0073 | |
Width (cm) | 3.8309 | 2.4631 | 0.1216 | |
NDVI | 450.1601 | 164.6879 | 0.0069 | |
M4 * | Intersection | −91.9320 | 11.6563 | 0.0000 |
Height (cm) | 4.7469 | 0.5348 | 0.0000 | |
Width (cm) | 3.3760 | 0.6529 | 0.0000 | |
M3 * | Intersection | −234.003 | 22.6591 | 0.0000 |
NDVI | −709.5394 | 123.8172 | 0.0000 | |
NDRE | 1830.1530 | 164.3382 | 0.0000 | |
M2 * | Intersection | −121.931 | 18.3248 | 0.0000 |
Height (cm) | 4.3558 | 0.5571 | 0.00005 | |
Width (cm) | 2.8478 | 0.6887 | 0.0000 | |
NDRE | 130.1802 | 62.1121 | 0.0000 | |
M1 * | Intersection | −119.713 | 15.7407 | 0.0000 |
Height (cm) | 4.7993 | 0.5197 | 0.0000 | |
Width (cm) | 2.5261 | 0.7169 | 0.0000 | |
NDVI | 89.8283 | 35.3702 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barboza, T.O.C.; Ardigueri, M.; Souza, G.F.C.; Ferraz, M.A.J.; Gaudencio, J.R.F.; Santos, A.F.d. Performance of Vegetation Indices to Estimate Green Biomass Accumulation in Common Bean. AgriEngineering 2023, 5, 840-854. https://doi.org/10.3390/agriengineering5020052
Barboza TOC, Ardigueri M, Souza GFC, Ferraz MAJ, Gaudencio JRF, Santos AFd. Performance of Vegetation Indices to Estimate Green Biomass Accumulation in Common Bean. AgriEngineering. 2023; 5(2):840-854. https://doi.org/10.3390/agriengineering5020052
Chicago/Turabian StyleBarboza, Thiago Orlando Costa, Matheus Ardigueri, Guillerme Fernandes Castro Souza, Marcelo Araújo Junqueira Ferraz, Josias Reis Flausino Gaudencio, and Adão Felipe dos Santos. 2023. "Performance of Vegetation Indices to Estimate Green Biomass Accumulation in Common Bean" AgriEngineering 5, no. 2: 840-854. https://doi.org/10.3390/agriengineering5020052
APA StyleBarboza, T. O. C., Ardigueri, M., Souza, G. F. C., Ferraz, M. A. J., Gaudencio, J. R. F., & Santos, A. F. d. (2023). Performance of Vegetation Indices to Estimate Green Biomass Accumulation in Common Bean. AgriEngineering, 5(2), 840-854. https://doi.org/10.3390/agriengineering5020052