Research Progress on Remote Sensing Classification Methods for Farmland Vegetation
Abstract
1. Introduction
2. Farmland Vegetation Classification Based on Vegetation Index
3. Farmland Vegetation Classification Based on Spectral Band
4. Farmland Vegetation Classification Based on Multi-Source Data Fusion
5. Farmland Vegetation Classification Based on Machine Learning
5.1. Support Vector Machine Algorithm
5.2. Neural Network Algorithm
5.3. Decision Tree Algorithm
5.4. Object-Oriented Machine Learning Algorithms
5.5. Deep Learning Algorithm
6. Crop Classification Based on Drone Remote Sensing
7. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef]
- Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2793–2807. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.; Beddington, J.; Crute, I.; Haddad, L.; Lawrence, D.; Muir, J.; Pretty, J.; Robinson, S.; Thomas, S.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Sterling, S.M.; Ducharne, A.; Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Chang. 2012, 3, 385–390. [Google Scholar] [CrossRef]
- Lambin, E.F.; Gibbs, H.K.; Ferreira, L.; Grau, R.; Mayaux, P.; Meyfroidt, P.; Morton, D.C.; Rudel, T.K.; Gasparri, I.; Munger, J. Estimating the world’s potentially available cropland using a bottom-up approach. Glob. Environ. Chang. 2013, 23, 892–901. [Google Scholar] [CrossRef]
- Ozdogan, M. The spatial distribution of crop types from MODIS data: Temporal unmixing using Independent Component Analysis. Remote Sens. Environ. 2010, 114, 1190–1204. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef]
- Vintrou, E.; Desbrosse, A.; Bégué, A.; Traoré, S.; Baron, C.; Seen, D.L. Crop area mapping in West Africa using landscape stratification of MODIS time series and comparison with existing global land products. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 83–93. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Frolking, S.; Li, C.; Moore, B. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 2006, 100, 95–113. [Google Scholar] [CrossRef]
- Van Niel, T.G.; Mcvicar, T.R. Determining temporal windows for crop discrimination with remote sensing: A case study in south-eastern Australia. Comput. Electron. Agric. 2004, 45, 91–108. [Google Scholar] [CrossRef]
- White, E.V.; Roy, D.P. A contemporary decennial examination of changing agricultural field sizes using Landsat time series data. Geo Geogr. Environ. 2015, 2, 33–54. [Google Scholar] [CrossRef] [PubMed]
- Bargiel, D.; Herrmann, S. Multi-temporal land-cover classification of agricultural areas in two European regions with high resolution spotlight TerraSAR-X data. Remote Sens. 2011, 3, 859–877. [Google Scholar] [CrossRef]
- Jia, K.; Yao, Y.; Wei, X.; Shuai, G.; Bo, J.; Xiang, Z. Research progress in remote sensing estimation of vegetation coverage. Adv. Earth Sci. 2013, 28, 774–782. [Google Scholar]
- Patil, A.; Ishwarappa, R.K. Classification of crops using FCM segmentation and texture, color feature. World J. Sci. Technol. 2013, 2121–2123. [Google Scholar]
- Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L. Prioritizing climate change adaptation needs for food security in 2030. Science 2008, 319, 607. [Google Scholar] [CrossRef]
- Portmann, F.T.; Siebert, S.; Döll, P. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 2010, 24, 1–24. [Google Scholar] [CrossRef]
- Susana, D.P.; Pablo, R.G.; David, H.L.; Beatriz, F.G. Vicarious Radiometric Calibration of a Multispectral Camera on Board an Unmanned Aerial System. Remote Sens. 2014, 6, 1918–1937. [Google Scholar]
- Mesas-Carrascosa, F.J.; Notario-García, M.D.; Meroño De Larriva, J.E.; Emilio, M.; Manuel, S.; García-Ferrer Porras, A. Validation of measurements of land plot area using UAV imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 270–279. [Google Scholar] [CrossRef]
- Rokhmana, C.A. The Potential of UAV-based Remote Sensing for Supporting Precision Agriculture in Indonesia. Procedia Environ. Sci. 2015, 24, 245–253. [Google Scholar] [CrossRef]
- Córcoles, J.I.; Ortega, J.F.; Hernández, D.; Moreno, M.A. Estimation of leaf area index in onion (Allium cepa L.) using an unmanned aerial vehicle. Biosyst. Eng. 2013, 115, 31–42. [Google Scholar] [CrossRef]
- Sona, G.; Passoni, D.; Pinto, L.; Pagliari, D.; Facchi, A. Uav Multispectral Survey to Map Soil and Crop for Precision Farming Applications. In Proceedings of the Remote Sensing and Spatial Information Sciences Congress: International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences Congress, Prague, Czech Republic, 12–19 July 2016; International Society for Photogrammetry and Remote Sensing (ISPRS): Hannover, Germany, 2016; Volume XLI-B1, pp. 1023–1029. [Google Scholar]
- Ballesteros, R.; Ortega, J.F.; Hernandez, D.; Moreno, M.A. Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part I: Description of image acquisition and processing. Precis. Agric. 2014, 15, 579–592. [Google Scholar] [CrossRef]
- Lelong, C.C.D. Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots. Sensors 2008, 8, 3557–3585. [Google Scholar] [CrossRef]
- Chang, J.; Hansen, M.C.; Pittman, K.; Carroll, M.; DiMiceli, C. Corn and soybean mapping in the United States using MODIS time-series data sets. Agron. J. 2007, 99, 1654–1664. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, Q.; Chen, Z.; Jia, L.; Zhou, Y.; Cai, C. Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 476–485. [Google Scholar]
- Zhang, X.; Jiao, Q.; Zhang, B.; Chen, Z.C. Preliminary study on extracting crop planting patterns using MODIS_EVI image time series. Trans. Chin. Soc. Agric. Eng. 2008, 24, 161–165. [Google Scholar]
- Xiong, Q.; Huang, J. Monitoring the planting area of autumn crops using the time series characteristics of NDVI index. Trans. Chin. Soc. Agric. Eng. 2009, 25, 144–148. [Google Scholar]
- Cai, X.; Cui, Y. Extraction of crop planting structure in irrigation area based on heterogeneous multi-temporal remote sensing data. Trans. Chin. Soc. Agric. Eng. 2009, 25, 124–130. [Google Scholar]
- He, X. Research on Remote Sensing Extraction of Corn Planting Area Based on Multi-Source Data Fusion. Ph.D. Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2010. [Google Scholar]
- Huang, Q.; Tang, H.; Zhou, Q.; Wu, W.; Wang, L.; Zhang, L. Remote sensing extraction and growth monitoring of planting structure of main crops in Northeast China. Chin. J. Agric. Eng. 2010, 26, 218–223. [Google Scholar]
- Hao, W.; Mei, X.; Cai, X.; Cai, X.; Jian, T.; Qin, L. Crop distribution information extraction in the three Northeast provinces based on multi-temporal remote sensing images. Chin. J. Agric. Eng. 2011, 27, 201–207. [Google Scholar]
- Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, Y.; Zhang, F.; Yue, D.; Tang, H. Crop planting information extraction based on multi-temporal remote sensing images. Trans. Chin. Soc. Agric. Eng. 2012, 28, 134–141. [Google Scholar]
- Foerster, S.; Kaden, K.; Foerster, M.; Itzerott, S. Crop type mapping using spectral–temporal profiles and phenological information. Comput. Electron. Agric. 2012, 89, 30–40. [Google Scholar] [CrossRef]
- Zhong, L.; Gong, P.; Biging, G.S. Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sens. Environ. 2014, 140, 1–13. [Google Scholar] [CrossRef]
- Tang, H.; Wu, W.; Yang, P. Research progress in remote sensing monitoring of crop spatial pattern. Chin. Agric. Sci. 2010, 43, 2879–2888. [Google Scholar]
- Wang, N. China Wheat Remote Sensing Dynamic Monitoring and Yield Estimation; China Science and Technology Press: Beijing, China, 1996. [Google Scholar]
- Xu, W.; Tian, Y. Research progress on remote sensing extraction methods of crop planting area. J. Yunnan Agric. Univ. Nat. Sci. 2005, 20, 94–98. [Google Scholar]
- Zhao, C.; Qian, L. Comparison of supervised and unsupervised classification of remote sensing images. J. Henan Univ. Nat. Ed. 2004, 34, 90–93. [Google Scholar]
- Yan, R.; Jing, Y.; He, X. Research progress on remote sensing extraction of crop planting area. Anhui Agric. Sci. 2010, 38, 14767–14768. [Google Scholar]
- Wang, N.; Li, Q.; Du, X.; Zhang, Y.; Wang, H. Remote sensing identification of main crops in northern Jiangsu based on univariate feature selection. J. Remote Sens. 2017, 21, 519–530. [Google Scholar]
- Bouman, B.A.M.; Uenk, D. Crop classification possibilities with radar in ERS-1 and JERS-1 configuration. Remote Sens. Environ. 1992, 40, 1–13. [Google Scholar] [CrossRef]
- Feng, A.; He, H.; Liu, L.; Ren, X.; Zhang, L.; Ge, R.; Zhao, F. Comparative study on identification methods of winter wheat growth period in Yucheng farmland ecosystem based on multi-source data. Remote Sens. Technol. Appl. 2016, 31, 958–965. [Google Scholar]
- De Espindola, G.M.; De Aguiar, A.P.D.; Pebesma, E.; Camara, G.; Fonseca, L. Agricultural land use dynamics in the Brazilian Amazon based on remote sensing and census data. Appl. Geogr. 2012, 32, 240–252. [Google Scholar] [CrossRef]
- Khan, M.R.; De Bie, C.A.; Van Keulen, H.; Smaling, E.; Real, R. Disaggregating and mapping crop statistics using hypertemporal remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 36–46. [Google Scholar] [CrossRef]
- Barnwal, P.; Kotani, K. Climatic impacts across agricultural crop yield distributions: An application of quantile regression on rice crops in Andhra Pradesh, India. Ecol. Econ. 2013, 87, 95–109. [Google Scholar] [CrossRef]
- Song, Q.; Zhou, Q.; Wu, W.; Hu, Q.; Yu, Q.; Tang, H. Research progress of multi-source data fusion in crop remote sensing identification. Chin. Agric. Sci. 2015, 48, 1122–1135. [Google Scholar]
- Leff, B.; Ramankutty, N.; Foley, J.A. Geographic distribution of major crops across the world. Glob. Biogeochem. Cycles 2004, 18. [Google Scholar] [CrossRef]
- Liu, J.; Fritz, S.; Van Wesenbeeck, C.F.A.; Fuchs, M.; You, L.; Obersteiner, M.; Hong, Y. A spatially explicit assessment of current and future hotspots of hunger in Sub-Saharan Africa in the context of global change. Glob. Planet. Chang. 2008, 64, 222–235. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Z.; Tang, P.; Li, Z.; Wu, W.; Yang, P.; You, L.; Tang, H. Analysis on the spatiotemporal changes of rice planting areas and yields in China in the past 30 years. J. Geogr. Sci. 2013, 68, 680–693. [Google Scholar]
- Pervez, M.S.; Brown, J.F. Mapping irrigated lands at 250-m scale by merging MODIS data and national agricultural statistics. Remote Sens. 2010, 2, 2388–2412. [Google Scholar] [CrossRef]
- Brown, J.F.; Pervez, M.S. Merging remote sensing data and national agricultural statistics to model change in irrigated agriculture. Agric. Syst. 2014, 127, 28–40. [Google Scholar] [CrossRef]
- Friedl, M.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A. MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Zhao, X.; Liu, B.; Yi, L.; Zuo, L.; Wen, Q.; Liu, F.; Xu, J.; Hu, S. A 2010 update of National land use/cover database of China at 1: 100000 scale using medium spatial resolution satellite images. Remote Sens. Environ. 2014, 149, 142–154. [Google Scholar] [CrossRef]
- Chen, D.; Chang, N.; Xiao, J.; Zhou, Q.; Wu, W. Mapping dynamics of soil organic matter in croplands with MODIS data and machine learning algorithms. Sci. Total Environ. 2019, 669, 844–855. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Wu, W.; Zhang, L.; Liao, A.P.; Peng, S.; Tang, H.J. A comparative analysis of five global cropland datasets in China. Sci. China Earth Sci. 2016, 59, 2307–2317. [Google Scholar] [CrossRef]
- See, L.; Schepaschenko, D.; Lesiv, M.; McCallum, I.; Fritz, S.; Comber, A.; Perger, C.; Schill, C.; Zhao, Y.; Maus, V. Building a hybrid land cover map with crowdsourcing and geographically weighted regression. ISPRS J. Photogramm. Remote Sens. 2015, 103, 48–56. [Google Scholar] [CrossRef]
- Jung, M.; Henkel, K.; Herold, M.; Churkina, G. Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sens. Environ. 2006, 101, 534–553. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; Mccallum, I.; You, L.; Bun, A.; Moltchanova, E.; Duerauer, M.; Albrecht, F.; Schill, C.; Perger, C.; et al. Mapping global cropland and field size. Glob. Chang. Biol. 2015, 21, 1980–1992. [Google Scholar] [CrossRef]
- Lu, M.; Wu, W.; You, L.; Chen, D.; Zhang, L.; Yang, P.; Tang, H. A synergy cropland of china by fusing multiple existing maps and statistics. Sensors 2017, 17, 1613. [Google Scholar] [CrossRef]
- Kinoshita, T.; Iwao, K.; Yamagata, Y. Creation of a global land cover and a probability map through a new map integration method. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 70–77. [Google Scholar] [CrossRef]
- Schepaschenko, D.G.; Shvidenko, A.Z.; Lesiv, M.Y.; Ontikov, P.V.; Shchepashchenko, M.V.; Kraxner, F. Estimation of forest area and its dynamics in Russia based on synthesis of remote sensing products. Contemp. Probl. Ecol. 2015, 8, 811–817. [Google Scholar] [CrossRef]
- Fritz, S.; You, L.; Bun, A.; See, L.; Mccallum, I.; Schill, C.; Perger, C.; Liu, J.; Hansen, M.; Obersteiner, M. Cropland for sub-saharan Africa: A synergistic approach using five land cover data sets. Geophys. Res. Lett. 2011, 38, 155–170. [Google Scholar] [CrossRef]
- Waldner, F.; Fritz, S.; Di Gregorio, A.; Defourny, P. Mapping priorities to focus cropland mapping activities: Fitness assessment of existing global, regional and national cropland maps. Remote Sens. 2015, 7, 7959–7986. [Google Scholar] [CrossRef]
- Dendoncker, N.; Rounsevell, M.; Bogaert, P. Spatial analysis and modelling of land use distributions in Belgium. Computers, Environ. Urban Syst. 2007, 31, 188–205. [Google Scholar] [CrossRef]
- Song, X.; Huang, C.; Feng, M.; Sexton, J.O.; Channan, S.; Townshend, J.R. Integrating global land cover products for improved forest cover characterization: An application in North America. Int. J. Digit. Earth 2014, 7, 709–724. [Google Scholar] [CrossRef]
- Zhao, Y. Principles and Methods of Remote Sensing Application Analysis; Science Press: Beijing, China, 2013. [Google Scholar]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Deng, N.; Tian, Y. A New Method in Data Mining—Support Vector Machines; Science Press: Beijing, China, 2004. [Google Scholar]
- Baumann, M.; Ozdogan, M.; Kuemmerle, T.; Wendland, K.J.; Esipova, E.; Radeloff, V.C. Using the Landsat record to detect forest-cover changes during and after the collapse of the Soviet Union in the temperate zone of European Russia. Remote Sens. Environ. 2012, 124, 174–184. [Google Scholar] [CrossRef]
- Kaya, G.T. A hybrid model for classification of remote sensing images with linear SVM and support vector selection and adaptation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1988–1997. [Google Scholar] [CrossRef]
- Breunig, F.M.; Galvao, L.S.; Formaggio, A.R.; Epiphanio, J.C.N. Classification of soybean varieties using different techniques: Case study with Hyperion and sensor spectral resolution simulations. J. Appl. Remote Sens. 2011, 5, 053533. [Google Scholar] [CrossRef]
- Jin, N.; Tao, B.; Ren, W.; Feng, M.; Sun, R.; He, L.; Zhuang, W.; Yu, Q. Mapping Irrigated and Rainfed Wheat Areas Using Multi-Temporal Satellite Data. Remote Sens. 2016, 8, 207. [Google Scholar] [CrossRef]
- Guo, L.; Tang, J.; Mi, S.; Zhang, C.; Zhao, L. Research progress on remote sensing image fusion classification methods based on support vector machines. Anhui Agric. Sci. 2010, 17, 9235–9238. [Google Scholar]
- Liu, Y. Research on Land Cover Classification Method Based on Semi-Supervised Integrated Support Vector Machine. Ph.D. Thesis, Graduate University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology), Beijing, China, 2013. [Google Scholar]
- Bigdeli, B.; Samadzadegan, F.; Reinartz, P. A Multiple SVM System for Classification of Hyperspectral Remote Sensing Data. J. Indian Soc. Remote Sens. 2013, 41, 763–776. [Google Scholar] [CrossRef][Green Version]
- Tuia, D.; Muñoz-Marí, J.; Kanevski, M.; Camps-Valls, G. Structured Output SVM for Remote Sensing Image Classification. J. Signal Process. Syst. 2011, 65, 301–310. [Google Scholar] [CrossRef]
- Jia, K.; Li, Q.; Tian, Y.; Wu, B. Research progress in remote sensing image classification methods. Spectrosc. Spectr. Anal. 2011, 10, 2618–2623. [Google Scholar]
- Shoemaker, D.A.; Cropper, W.P. Application of remote sensing, an artificial neural network leaf area model, and a process-based simulation model to estimate carbon storage in Florida slash pine plantations. J. For. Res. 2010, 21, 171–176. [Google Scholar] [CrossRef]
- Zhang, H. Research on Remote Sensing Image Classification Based on BP Neural Network. Ph.D. Thesis, Shandong Normal University, Jinan, China, 2013; p. 81. [Google Scholar]
- Zhao, J. Research on Remote Sensing Image Land Cover Classification Based on BP Artificial Neural Network. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2010. [Google Scholar]
- Jiang, J. Research on High-Resolution Remote Sensing Image Classification Based on BP Neural Network. Ph.D. Thesis, Capital Normal University, Beijing, China, 2011. [Google Scholar]
- Liu, X. Research on Remote Sensing Image Classification Based on Improved BP Neural Network. Ph.D. Thesis, Chang’an University, Xi’an, China, 2009. [Google Scholar]
- Wang, C.; Wu, W.; Zhang, J. Remote sensing image classification method based on BP neural network. J. Liaoning Tech. Univ. Nat. Sci. Ed. 2009, 1, 32–35. [Google Scholar]
- Zhang, R.; Wan, L.; Zhang, F.; Shi, Y. Research progress on remote sensing classification methods of land use. South North Water Divers. Water Sci. Technol. 2006, 2, 39–42. [Google Scholar]
- Chasmer, L.; Hopkinson, C.; Veness, T.; Quinton, W.; Baltzer, J. A decision-tree classification for low-lying complex land cover types within the zone of discontinuous permafrost. Remote Sens. Environ. 2014, 143, 73–84. [Google Scholar] [CrossRef]
- Zhang, X. Implementation of Decision Tree Classifier and Its Application in Remote Sensing Image Classification. Ph.D. Thesis, Lanzhou Jiaotong University, Lanzhou, China, 2013. [Google Scholar]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Fang, K.; Wu, J.; Zhu, J.; Xie, B. Research review of random forest methods. Stat. Inf. Forum 2011, 26, 32–38. [Google Scholar]
- Schultz, B.; Immitzer, M.; Formaggio, A.; Sanches, I.; Luiz, A.; Atzberger, C. Self-guided segmentation and classification of multi-temporal Landsat 8 images for crop type mapping in Southeastern Brazil. Remote Sens. 2015, 7, 14482–14508. [Google Scholar] [CrossRef]
- Song, Q. Research on the Extraction Method of Crop Planting Structure Based on GF-1/WFV and Object-Oriented. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2016. [Google Scholar]
- Huang, Z. Research on Multi-Scale Methods in Object-Oriented Image Analysis. Ph.D. Thesis, National University of Defense Technology, Zunyi, China, 2014. [Google Scholar]
- Yi, L. Uncertainty Analysis of Object-Oriented Remote Sensing Image Classification. Ph.D. Thesis, Wuhan University, Wuhan, China, 2011. [Google Scholar]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, P.; Feng, X. Impervious surface extraction from high-resolution satellite image using pixel- and object-based hybrid analysis. Int. J. Remote Sens. 2013, 34, 4449–4465. [Google Scholar] [CrossRef]
- Voltersen, M.; Berger, C.; Hese, S.; Schmullius, C. Object-based land cover mapping and comprehensive feature calculation for an automated derivation of urban structure types at block level. Remote Sens. Environ. 2014, 154, 192–201. [Google Scholar] [CrossRef]
- Qin, Y.; Niu, Z.; Chen, F.; Li, B.; Ban, Y. Object-based land cover change detection for cross-sensor images. Int. J. Remote Sens. 2013, 34, 6723–6737. [Google Scholar] [CrossRef]
- Xing, C. Hyperspectral Remote Sensing Image Classification Based on Deep Learning. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2016. [Google Scholar]
- Zuo, Y. Remote Sensing Image Classification Based on Active Deep Learning. Ph.D. Thesis, Yanshan University, Qinhuangdao, China, 2016. [Google Scholar]
- Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral Image Classification Using Deep Pixel-Pair Features. IEEE Trans. Geosci. Remote Sens. 2017, 55, 844–853. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Liu, P.; Choo, K.R.; Huang, F. Spectral–spatial multi-feature-based deep learning for hyperspectral remote sensing image classification. Soft Comput. 2017, 21, 213–221. [Google Scholar] [CrossRef]
- Zhou, X.; Li, S.; Tang, F.; Qin, K.; Hu, S.; Liu, S. Deep Learning with Grouped Features for Spatial Spectral Classification of Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 97–101. [Google Scholar] [CrossRef]
- Michez, A.; Piégay, H.; Lisein, J.; Claessens, H.; Lejeune, P. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system. Environ. Monit. Assess. 2016, 188, 146. [Google Scholar] [CrossRef]
- Yu, Q.; Shi, Y.; Tang, H.; Peng, Y.; Xie, A.; Liu, B.; Wu, W. eFarm: A Tool for Better Observing Agricultural Land Systems. Sensors 2017, 17, 453. [Google Scholar] [CrossRef]
- Li, B.; Liu, R.; Liu, S.; Liu, Q.; Liu, F.; Zhou, G. Monitoring of winter wheat coverage changes based on low-altitude drone remote sensing. Trans. Chin. Soc. Agric. Eng. 2012, 28, 160–165. [Google Scholar]
- Tian, Z.; Fu, Y.; Liu, S.; Liu, F. A rapid classification method of crops based on low-altitude remote sensing by drones. Trans. Chin. Soc. Agric. Eng. 2013, 7, 109–116. [Google Scholar]
- Zhang, Y.; Tao, P.; Liang, S.; Liang, W. Application of UAV remote sensing in forest resource survey. J. Southwest For. Univ. 2011, 3, 49–53. [Google Scholar]
- Xu, H.; Ding, X.; Han, N.; Deng, J.; Wang, K. Preliminary study on geometric correction of remote sensing image of rotary-wing UAV. Zhejiang J. Agric. 2009, 21, 63–65. [Google Scholar]
- Popescu, D.; Ichim, L. Aerial image segmentation by use of textural features. In Proceedings of the 20th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 13–15 October 2016; pp. 721–726. [Google Scholar]
- Jin, X.; Liu, S.; Baret, F.; Hemerlé, M.; Comar, A. Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sens. Environ. 2017, 198, 105–114. [Google Scholar] [CrossRef]
- Milas, A.S.; Arend, K.; Mayer, C.; Simonson, M.A.; Mackey, S. Different colours of shadows: Classification of UAV images. Int. J. Remote Sens. 2017, 38, 3084–3100. [Google Scholar] [CrossRef]
- Li, Y. Research on UAV/RS3D Image Pairing Forest Information Extraction Method. Master’s Thesis, Beijing Forestry University, Beijing, China, 2016. [Google Scholar]
- Zhang, C.; Qiao, M.; Liu, Z.; Jin, H.; Ning, M.; Sun, H. Optimization of texture feature scales for seed production corn field recognition based on UAV and satellite remote sensing images. Trans. Chin. Soc. Agric. Eng. 2017, 33, 98–104. [Google Scholar]
- Zou, K.; Zhang, R.; Jiang, Y. Cotton field identification and area estimation based on drone imaging. J. Shihezi Univ. Nat. Sci. Ed. 2018, 6, 1–7. [Google Scholar]
- Li, M.; Huang, Y.; Li, X.; Peng, D.; Xie, J. Rice planting information extraction based on UAV remote sensing images. Trans. Chin. Soc. Agric. Eng. 2018, 34, 108–114. [Google Scholar]
- Dai, J.; Zhang, G.; Guo, P.; Zeng, T.; Cui, M.; Xue, J. Classification method of main crops in northern Xinjiang based on UAV remote sensing visible light images. Trans. Chin. Soc. Agric. Eng. 2018, 34, 122–129. [Google Scholar]
- Xue, M.; Zhang, H.; Yang, J.; Li, X. Information extraction of terraces based on drone imagery and topographic index. Comput. Appl. Res. 2019, 9, 1–12. [Google Scholar]
- Zarco-Tejada, P.J.; Diaz-Varela, R.; Angileri, V.; Loudjani, P. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur. J. Agron. 2014, 55, 89–99. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef]
- Zhang, Q.; Qin, R.; Huang, X.; Fang, Y.; Liu, L. Classification of Ultra-High Resolution Orthophotos Combined with DSM Using a Dual Morphological Top Hat Profile. Remote Sens. 2015, 7, 16422–16440. [Google Scholar] [CrossRef]
- Kim, G.H. Land Cover Classification with High Spatial Resolution Using Orthoimage and DSM Based on Fixed-Wing UAV. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2017, 35, 1–10. [Google Scholar]
- Nevalainen, O.; Honkavaara, E.; Tuominen, S.; Viljanen, N.; Hakala, T.; Yu, X.; Hyyppä, J.; Saari, H.; Pölönen, I.; Imai, N.; et al. Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging. Remote Sens. 2017, 9, 185. [Google Scholar] [CrossRef]
- Yang, M.; Huang, K.; Kuo, Y.; Tsai, H.; Lin, L. Spatial and Spectral Hybrid Image Classification for Rice Lodging Assessment through UAV Imagery. Remote Sens. 2017, 9, 583. [Google Scholar] [CrossRef]
- Zisi, T.; Alexandridis, T.; Kaplanis, S.; Navrozidis, I.; Polychronos, V. Incorporating Surface Elevation Information in UAV Multispectral Images for Mapping Weed Patches. J. Imaging 2018, 4, 132. [Google Scholar] [CrossRef]
- Mao, Z.; Deng, L.; Zhao, X.; Hu, Y. Using drone remote sensing to extract corn lodging information in breeding plots. Chin. Agric. Sci. Bull. 2019, 35, 62–68. [Google Scholar]
- Li, A. Research on Rice Yield Estimation Based on UAV Digital Image. Master’s Thesis, Shenyang Agricultural University, Shenyang, China, 2018. [Google Scholar]
- Lottes, P.; Khanna, R.; Pfeifer, J.; Siegwart, R.; Stachniss, C. UAV-based crop and weed classification for smart farming. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3024–3031. [Google Scholar]
- Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Spatiotemporal ecological vulnerability analysis with statistical correlation based on satellite remote sensing in Samara, Russia. J. Environ. Manag. 2021, 285, 112138. [Google Scholar] [CrossRef]
Remote Sensing Classification of Farmland Vegetation | Classification | |
---|---|---|
Farmland vegetation classification based on vegetation index | Normalized difference vegetation index, enhanced vegetation index, surface temperature, etc. | |
Farmland vegetation classification based on spectral band | Remote sensing recognition of crops based on single image | |
Remote sensing recognition of crops based on multi-temporal remote sensing images | Single feature parameter recognition | |
Multiple feature parameter recognition | ||
Multi-feature parameter statistical model | ||
Farmland vegetation classification based on multi-source data fusion | Data consistency scoring | |
Regression analysis | ||
Farmland vegetation classification based on machine learning | Support vector machine algorithm | |
Neural network algorithm | ||
Decision tree algorithm | ||
Object-oriented machine learning algorithms | ||
Deep learning algorithm | ||
Crop classification based on drone remote sensing |
Method | Applicability | Data Source | Classification | Advantages | Disadvantage | |
---|---|---|---|---|---|---|
Remote sensing recognition of crops based on single image | Suitable for areas with relatively simple crop planting structure | SPOT-5 | Decision tree | High efficiency and strong operability | Long revisit period and poor accuracy when the “critical phenological period” is not obvious | |
IRS-1D | Support vector machines | |||||
CBERS-02B | Neural networks | |||||
Maximum likelihood | ||||||
LANDSAT-TM | Spectral angle mapping | |||||
HJ-1B | ||||||
HJ-1A | ||||||
MODIS | ||||||
Remote sensing recognition of crops based on multi-temporal remote sensing images | Single feature parameter recognition | Suitable for areas with relatively simple crop planting structure | MODIS | Fast Fourier transform | Simple operation and high efficiency | Feature selection is subjective and has limitations in areas with complex and diverse crop types |
TM/ETM+ | Unsupervised classification and spectral coupling technology | |||||
BP neural network | ||||||
Threshold method | ||||||
Wavelet transform | ||||||
Shortest distance | ||||||
Multiple feature parameter recognition | Suitable for areas with complex crop planting structures | MODIS | Threshold method | Use multiple spectral time series feature quantities to better capture the characteristics of each type of crop that is different from other crops | Reduce the efficiency of data processing and calculation and increase the accumulation of errors | |
AVHRR | Classification regression tree | |||||
SPOT VGT | See5.0 | |||||
ASTER | Unsupervised classification | |||||
AWIFS | Spectral matching technology | |||||
Landsat | Image segmentation | |||||
TM/ETM+ | Random forest | |||||
HJ-1A/B | ||||||
Multi-feature parameter statistical model | Suitable for areas with land consolidation, diverse terrain, and complex planting structure | MODIS | Temporal decomposition model | Higher extraction accuracy of crop planting area | Stability and universality need to be further strengthened and improved | |
VHRR | Neural network model | |||||
SPOT-VEG | Independent component analysis model | |||||
CPPI index model | ||||||
ETATION |
Fusion Method | Data Source | Research Area | Spatial Resolution | Fusion Process | Literature Source |
---|---|---|---|---|---|
Data consistency scoring | GLC2000, MODIS, IGBP DISCover | Global | 1 km | Calculate affinity index for multi-source data set fusion mapping | [58] |
GLC-2000, MODIS VCF, GIS data, statistical data | Russia | 1 km | Establish a fusion information system for multi-source data set fusion mapping | [62] | |
GLC-2000, MODIS, GlobCover2005, GEOCOVER, cropland probability layer | Global | 1 km | Analyze the consistency of remote sensing data products, set weights, and establish fusion rules | [59,63] | |
FROM-GLC, GlobCover2009 et al. regional data set (Corine Land Cover et al.), national data set | Global | 250 m | Multi-index analysis, scoring different data sets, setting weights, and fusion | [64] | |
Regression analysis | USGS-Hydro1k DEM, PELCOM, slope, soil data, meteorological data, land use ratio data | Belgium | 1.1 km | Construct a logistic regression model of spatial autocorrelation to predict the spatial distribution of different land cover types | [65] |
GLC2000, MOD12C5, MOD12C4, GLCNMO, UMD, GlobCover | Global | 5′ | Using logistic regression model to predict types of land cover | [62] | |
GLCC, GlobCover GLC2000, UMD LC, MODIS LC, MODIS VCF, | North America | 5 km | Use regression tree model to integrate global and regional land cover products | [66] | |
GlobCover, GLC2000, MODIS | Global | 1 km | Using GWR logistic regression model to predict the type of land cover in the sample-free area | [57] | |
Land cover (MODIS LC, regional mosaics GLC2000, GlobeCover, GLCNMO), tree cover (Hansen’s TC, Landsat VCF, MODIS VCF) | Global | 1 km | Using GWR logistic regression model to predict the proportion of forest coverage in the sample-free area | [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, D.; Su, X.; Weng, B.; Wang, T.; Yang, F. Research Progress on Remote Sensing Classification Methods for Farmland Vegetation. AgriEngineering 2021, 3, 971-989. https://doi.org/10.3390/agriengineering3040061
Fan D, Su X, Weng B, Wang T, Yang F. Research Progress on Remote Sensing Classification Methods for Farmland Vegetation. AgriEngineering. 2021; 3(4):971-989. https://doi.org/10.3390/agriengineering3040061
Chicago/Turabian StyleFan, Dongliang, Xiaoyun Su, Bo Weng, Tianshu Wang, and Feiyun Yang. 2021. "Research Progress on Remote Sensing Classification Methods for Farmland Vegetation" AgriEngineering 3, no. 4: 971-989. https://doi.org/10.3390/agriengineering3040061
APA StyleFan, D., Su, X., Weng, B., Wang, T., & Yang, F. (2021). Research Progress on Remote Sensing Classification Methods for Farmland Vegetation. AgriEngineering, 3(4), 971-989. https://doi.org/10.3390/agriengineering3040061