Multivariate Analysis Applied to the Ground Application of Pesticides in the Corn Crop
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Discrepant Data Analysis and Multivariate Analysis Assumptions
3.2. Univariate Analysis of Variance and Effect Size (η2)
3.3. Cluster Analysis
3.4. Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Minguela, J.V.; Cunha, J.P.A.R. Manual de Aplicação de Produtos Fitossanitários, 1st ed.; Aprenda Fácil: Viçosa, MG, Brasil, 2017. [Google Scholar]
- Souza Júnior, J.M.; Ruas, R.A.A.; Duarte, L.O.; Faria, V.R.; Carvalho Filho, A.; Santos Júnior, C.R. Influência da densidade foliar na distribuição de calda no dossel do cafeeiro (Coffea arabica L.). Coffee Sci. 2017, 12, 216–222. [Google Scholar] [CrossRef]
- Alves, T.C.; Cunha, J.A.R.; Alves, G.S.; Silva, S.M.; Lemes, E.M. Canopy volume and application rate interaction on spray deposition for different phenological stages of coffee crop. Coffee Sci. 2020, 15, e151777. [Google Scholar] [CrossRef]
- Baio, F.H.R.; Silva, E.E.; Vrech, M.A.; Souza, F.H.Q.; Zanin, A.R.; Teodoro, P.E. Vegetation indices to estimate spray application rates of crop protection products in corn. Agron. J. 2018, 110, 1254–1259. [Google Scholar] [CrossRef]
- Souza, F.H.Q.; Martins, P.H.A.; Dresch Martins, T.H.; Teodoro, P.E.; Baio, F.H.R. The use of vegetation index via remote sensing allows estimation of soybean application rate. Remote Sens. Appl. Soc. Environ. 2020, 17, 100279. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Song, X.P.; Liang, Y.J.; Qin, Z.Q.; Zhang, B.Q.; Wei, J.J.; Li, Y.R.; Wu, J.M. Effects of spray parameters of drone on the droplet deposition in sugarcane canopy. Sugar Tech. 2020, 22, 583–588. [Google Scholar] [CrossRef]
- Castro, M.J.L.; Ojeda, C.; Cirelli, A.F. Advances in surfactants for agrochemicals. Environ. Chem. Lett. 2014, 12, 85–95. [Google Scholar] [CrossRef]
- Ferreira, M.C.; Alandia, R.A.; Carvalho, G.F.G.; Baggio, M.V. Determinação de área foliar e retenção de líquido por folhas de café em pulverização a alto volume. Nucleus 2010, 7, 277–283. [Google Scholar] [CrossRef]
- Petrovic, D.; Banaj, Đ.; Banaj, A.; Željko, B.; Vidaković, I.; Tadić, V. The Impact of conventional and sensor spraying on drift and deposit in cherry orchard. Teh. Vjesn. 2019, 26, 1211–1217. [Google Scholar] [CrossRef]
- Gitirana Neto, J.; Cunha, J.P.A.R.; Marques, R.S.; Lasmar, O.; Borges, E.B. Deposição de calda promovida por pulverizadores empregados na cafeicultura de montanha. Coffee Sci. 2016, 11, 267–275. [Google Scholar]
- Tang, Y.; Hou, C.J.; Luo, S.M.; Lin, J.T.; Yang, Z.; Huang, W.F. Effects of operation height and tree shape on droplet deposition in citrus trees using an unmanned aerial vehicle. Comput. Electron. Agric. 2018, 148, 1–7. [Google Scholar] [CrossRef]
- Martins, P.H.A.; Baio, F.H.R.; Martins, T.H.D.; Fontoura, J.V.P.F.; Teodoro, L.P.R.; Silva Junior, C.A.; Teodoro, P.E. Estimating spray application rates in cotton using multispectral vegetation indices obtained using an unmanned aerial vehicle. Crop Prot. 2021, 140, 105407. [Google Scholar] [CrossRef]
- Penney, A.J.; Kandel, Y.R.; Viggers, J.N.; Robertson, A.E.; Mueller, D.S. Comparison of aerial and ground sprayer fungicide application technologies on canopy coverage, disease severity, lodging, and yield of corn. Crop Prot. 2021, 139, 105393. [Google Scholar] [CrossRef]
- Cunha, J.P.A.R.; França, J.A.L.; Alvarenga, C.B.; Alves, G.S.; Antuniassi, U.R. Performance of air induction spray nozzle models under different operating conditions. Eng. Agrí. 2020, 40, 711–718. [Google Scholar] [CrossRef]
- Cunha, J.P.A.R.; Peres, T.C.M. Influência de pontas de pulverização e adjuvante no controle químico da ferrugem asiática da soja. Acta Sci. Agron. 2010, 32, 597–602. [Google Scholar] [CrossRef]
- Palma, R.P.; Cunha, J.P.A.R.D.; Guimarães, E.C.; De Santana, D.G.; de Assunção, H.H.T. Multivariate analysis applied to spray deposition in ground application of phytosanitary products in coffee plants. Eng. Agríc. 2021, 41, 458–467. [Google Scholar] [CrossRef]
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Heß, M.; Lancashire, P.D.; Schnock, U.; Stauß, R.; Van Den Boom, T.; et al. The BBCH system to coding the phenological growth stages of plants—History and publications. J. Cultiv. Plants 2009, 61, 41–52. [Google Scholar]
- American Society of Agricultural and Biological Engineers (ASABE). Spray Nozzle Classification by Droplet Spectra–ASABE S572.3; ASABE: St. Joseph, MI, USA, 2020. [Google Scholar]
- Nascimento, V.P.; Vitória, E.L. Spraying quality using unmanned aerial vehicle in citrus. R. Eng. Agric. 2022, 30, 214–221. [Google Scholar] [CrossRef]
- Paredes, J.A.; Cazón, L.I.; Oddino, C.; Monguillot, J.H.; Rago, A.M.; Molina, J.P.E. Efficacy of fungicides against peanut smut in Argentina. Crop Prot. 2021, 140, 105403. [Google Scholar] [CrossRef]
- Araújo, A.O.; Mendonça, L.A.R.; Lima, M.G.S.; Feitosa, J.V.; Silva, F.J.A.; Ness, R.L.L.; Frischkorn, H.; Simplício, A.A.F.; Kerntopf, M.R. Modificações nas propriedades dos solos de uma área de manejo florestal na Chapada do Araripe. R. Bras. Ciên. Solo 2013, 37, 754–762. [Google Scholar] [CrossRef]
- Oliveira Júnior, A.I.; Mendonça, L.A.R.; Fontenele, S.B.; Araújo, A.O.; de Sousa Lima Brito, M.G. Statistical multivariate analysis applied to environmental characterization of soil in semiarid region. R. Caatinga 2019, 32, 200–210. [Google Scholar] [CrossRef]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. General 2012, 141, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Espirito Santo, H.; Daniel, F.B. Calcular e apresentar tamanhos do efeito em trabalhos científicos (1): As limitações do p < 0,05 na análise de diferenças de médias de dois grupos. R. Portug. Investig. Compor. Social 2015, 1, 3–16. [Google Scholar] [CrossRef]
- Sheppard, C.R.C. How large should my sample be? Some quick guides to sample size and the Power of Tests. Ma. Pollut. Bull. 1999, 38, 439–447. [Google Scholar] [CrossRef]
- Levine, T.R.; Hullett, C.R. Eta squared, partial eta squared, and misreporting of effect size in communication research. Hum. Commun. Res. 2002, 28, 612–625. [Google Scholar] [CrossRef]
- Richardson, J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, Y.; Sun, J.; Shao, H. Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Sci. Total Environ. 2016, 568, 910–915. [Google Scholar] [CrossRef]
- Ortiz, M. Optimum sample size to detect perturbation effects: The importance of statistical power analysis—A critique. Mar. Ecol. 2002, 23, 1–9. [Google Scholar] [CrossRef]
- Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- R Development Core Team. A Language and Environment for Statistical Computing: Reference Index. Vienna: R Foundation for Statistical Computing, 2010. Available online: https://www.r-project.org (accessed on 30 October 2020).
- Espirito Santo, H.M.A.; Daniel, F. Calcular e apresentar tamanhos do efeito em trabalhos científicos (3): Guia para reportar os tamanhos do efeito para análises de regressão e ANOVAs. R. Portug. Investig. Compor. Social 2018, 4, 43–60. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum Associates: Hillsdale, NJ, USA, 1988; p. 567. [Google Scholar]
- Trigo Sánchez, M.E.; Martínez Cervantes, R.J. Generalized eta squared for multiple comparisons on between-groups designs. Psicothema 2016, 28, 340–345. [Google Scholar] [CrossRef]
- Ferguson, J.C.; Chechetto, R.G.; Hewitt, A.J.; Chauhan, B.S.; Adkins, S.W.; Kruger, G.R.; O’donnell, C.C. Assessing the deposition and canopy penetration of nozzles with different spray qualities in an oat (Avena sativa L.) canopy. Crop Prot. 2016, 81, 14–19. [Google Scholar] [CrossRef]
- Machado, T.; Reynaldo, É.R. Comparação do uso de aplicação aérea e terrestre na qualidade de deposição de produto na cultura da soja. Encic. Biosfera 2019, 16, 504–514. [Google Scholar] [CrossRef]
- Hoffmann, L.L.; Roehrig, R.; Boller, W.; Forcelini, C.A. Deposition and coverage of soybean leaf surfaces by sprays applied using different assisted boom sprayer systems. Eng. Agríc. 2019, 39, 198–207. [Google Scholar] [CrossRef]
- Tomantschger, K.; Petrović, D.V.; Radojević, R.L.; Tadić, V. Mathematical method for droplet size distribution of agricultural nozzles. Teh. Vjesn. 2021, 28, 1749–1754. [Google Scholar] [CrossRef]
- Araújo, R.S.; Bernardes, R.C.; Martins, G.F. A mixture containing the herbicides Mesotrione and Atrazine imposes toxicological risks on workers of Partamona helleri. Sci. Total Environ. 2020, 763, 142980. [Google Scholar] [CrossRef]
- Castilla, N.P.; Stuart, A.M.; Makara, O.; Sathya, K.; Somany, S.; Kumar, V.; Ratna Hadi, B.A. Characterization of cropping practices, pest constraints, and yield variation in irrigated lowland rice of Cambodia. Crop Prot 2020, 135, 104906. [Google Scholar] [CrossRef]
- Tadic, V.; Marković, M.; Plaščak, I.; Stošić, M.; Lukinac-Čačić, J.; Vujcic, B. Impact of technical spraying factors on leaf area coverage in an apple orchard. Teh. Vjesn. 2014, 21, 1117–1124. [Google Scholar]
Treatments | Droplet Class | Application Rate (L ha−1) | Spray Composition |
---|---|---|---|
1 (a, b, c, d) * | Fine | 80 | Without adjuvant |
2 (a, b, c, d) | Fine | 80 | Nimbus® |
3 (a, b, c, d) | Fine | 80 | Assist® |
4 (a, b, c, d) | Fine | 150 | Without adjuvant |
5 (a, b, c, d) | Fine | 150 | Nimbus® |
6 (a, b, c, d) | Fine | 150 | Assist® |
7 (a, b, c, d) | Coarse | 80 | Without adjuvant |
8 (a, b, c, d) | Coarse | 80 | Nimbus® |
9 (a, b, c, d) | Coarse | 80 | Assist® |
10 (a, b, c, d) | Coarse | 150 | Without adjuvant |
11 (a, b, c, d) | Coarse | 150 | Nimbus® |
12 (a, b, c, d) | Coarse | 150 | Assist® |
Third | SV | DF | Deposition | VMD | RA | C | D |
---|---|---|---|---|---|---|---|
(µg cm−2) | (µm) | (%) | (Droplets cm−2) | ||||
Eta Square (η2) | |||||||
Upper | Droplet Class (DC) | 1 | - | 0.65 ** | 0.04 ns | 0.17 ** | 0.36 ** |
Application Rate (R) | 1 | 0.00 ns | 0.14 * | 0.33 ** | 0.15 ** | ||
Adjuvant Use (A) | 2 | 0.00 ns | 0.07 ns | 0.01 ns | 0.03 ns | ||
DC:R | 1 | 0.00 ns | 0.00 ns | 0.00 ns | 0.02 ns | ||
DC:A | 2 | 0.00 ns | 0.09 ns | 0.05 ns | 0.05 ns | ||
R:A | 2 | 0.00 ns | 0.03 ns | 0.01 ns | 0.01 ns | ||
DC:R:A | 2 | 0.03 ns | 0.04 ns | 0.00 ns | 0.02 ns | ||
Error | 36 | ||||||
Middle | Droplet Class (DC) | 1 | - | 0.55 ** | - | 0.09 * | 0.31 ** |
Application Rate (R) | 1 | 0.01 ns | 0.40 ** | 0.17 ** | |||
Adjuvant Use (A) | 2 | 0.01 ns | 0.01 ns | 0.03 ns | |||
DC:R | 1 | 0.00 ns | 0.00 ns | 0.05 * | |||
DC:A | 2 | 0.00 ns | 0.00 ns | 0.02 ns | |||
R:A | 2 | 0.00 ns | 0.05 ns | 0.05 ns | |||
DC:R:A | 2 | 0.02 ns | 0.02 ns | 0.05 ns | |||
Error | 36 | ||||||
Lower | Droplet Class (DC) | 1 | 0.10 * | 0.59 ** | - | 0.09 * | 0.27 ** |
Application Rate (R) | 1 | 0.06 ns | 0.01 ns | 0.20 ** | 0.18 ** | ||
Adjuvant Use (A) | 2 | 0.01 ns | 0.03 ns | 0.01 ns | 0.04 ns | ||
DC:R | 1 | 0.01 ns | 0.00 ns | 0.00 ns | 0.05 * | ||
DC:A | 2 | 0.04 ns | 0.01 ns | 0.00 ns | 0.03 ns | ||
R:A | 2 | 0.03 ns | 0.02 ns | 0.05 ns | 0.04 ns | ||
DC:R:A | 2 | 0.02 ns | 0.03 ns | 0.05 ns | 0.06 ns | ||
Error | 36 | ||||||
Runoff to the soil | Droplet Class (DC) | 1 | 0.05 ns | ||||
Application Rate (R) | 1 | 0.10 * | |||||
Adjuvant Use (A) | 2 | 0.03 ns | |||||
DC:R | 1 | 0.02 ns | |||||
DC:A | 2 | 0.06 ns | |||||
R:A | 2 | 0.01 ns | |||||
DC:R:A | 2 | 0.05 ns | |||||
Error | 36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palma, R.P.; Cunha, J.P.A.R.d. Multivariate Analysis Applied to the Ground Application of Pesticides in the Corn Crop. AgriEngineering 2023, 5, 829-839. https://doi.org/10.3390/agriengineering5020051
Palma RP, Cunha JPARd. Multivariate Analysis Applied to the Ground Application of Pesticides in the Corn Crop. AgriEngineering. 2023; 5(2):829-839. https://doi.org/10.3390/agriengineering5020051
Chicago/Turabian StylePalma, Roxanna Patricia, and João Paulo Arantes Rodrigues da Cunha. 2023. "Multivariate Analysis Applied to the Ground Application of Pesticides in the Corn Crop" AgriEngineering 5, no. 2: 829-839. https://doi.org/10.3390/agriengineering5020051
APA StylePalma, R. P., & Cunha, J. P. A. R. d. (2023). Multivariate Analysis Applied to the Ground Application of Pesticides in the Corn Crop. AgriEngineering, 5(2), 829-839. https://doi.org/10.3390/agriengineering5020051