Central Control for Optimized Herbaceous Feedstock Delivery to a Biorefinery from Satellite Storage Locations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Harvest Schedule and Production Area
2.2. Description of Harvest Operations
2.3. Description of Load-Out Operations
2.4. Description of Load-Out Simulations
2.4.1. Eight-Load-Out Simulation
2.4.2. Nine-Load-Out Simulation
2.4.3. Ten-Load-Out Simulation
2.4.4. Summary of Load-Out Simulation Parameters
2.5. Description of Truck Hauling
- The truck average velocity over rural roads (delivery and return) is 70 km/h;
- The truck load time (Lt) averages 15 min. This is the time to unhook the two empty rack trailers and hook the two loaded rack trailers at the SSL;
- The truck unload time (Ut) averages 20 min. This is the time to weigh in a load, sample for quality, unload the racks, load two empty racks, and weigh out.
2.6. Description of Central Control Plan
2.7. Description of Cost Analysis
2.7.1. Load-Out Operation Cost
2.7.2. Service Truck Cost
2.7.3. Equipment Hauler Cost
2.7.4. Truck Cost
3. Results and Discussion
3.1. Load-Out Simulation Results
3.1.1. Eight-Load-Out Simulation
3.1.2. Nine-Load-Out Simulation
3.1.3. Ten-Load-Out Simulation
3.2. Required Truck Operating Hours
3.3. Cost Analysis Results
3.3.1. Cost to Load Trailers at an SSL
3.3.2. Cost of Truck Operations
3.3.3. Cost for Load-Out and Hauling
3.4. Proposed Business Plan
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Downing, M.; Eaton, L.M.; Graham, R.L.; Langholtz, M.H.; Perlack, R.D.; Turhollow, J.; Stokes, B.; Brandt, C.C. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry; Oak Ridge National Lab (ORNL): Oak Ridge, TN, USA, 2011. [Google Scholar]
- Gonzales, D.S.; Searcy, S.W. GIS-Based Allocation of Herbaceous Biomass in Biorefineries and Depots. Biomass Bioenergy 2017, 97, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.; Brandt, C.; McCullough-Amal, D.; Langholtz, M.; Webb, E. Assessment of the Feedstock Supply for Siting Single- and Multiple-Feedstock Biorefineries in the USA and Identification of Prevalent Feedstocks. Biofuels Bioprod. Biorefining 2020, 14, 578–593. [Google Scholar] [CrossRef]
- Resop, J.P.; Cundiff, J.S. Assessment of Herbaceous Feedstock Supply for Locating Biorefineries in the Piedmont, USA. Biofuels Bioprod. Biorefining 2022, 16, 43–53. [Google Scholar] [CrossRef]
- Mays, D.A.; Buchanan, W.; Bradford, B.N.; Giordano, P.M. Fuel Production Potential of Several Agricultural Crops. In Advances in New Crops; Janick, J., Simon, J.E., Eds.; Timber Press: Portland, OR, USA, 1990; pp. 260–263. [Google Scholar]
- Speight, J.G. 10-Non–Fossil Fuel Feedstocks. In The Refinery of the Future, 2nd ed.; Speight, J.G., Ed.; Gulf Professional Publishing: Houston, TX, USA, 2020; pp. 343–389. ISBN 978-0-12-816994-0. [Google Scholar]
- Schmer, M.R.; Vogel, K.P.; Mitchell, R.B.; Perrin, R.K. Net Energy of Cellulosic Ethanol from Switchgrass. Proc. Natl. Acad. Sci. USA 2008, 105, 464–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, J.R.; Wright, C.T.; Kenney, K.L.; Searcy, E.M. Uniform-Format Solid Feedstock Supply System: A Commodity-Scale Design to Produce an Infrastructure-Compatible Bulk Solid from Lignocellulosic Biomass—Executive Summary; Idaho National Lab (INL): Idaho Falls, ID, USA, 2009. [Google Scholar]
- Carolan, J.E.; Joshi, S.V.; Dale, B.E. Technical and Financial Feasibility Analysis of Distributed Bioprocessing Using Regional Biomass Pre-Processing Centers. J. Agric. Food Ind. Organ. 2007, 5, 1–27. [Google Scholar] [CrossRef]
- Aden, A.; Ruth, M.; Ibsen, K.; Jechura, J.; Neeves, K.; Sheehan, J.; Wallace, B.; Montague, L.; Slayton, A.; Lukas, J. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover; National Renewable Energy Lab.: Golden, CO, USA, 2002. [Google Scholar]
- Morey, R.V.; Kaliyan, N.; Tiffany, D.G.; Schmidt, D.R. A Corn Stover Supply Logistics System. Appl. Eng. Agric. 2010, 26, 455–461. [Google Scholar] [CrossRef]
- Grisso, R.D.; Cundiff, J.S.; Sarin, S.C. Rapid Truck Loading for Efficient Feedstock Logistics. AgriEngineering 2021, 3, 158–167. [Google Scholar] [CrossRef]
- Cundiff, J.S.; Grisso, R.D. Load and Unload Technology to Improve Round-Bale Hauling Efficiency. AgriEngineering 2021, 3, 584–604. [Google Scholar] [CrossRef]
- Ravula, P.P.; Grisso, R.D.; Cundiff, J.S. Cotton Logistics as a Model for a Biomass Transportation System. Biomass Bioenergy 2008, 32, 314–325. [Google Scholar] [CrossRef]
- Grisso, R.D.; Cundiff, J.S.; Comer, K. Multi-Bale Handling Unit for Efficient Logistics. AgriEngineering 2020, 2, 336–349. [Google Scholar] [CrossRef]
- Parrish, D.J.; Fike, J.H. The Biology and Agronomy of Switchgrass for Biofuels. Crit. Rev. Plant Sci. 2005, 24, 423–459. [Google Scholar] [CrossRef]
- Persson, T.; Ortiz, B.V.; Bransby, D.I.; Wu, W.; Hoogenboom, G. Determining the Impact of Climate and Soil Variability on Switchgrass (Panicum virgatum L.) Production in the South-Eastern USA; a Simulation Study. Biofuels Bioprod. Biorefining 2011, 5, 505–518. [Google Scholar] [CrossRef]
- Resop, J.P.; Cundiff, J.S.; Heatwole, C.D. Spatial Analysis to Site Satellite Storage Locations for Herbaceous Biomass in the Piedmont of the Southeast. Appl. Eng. Agric. 2011, 27, 25–32. [Google Scholar] [CrossRef]
- Cundiff, J.S.; Grisso, R.D.; Fike, J. Feedstock Contract Considerations for a Piedmont Biorefinery. AgriEngineering 2020, 2, 607–630. [Google Scholar] [CrossRef]
- Kaliyan, N.; Morey, R.V.; Tiffany, D.G. Economic and Environmental Analysis for Corn Stover and Switchgrass Supply Logistics. Bioenergy Res. 2015, 8, 1433–1448. [Google Scholar] [CrossRef]
- Fike, J.H.; Pease, J.W.; Owens, V.N.; Farris, R.L.; Hansen, J.L.; Heaton, E.A.; Hong, C.O.; Mayton, H.S.; Mitchell, R.B.; Viands, D.R. Switchgrass Nitrogen Response and Estimated Production Costs on Diverse Sites. GCB Bioenergy 2017, 9, 1526–1542. [Google Scholar] [CrossRef]
- Dowling, T.N. An Analysis of Log Truck Turn Times at Harvest Sites and Mill Facilities. Master’s Thesis, Virginia Tech, Blacksburg, VA, USA, 2010. [Google Scholar]
- Conrad, J.L. Evaluating Profitability of Individual Timber Deliveries in the US South. Forests 2021, 12, 437. [Google Scholar] [CrossRef]
- Sun, F.; Aguayo, M.M.; Ramachandran, R.; Sarin, S.C. Biomass Feedstock Supply Chain Design: A Taxonomic Review and a Decomposition-Based Methodology. Int. J. Prod. Res. 2018, 56, 5626–5659. [Google Scholar] [CrossRef]
- An, H. Optimal Daily Scheduling of Mobile Machines to Transport Cellulosic Biomass from Satellite Storage Locations to a Bioenergy Plant. Appl. Energy 2019, 236, 231–243. [Google Scholar] [CrossRef]
Number of Load-Outs | Productivity Factor | Average Productivity (Mg/Wk) | Number of Load-Out Weeks (nwk) | |
---|---|---|---|---|
(No SSL Move Occurs) | (An SSL Move Occurs) | |||
Eight | 72.2% | 415.8 | 381.2 | 49 |
Nine | 70.0% | 403.2 | 369.6 | 46 |
Ten | 60.0% | 345.6 | 316.8 | 47 |
Load-Out Number | Number of SSL Loaded-Outs | Number of Contingency Days | Average Productivity (Mg/Operational Day) |
---|---|---|---|
1 | 20 | 6 | 68.0 |
2 | 19 | 5 | 68.4 |
3 | 19 | 10 | 68.5 |
4 | 23 | 3 | 67.9 |
5 | 30 | 10 | 67.1 |
6 | 31 | 0 | 66.8 |
7 | 32 | 2 | 64.5 |
8 | 25 | 4 | 67.7 |
Load-Out Number | Number of SSL Loaded-Outs | Number of Contingency Days | Average Productivity (Mg/Operational Day) |
---|---|---|---|
1 | 19 | 23 | 67.3 |
2 | 18 | 12 | 62.1 |
3 | 17 | 28 | 64.9 |
4 | 18 | 27 | 64.8 |
5 | 18 | 29 | 65.0 |
6 | 26 | 17 | 64.0 |
7 | 32 | 23 | 62.8 |
8 | 30 | 24 | 63.0 |
9 | 21 | 35 | 64.4 |
Load-Out Number | Number of SSL Loaded-Outs | Number of Contingency Days | Average Productivity (Mg/Operational Day) |
---|---|---|---|
1 | 17 | 8 | 55.9 |
2 | 16 | 12 | 56.8 |
3 | 17 | 10 | 55.8 |
4 | 14 | 18 | 56.9 |
5 | 16 | 20 | 54.6 |
6 | 18 | 21 | 55.8 |
7 | 28 | 7 | 55.8 |
8 | 26 | 18 | 54.3 |
9 | 27 | 7 | 54.6 |
10 | 20 | 7 | 55.3 |
Number of Load-Outs | Service Truck Travel (km) | Equipment Hauler Travel (km) |
---|---|---|
8 | 94,245 | 19,715 |
9 | 95,547 | 19,225 |
10 | 120,785 | 19,426 |
Number of Load-Outs | Annual Equipment Operating Hours | Load-Out Cost (USD/Mg) | Service Truck Cost (USD/Mg) | Equipment Hauler Cost (USD/Mg) | Total Cost (USD/Mg) |
---|---|---|---|---|---|
8 | 1979 | 8.39 | 2.37 | 0.41 | 11.17 |
9 | 1772 | 8.53 | 2.31 | 0.40 | 11.24 |
10 | 1504 | 9.37 | 2.65 | 0.40 | 12.42 |
Number of Load-Outs | Total Haul Distance (km) | Fuel Cost (USD/Mg) |
---|---|---|
8 | 758,649 | 3.98 |
9 | 770,981 | 3.98 |
10 | 760,936 | 3.99 |
Number of Load-Outs | Number of Trucks | Truck Rental (USD/Mg) | Labor Cost (USD/Mg) | Fuel Cost (USD/Mg) | Total Cost (USD/Mg) |
---|---|---|---|---|---|
8 | 9 | 2.54 | 6.76 | 3.98 | 13.28 |
9 | 8 | 2.09 | 5.55 | 3.98 | 11.62 |
10 | 8 | 2.16 | 5.75 | 3.99 | 11.90 |
Number of Load-Outs | Load-Out Cost (USD/Mg) | Truck Cost (USD/Mg) | Total Cost (USD/Mg) |
---|---|---|---|
8 | 11.17 | 13.28 | 24.45 |
9 | 11.24 | 11.62 | 22.86 |
10 | 12.42 | 11.90 | 24.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Resop, J.P.; Cundiff, J.S.; Grisso, R.D. Central Control for Optimized Herbaceous Feedstock Delivery to a Biorefinery from Satellite Storage Locations. AgriEngineering 2022, 4, 544-565. https://doi.org/10.3390/agriengineering4020037
Resop JP, Cundiff JS, Grisso RD. Central Control for Optimized Herbaceous Feedstock Delivery to a Biorefinery from Satellite Storage Locations. AgriEngineering. 2022; 4(2):544-565. https://doi.org/10.3390/agriengineering4020037
Chicago/Turabian StyleResop, Jonathan P., John S. Cundiff, and Robert D. Grisso. 2022. "Central Control for Optimized Herbaceous Feedstock Delivery to a Biorefinery from Satellite Storage Locations" AgriEngineering 4, no. 2: 544-565. https://doi.org/10.3390/agriengineering4020037
APA StyleResop, J. P., Cundiff, J. S., & Grisso, R. D. (2022). Central Control for Optimized Herbaceous Feedstock Delivery to a Biorefinery from Satellite Storage Locations. AgriEngineering, 4(2), 544-565. https://doi.org/10.3390/agriengineering4020037