Research Progress on Remote Sensing Classification Methods for Farmland Vegetation
Abstract
:1. Introduction
2. Farmland Vegetation Classification Based on Vegetation Index
3. Farmland Vegetation Classification Based on Spectral Band
4. Farmland Vegetation Classification Based on Multi-Source Data Fusion
5. Farmland Vegetation Classification Based on Machine Learning
5.1. Support Vector Machine Algorithm
5.2. Neural Network Algorithm
5.3. Decision Tree Algorithm
5.4. Object-Oriented Machine Learning Algorithms
5.5. Deep Learning Algorithm
6. Crop Classification Based on Drone Remote Sensing
7. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2793–2807. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.; Beddington, J.; Crute, I.; Haddad, L.; Lawrence, D.; Muir, J.; Pretty, J.; Robinson, S.; Thomas, S.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Sterling, S.M.; Ducharne, A.; Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Chang. 2012, 3, 385–390. [Google Scholar] [CrossRef]
- Lambin, E.F.; Gibbs, H.K.; Ferreira, L.; Grau, R.; Mayaux, P.; Meyfroidt, P.; Morton, D.C.; Rudel, T.K.; Gasparri, I.; Munger, J. Estimating the world’s potentially available cropland using a bottom-up approach. Glob. Environ. Chang. 2013, 23, 892–901. [Google Scholar] [CrossRef]
- Ozdogan, M. The spatial distribution of crop types from MODIS data: Temporal unmixing using Independent Component Analysis. Remote Sens. Environ. 2010, 114, 1190–1204. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef] [Green Version]
- Vintrou, E.; Desbrosse, A.; Bégué, A.; Traoré, S.; Baron, C.; Seen, D.L. Crop area mapping in West Africa using landscape stratification of MODIS time series and comparison with existing global land products. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 83–93. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Frolking, S.; Li, C.; Moore, B. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 2006, 100, 95–113. [Google Scholar] [CrossRef]
- Van Niel, T.G.; Mcvicar, T.R. Determining temporal windows for crop discrimination with remote sensing: A case study in south-eastern Australia. Comput. Electron. Agric. 2004, 45, 91–108. [Google Scholar] [CrossRef]
- White, E.V.; Roy, D.P. A contemporary decennial examination of changing agricultural field sizes using Landsat time series data. Geo Geogr. Environ. 2015, 2, 33–54. [Google Scholar] [CrossRef] [PubMed]
- Bargiel, D.; Herrmann, S. Multi-temporal land-cover classification of agricultural areas in two European regions with high resolution spotlight TerraSAR-X data. Remote Sens. 2011, 3, 859–877. [Google Scholar] [CrossRef] [Green Version]
- Jia, K.; Yao, Y.; Wei, X.; Shuai, G.; Bo, J.; Xiang, Z. Research progress in remote sensing estimation of vegetation coverage. Adv. Earth Sci. 2013, 28, 774–782. [Google Scholar]
- Patil, A.; Ishwarappa, R.K. Classification of crops using FCM segmentation and texture, color feature. World J. Sci. Technol. 2013, 2121–2123. [Google Scholar]
- Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L. Prioritizing climate change adaptation needs for food security in 2030. Science 2008, 319, 607. [Google Scholar] [CrossRef]
- Portmann, F.T.; Siebert, S.; Döll, P. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 2010, 24, 1–24. [Google Scholar] [CrossRef]
- Susana, D.P.; Pablo, R.G.; David, H.L.; Beatriz, F.G. Vicarious Radiometric Calibration of a Multispectral Camera on Board an Unmanned Aerial System. Remote Sens. 2014, 6, 1918–1937. [Google Scholar]
- Mesas-Carrascosa, F.J.; Notario-García, M.D.; Meroño De Larriva, J.E.; Emilio, M.; Manuel, S.; García-Ferrer Porras, A. Validation of measurements of land plot area using UAV imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 270–279. [Google Scholar] [CrossRef]
- Rokhmana, C.A. The Potential of UAV-based Remote Sensing for Supporting Precision Agriculture in Indonesia. Procedia Environ. Sci. 2015, 24, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Córcoles, J.I.; Ortega, J.F.; Hernández, D.; Moreno, M.A. Estimation of leaf area index in onion (Allium cepa L.) using an unmanned aerial vehicle. Biosyst. Eng. 2013, 115, 31–42. [Google Scholar] [CrossRef]
- Sona, G.; Passoni, D.; Pinto, L.; Pagliari, D.; Facchi, A. Uav Multispectral Survey to Map Soil and Crop for Precision Farming Applications. In Proceedings of the Remote Sensing and Spatial Information Sciences Congress: International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences Congress, Prague, Czech Republic, 12–19 July 2016; International Society for Photogrammetry and Remote Sensing (ISPRS): Hannover, Germany, 2016; Volume XLI-B1, pp. 1023–1029. [Google Scholar]
- Ballesteros, R.; Ortega, J.F.; Hernandez, D.; Moreno, M.A. Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part I: Description of image acquisition and processing. Precis. Agric. 2014, 15, 579–592. [Google Scholar] [CrossRef]
- Lelong, C.C.D. Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots. Sensors 2008, 8, 3557–3585. [Google Scholar] [CrossRef]
- Chang, J.; Hansen, M.C.; Pittman, K.; Carroll, M.; DiMiceli, C. Corn and soybean mapping in the United States using MODIS time-series data sets. Agron. J. 2007, 99, 1654–1664. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, Q.; Chen, Z.; Jia, L.; Zhou, Y.; Cai, C. Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 476–485. [Google Scholar]
- Zhang, X.; Jiao, Q.; Zhang, B.; Chen, Z.C. Preliminary study on extracting crop planting patterns using MODIS_EVI image time series. Trans. Chin. Soc. Agric. Eng. 2008, 24, 161–165. [Google Scholar]
- Xiong, Q.; Huang, J. Monitoring the planting area of autumn crops using the time series characteristics of NDVI index. Trans. Chin. Soc. Agric. Eng. 2009, 25, 144–148. [Google Scholar]
- Cai, X.; Cui, Y. Extraction of crop planting structure in irrigation area based on heterogeneous multi-temporal remote sensing data. Trans. Chin. Soc. Agric. Eng. 2009, 25, 124–130. [Google Scholar]
- He, X. Research on Remote Sensing Extraction of Corn Planting Area Based on Multi-Source Data Fusion. Ph.D. Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2010. [Google Scholar]
- Huang, Q.; Tang, H.; Zhou, Q.; Wu, W.; Wang, L.; Zhang, L. Remote sensing extraction and growth monitoring of planting structure of main crops in Northeast China. Chin. J. Agric. Eng. 2010, 26, 218–223. [Google Scholar]
- Hao, W.; Mei, X.; Cai, X.; Cai, X.; Jian, T.; Qin, L. Crop distribution information extraction in the three Northeast provinces based on multi-temporal remote sensing images. Chin. J. Agric. Eng. 2011, 27, 201–207. [Google Scholar]
- Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, Y.; Zhang, F.; Yue, D.; Tang, H. Crop planting information extraction based on multi-temporal remote sensing images. Trans. Chin. Soc. Agric. Eng. 2012, 28, 134–141. [Google Scholar]
- Foerster, S.; Kaden, K.; Foerster, M.; Itzerott, S. Crop type mapping using spectral–temporal profiles and phenological information. Comput. Electron. Agric. 2012, 89, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Gong, P.; Biging, G.S. Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sens. Environ. 2014, 140, 1–13. [Google Scholar] [CrossRef]
- Tang, H.; Wu, W.; Yang, P. Research progress in remote sensing monitoring of crop spatial pattern. Chin. Agric. Sci. 2010, 43, 2879–2888. [Google Scholar]
- Wang, N. China Wheat Remote Sensing Dynamic Monitoring and Yield Estimation; China Science and Technology Press: Beijing, China, 1996. [Google Scholar]
- Xu, W.; Tian, Y. Research progress on remote sensing extraction methods of crop planting area. J. Yunnan Agric. Univ. Nat. Sci. 2005, 20, 94–98. [Google Scholar]
- Zhao, C.; Qian, L. Comparison of supervised and unsupervised classification of remote sensing images. J. Henan Univ. Nat. Ed. 2004, 34, 90–93. [Google Scholar]
- Yan, R.; Jing, Y.; He, X. Research progress on remote sensing extraction of crop planting area. Anhui Agric. Sci. 2010, 38, 14767–14768. [Google Scholar]
- Wang, N.; Li, Q.; Du, X.; Zhang, Y.; Wang, H. Remote sensing identification of main crops in northern Jiangsu based on univariate feature selection. J. Remote Sens. 2017, 21, 519–530. [Google Scholar]
- Bouman, B.A.M.; Uenk, D. Crop classification possibilities with radar in ERS-1 and JERS-1 configuration. Remote Sens. Environ. 1992, 40, 1–13. [Google Scholar] [CrossRef]
- Feng, A.; He, H.; Liu, L.; Ren, X.; Zhang, L.; Ge, R.; Zhao, F. Comparative study on identification methods of winter wheat growth period in Yucheng farmland ecosystem based on multi-source data. Remote Sens. Technol. Appl. 2016, 31, 958–965. [Google Scholar]
- De Espindola, G.M.; De Aguiar, A.P.D.; Pebesma, E.; Camara, G.; Fonseca, L. Agricultural land use dynamics in the Brazilian Amazon based on remote sensing and census data. Appl. Geogr. 2012, 32, 240–252. [Google Scholar] [CrossRef]
- Khan, M.R.; De Bie, C.A.; Van Keulen, H.; Smaling, E.; Real, R. Disaggregating and mapping crop statistics using hypertemporal remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 36–46. [Google Scholar] [CrossRef]
- Barnwal, P.; Kotani, K. Climatic impacts across agricultural crop yield distributions: An application of quantile regression on rice crops in Andhra Pradesh, India. Ecol. Econ. 2013, 87, 95–109. [Google Scholar] [CrossRef]
- Song, Q.; Zhou, Q.; Wu, W.; Hu, Q.; Yu, Q.; Tang, H. Research progress of multi-source data fusion in crop remote sensing identification. Chin. Agric. Sci. 2015, 48, 1122–1135. [Google Scholar]
- Leff, B.; Ramankutty, N.; Foley, J.A. Geographic distribution of major crops across the world. Glob. Biogeochem. Cycles 2004, 18. [Google Scholar] [CrossRef]
- Liu, J.; Fritz, S.; Van Wesenbeeck, C.F.A.; Fuchs, M.; You, L.; Obersteiner, M.; Hong, Y. A spatially explicit assessment of current and future hotspots of hunger in Sub-Saharan Africa in the context of global change. Glob. Planet. Chang. 2008, 64, 222–235. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Z.; Tang, P.; Li, Z.; Wu, W.; Yang, P.; You, L.; Tang, H. Analysis on the spatiotemporal changes of rice planting areas and yields in China in the past 30 years. J. Geogr. Sci. 2013, 68, 680–693. [Google Scholar]
- Pervez, M.S.; Brown, J.F. Mapping irrigated lands at 250-m scale by merging MODIS data and national agricultural statistics. Remote Sens. 2010, 2, 2388–2412. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.F.; Pervez, M.S. Merging remote sensing data and national agricultural statistics to model change in irrigated agriculture. Agric. Syst. 2014, 127, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Friedl, M.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A. MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Zhao, X.; Liu, B.; Yi, L.; Zuo, L.; Wen, Q.; Liu, F.; Xu, J.; Hu, S. A 2010 update of National land use/cover database of China at 1: 100000 scale using medium spatial resolution satellite images. Remote Sens. Environ. 2014, 149, 142–154. [Google Scholar] [CrossRef]
- Chen, D.; Chang, N.; Xiao, J.; Zhou, Q.; Wu, W. Mapping dynamics of soil organic matter in croplands with MODIS data and machine learning algorithms. Sci. Total Environ. 2019, 669, 844–855. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Wu, W.; Zhang, L.; Liao, A.P.; Peng, S.; Tang, H.J. A comparative analysis of five global cropland datasets in China. Sci. China Earth Sci. 2016, 59, 2307–2317. [Google Scholar] [CrossRef]
- See, L.; Schepaschenko, D.; Lesiv, M.; McCallum, I.; Fritz, S.; Comber, A.; Perger, C.; Schill, C.; Zhao, Y.; Maus, V. Building a hybrid land cover map with crowdsourcing and geographically weighted regression. ISPRS J. Photogramm. Remote Sens. 2015, 103, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Henkel, K.; Herold, M.; Churkina, G. Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sens. Environ. 2006, 101, 534–553. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; Mccallum, I.; You, L.; Bun, A.; Moltchanova, E.; Duerauer, M.; Albrecht, F.; Schill, C.; Perger, C.; et al. Mapping global cropland and field size. Glob. Chang. Biol. 2015, 21, 1980–1992. [Google Scholar] [CrossRef]
- Lu, M.; Wu, W.; You, L.; Chen, D.; Zhang, L.; Yang, P.; Tang, H. A synergy cropland of china by fusing multiple existing maps and statistics. Sensors 2017, 17, 1613. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, T.; Iwao, K.; Yamagata, Y. Creation of a global land cover and a probability map through a new map integration method. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 70–77. [Google Scholar] [CrossRef]
- Schepaschenko, D.G.; Shvidenko, A.Z.; Lesiv, M.Y.; Ontikov, P.V.; Shchepashchenko, M.V.; Kraxner, F. Estimation of forest area and its dynamics in Russia based on synthesis of remote sensing products. Contemp. Probl. Ecol. 2015, 8, 811–817. [Google Scholar] [CrossRef] [Green Version]
- Fritz, S.; You, L.; Bun, A.; See, L.; Mccallum, I.; Schill, C.; Perger, C.; Liu, J.; Hansen, M.; Obersteiner, M. Cropland for sub-saharan Africa: A synergistic approach using five land cover data sets. Geophys. Res. Lett. 2011, 38, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Waldner, F.; Fritz, S.; Di Gregorio, A.; Defourny, P. Mapping priorities to focus cropland mapping activities: Fitness assessment of existing global, regional and national cropland maps. Remote Sens. 2015, 7, 7959–7986. [Google Scholar] [CrossRef] [Green Version]
- Dendoncker, N.; Rounsevell, M.; Bogaert, P. Spatial analysis and modelling of land use distributions in Belgium. Computers, Environ. Urban Syst. 2007, 31, 188–205. [Google Scholar] [CrossRef]
- Song, X.; Huang, C.; Feng, M.; Sexton, J.O.; Channan, S.; Townshend, J.R. Integrating global land cover products for improved forest cover characterization: An application in North America. Int. J. Digit. Earth 2014, 7, 709–724. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y. Principles and Methods of Remote Sensing Application Analysis; Science Press: Beijing, China, 2013. [Google Scholar]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Deng, N.; Tian, Y. A New Method in Data Mining—Support Vector Machines; Science Press: Beijing, China, 2004. [Google Scholar]
- Baumann, M.; Ozdogan, M.; Kuemmerle, T.; Wendland, K.J.; Esipova, E.; Radeloff, V.C. Using the Landsat record to detect forest-cover changes during and after the collapse of the Soviet Union in the temperate zone of European Russia. Remote Sens. Environ. 2012, 124, 174–184. [Google Scholar] [CrossRef]
- Kaya, G.T. A hybrid model for classification of remote sensing images with linear SVM and support vector selection and adaptation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1988–1997. [Google Scholar] [CrossRef]
- Breunig, F.M.; Galvao, L.S.; Formaggio, A.R.; Epiphanio, J.C.N. Classification of soybean varieties using different techniques: Case study with Hyperion and sensor spectral resolution simulations. J. Appl. Remote Sens. 2011, 5, 053533. [Google Scholar] [CrossRef] [Green Version]
- Jin, N.; Tao, B.; Ren, W.; Feng, M.; Sun, R.; He, L.; Zhuang, W.; Yu, Q. Mapping Irrigated and Rainfed Wheat Areas Using Multi-Temporal Satellite Data. Remote Sens. 2016, 8, 207. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Tang, J.; Mi, S.; Zhang, C.; Zhao, L. Research progress on remote sensing image fusion classification methods based on support vector machines. Anhui Agric. Sci. 2010, 17, 9235–9238. [Google Scholar]
- Liu, Y. Research on Land Cover Classification Method Based on Semi-Supervised Integrated Support Vector Machine. Ph.D. Thesis, Graduate University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology), Beijing, China, 2013. [Google Scholar]
- Bigdeli, B.; Samadzadegan, F.; Reinartz, P. A Multiple SVM System for Classification of Hyperspectral Remote Sensing Data. J. Indian Soc. Remote Sens. 2013, 41, 763–776. [Google Scholar] [CrossRef] [Green Version]
- Tuia, D.; Muñoz-Marí, J.; Kanevski, M.; Camps-Valls, G. Structured Output SVM for Remote Sensing Image Classification. J. Signal Process. Syst. 2011, 65, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Jia, K.; Li, Q.; Tian, Y.; Wu, B. Research progress in remote sensing image classification methods. Spectrosc. Spectr. Anal. 2011, 10, 2618–2623. [Google Scholar]
- Shoemaker, D.A.; Cropper, W.P. Application of remote sensing, an artificial neural network leaf area model, and a process-based simulation model to estimate carbon storage in Florida slash pine plantations. J. For. Res. 2010, 21, 171–176. [Google Scholar] [CrossRef]
- Zhang, H. Research on Remote Sensing Image Classification Based on BP Neural Network. Ph.D. Thesis, Shandong Normal University, Jinan, China, 2013; p. 81. [Google Scholar]
- Zhao, J. Research on Remote Sensing Image Land Cover Classification Based on BP Artificial Neural Network. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2010. [Google Scholar]
- Jiang, J. Research on High-Resolution Remote Sensing Image Classification Based on BP Neural Network. Ph.D. Thesis, Capital Normal University, Beijing, China, 2011. [Google Scholar]
- Liu, X. Research on Remote Sensing Image Classification Based on Improved BP Neural Network. Ph.D. Thesis, Chang’an University, Xi’an, China, 2009. [Google Scholar]
- Wang, C.; Wu, W.; Zhang, J. Remote sensing image classification method based on BP neural network. J. Liaoning Tech. Univ. Nat. Sci. Ed. 2009, 1, 32–35. [Google Scholar]
- Zhang, R.; Wan, L.; Zhang, F.; Shi, Y. Research progress on remote sensing classification methods of land use. South North Water Divers. Water Sci. Technol. 2006, 2, 39–42. [Google Scholar]
- Chasmer, L.; Hopkinson, C.; Veness, T.; Quinton, W.; Baltzer, J. A decision-tree classification for low-lying complex land cover types within the zone of discontinuous permafrost. Remote Sens. Environ. 2014, 143, 73–84. [Google Scholar] [CrossRef]
- Zhang, X. Implementation of Decision Tree Classifier and Its Application in Remote Sensing Image Classification. Ph.D. Thesis, Lanzhou Jiaotong University, Lanzhou, China, 2013. [Google Scholar]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Fang, K.; Wu, J.; Zhu, J.; Xie, B. Research review of random forest methods. Stat. Inf. Forum 2011, 26, 32–38. [Google Scholar]
- Schultz, B.; Immitzer, M.; Formaggio, A.; Sanches, I.; Luiz, A.; Atzberger, C. Self-guided segmentation and classification of multi-temporal Landsat 8 images for crop type mapping in Southeastern Brazil. Remote Sens. 2015, 7, 14482–14508. [Google Scholar] [CrossRef] [Green Version]
- Song, Q. Research on the Extraction Method of Crop Planting Structure Based on GF-1/WFV and Object-Oriented. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2016. [Google Scholar]
- Huang, Z. Research on Multi-Scale Methods in Object-Oriented Image Analysis. Ph.D. Thesis, National University of Defense Technology, Zunyi, China, 2014. [Google Scholar]
- Yi, L. Uncertainty Analysis of Object-Oriented Remote Sensing Image Classification. Ph.D. Thesis, Wuhan University, Wuhan, China, 2011. [Google Scholar]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xiao, P.; Feng, X. Impervious surface extraction from high-resolution satellite image using pixel- and object-based hybrid analysis. Int. J. Remote Sens. 2013, 34, 4449–4465. [Google Scholar] [CrossRef]
- Voltersen, M.; Berger, C.; Hese, S.; Schmullius, C. Object-based land cover mapping and comprehensive feature calculation for an automated derivation of urban structure types at block level. Remote Sens. Environ. 2014, 154, 192–201. [Google Scholar] [CrossRef]
- Qin, Y.; Niu, Z.; Chen, F.; Li, B.; Ban, Y. Object-based land cover change detection for cross-sensor images. Int. J. Remote Sens. 2013, 34, 6723–6737. [Google Scholar] [CrossRef]
- Xing, C. Hyperspectral Remote Sensing Image Classification Based on Deep Learning. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2016. [Google Scholar]
- Zuo, Y. Remote Sensing Image Classification Based on Active Deep Learning. Ph.D. Thesis, Yanshan University, Qinhuangdao, China, 2016. [Google Scholar]
- Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral Image Classification Using Deep Pixel-Pair Features. IEEE Trans. Geosci. Remote Sens. 2017, 55, 844–853. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Liu, P.; Choo, K.R.; Huang, F. Spectral–spatial multi-feature-based deep learning for hyperspectral remote sensing image classification. Soft Comput. 2017, 21, 213–221. [Google Scholar] [CrossRef]
- Zhou, X.; Li, S.; Tang, F.; Qin, K.; Hu, S.; Liu, S. Deep Learning with Grouped Features for Spatial Spectral Classification of Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 97–101. [Google Scholar] [CrossRef]
- Michez, A.; Piégay, H.; Lisein, J.; Claessens, H.; Lejeune, P. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system. Environ. Monit. Assess. 2016, 188, 146. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Shi, Y.; Tang, H.; Peng, Y.; Xie, A.; Liu, B.; Wu, W. eFarm: A Tool for Better Observing Agricultural Land Systems. Sensors 2017, 17, 453. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Liu, R.; Liu, S.; Liu, Q.; Liu, F.; Zhou, G. Monitoring of winter wheat coverage changes based on low-altitude drone remote sensing. Trans. Chin. Soc. Agric. Eng. 2012, 28, 160–165. [Google Scholar]
- Tian, Z.; Fu, Y.; Liu, S.; Liu, F. A rapid classification method of crops based on low-altitude remote sensing by drones. Trans. Chin. Soc. Agric. Eng. 2013, 7, 109–116. [Google Scholar]
- Zhang, Y.; Tao, P.; Liang, S.; Liang, W. Application of UAV remote sensing in forest resource survey. J. Southwest For. Univ. 2011, 3, 49–53. [Google Scholar]
- Xu, H.; Ding, X.; Han, N.; Deng, J.; Wang, K. Preliminary study on geometric correction of remote sensing image of rotary-wing UAV. Zhejiang J. Agric. 2009, 21, 63–65. [Google Scholar]
- Popescu, D.; Ichim, L. Aerial image segmentation by use of textural features. In Proceedings of the 20th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 13–15 October 2016; pp. 721–726. [Google Scholar]
- Jin, X.; Liu, S.; Baret, F.; Hemerlé, M.; Comar, A. Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sens. Environ. 2017, 198, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Milas, A.S.; Arend, K.; Mayer, C.; Simonson, M.A.; Mackey, S. Different colours of shadows: Classification of UAV images. Int. J. Remote Sens. 2017, 38, 3084–3100. [Google Scholar] [CrossRef]
- Li, Y. Research on UAV/RS3D Image Pairing Forest Information Extraction Method. Master’s Thesis, Beijing Forestry University, Beijing, China, 2016. [Google Scholar]
- Zhang, C.; Qiao, M.; Liu, Z.; Jin, H.; Ning, M.; Sun, H. Optimization of texture feature scales for seed production corn field recognition based on UAV and satellite remote sensing images. Trans. Chin. Soc. Agric. Eng. 2017, 33, 98–104. [Google Scholar]
- Zou, K.; Zhang, R.; Jiang, Y. Cotton field identification and area estimation based on drone imaging. J. Shihezi Univ. Nat. Sci. Ed. 2018, 6, 1–7. [Google Scholar]
- Li, M.; Huang, Y.; Li, X.; Peng, D.; Xie, J. Rice planting information extraction based on UAV remote sensing images. Trans. Chin. Soc. Agric. Eng. 2018, 34, 108–114. [Google Scholar]
- Dai, J.; Zhang, G.; Guo, P.; Zeng, T.; Cui, M.; Xue, J. Classification method of main crops in northern Xinjiang based on UAV remote sensing visible light images. Trans. Chin. Soc. Agric. Eng. 2018, 34, 122–129. [Google Scholar]
- Xue, M.; Zhang, H.; Yang, J.; Li, X. Information extraction of terraces based on drone imagery and topographic index. Comput. Appl. Res. 2019, 9, 1–12. [Google Scholar]
- Zarco-Tejada, P.J.; Diaz-Varela, R.; Angileri, V.; Loudjani, P. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur. J. Agron. 2014, 55, 89–99. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Qin, R.; Huang, X.; Fang, Y.; Liu, L. Classification of Ultra-High Resolution Orthophotos Combined with DSM Using a Dual Morphological Top Hat Profile. Remote Sens. 2015, 7, 16422–16440. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.H. Land Cover Classification with High Spatial Resolution Using Orthoimage and DSM Based on Fixed-Wing UAV. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2017, 35, 1–10. [Google Scholar]
- Nevalainen, O.; Honkavaara, E.; Tuominen, S.; Viljanen, N.; Hakala, T.; Yu, X.; Hyyppä, J.; Saari, H.; Pölönen, I.; Imai, N.; et al. Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging. Remote Sens. 2017, 9, 185. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Huang, K.; Kuo, Y.; Tsai, H.; Lin, L. Spatial and Spectral Hybrid Image Classification for Rice Lodging Assessment through UAV Imagery. Remote Sens. 2017, 9, 583. [Google Scholar] [CrossRef] [Green Version]
- Zisi, T.; Alexandridis, T.; Kaplanis, S.; Navrozidis, I.; Polychronos, V. Incorporating Surface Elevation Information in UAV Multispectral Images for Mapping Weed Patches. J. Imaging 2018, 4, 132. [Google Scholar] [CrossRef] [Green Version]
- Mao, Z.; Deng, L.; Zhao, X.; Hu, Y. Using drone remote sensing to extract corn lodging information in breeding plots. Chin. Agric. Sci. Bull. 2019, 35, 62–68. [Google Scholar]
- Li, A. Research on Rice Yield Estimation Based on UAV Digital Image. Master’s Thesis, Shenyang Agricultural University, Shenyang, China, 2018. [Google Scholar]
- Lottes, P.; Khanna, R.; Pfeifer, J.; Siegwart, R.; Stachniss, C. UAV-based crop and weed classification for smart farming. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3024–3031. [Google Scholar]
- Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Spatiotemporal ecological vulnerability analysis with statistical correlation based on satellite remote sensing in Samara, Russia. J. Environ. Manag. 2021, 285, 112138. [Google Scholar] [CrossRef]
Remote Sensing Classification of Farmland Vegetation | Classification | |
---|---|---|
Farmland vegetation classification based on vegetation index | Normalized difference vegetation index, enhanced vegetation index, surface temperature, etc. | |
Farmland vegetation classification based on spectral band | Remote sensing recognition of crops based on single image | |
Remote sensing recognition of crops based on multi-temporal remote sensing images | Single feature parameter recognition | |
Multiple feature parameter recognition | ||
Multi-feature parameter statistical model | ||
Farmland vegetation classification based on multi-source data fusion | Data consistency scoring | |
Regression analysis | ||
Farmland vegetation classification based on machine learning | Support vector machine algorithm | |
Neural network algorithm | ||
Decision tree algorithm | ||
Object-oriented machine learning algorithms | ||
Deep learning algorithm | ||
Crop classification based on drone remote sensing |
Method | Applicability | Data Source | Classification | Advantages | Disadvantage | |
---|---|---|---|---|---|---|
Remote sensing recognition of crops based on single image | Suitable for areas with relatively simple crop planting structure | SPOT-5 | Decision tree | High efficiency and strong operability | Long revisit period and poor accuracy when the “critical phenological period” is not obvious | |
IRS-1D | Support vector machines | |||||
CBERS-02B | Neural networks | |||||
Maximum likelihood | ||||||
LANDSAT-TM | Spectral angle mapping | |||||
HJ-1B | ||||||
HJ-1A | ||||||
MODIS | ||||||
Remote sensing recognition of crops based on multi-temporal remote sensing images | Single feature parameter recognition | Suitable for areas with relatively simple crop planting structure | MODIS | Fast Fourier transform | Simple operation and high efficiency | Feature selection is subjective and has limitations in areas with complex and diverse crop types |
TM/ETM+ | Unsupervised classification and spectral coupling technology | |||||
BP neural network | ||||||
Threshold method | ||||||
Wavelet transform | ||||||
Shortest distance | ||||||
Multiple feature parameter recognition | Suitable for areas with complex crop planting structures | MODIS | Threshold method | Use multiple spectral time series feature quantities to better capture the characteristics of each type of crop that is different from other crops | Reduce the efficiency of data processing and calculation and increase the accumulation of errors | |
AVHRR | Classification regression tree | |||||
SPOT VGT | See5.0 | |||||
ASTER | Unsupervised classification | |||||
AWIFS | Spectral matching technology | |||||
Landsat | Image segmentation | |||||
TM/ETM+ | Random forest | |||||
HJ-1A/B | ||||||
Multi-feature parameter statistical model | Suitable for areas with land consolidation, diverse terrain, and complex planting structure | MODIS | Temporal decomposition model | Higher extraction accuracy of crop planting area | Stability and universality need to be further strengthened and improved | |
VHRR | Neural network model | |||||
SPOT-VEG | Independent component analysis model | |||||
CPPI index model | ||||||
ETATION |
Fusion Method | Data Source | Research Area | Spatial Resolution | Fusion Process | Literature Source |
---|---|---|---|---|---|
Data consistency scoring | GLC2000, MODIS, IGBP DISCover | Global | 1 km | Calculate affinity index for multi-source data set fusion mapping | [58] |
GLC-2000, MODIS VCF, GIS data, statistical data | Russia | 1 km | Establish a fusion information system for multi-source data set fusion mapping | [62] | |
GLC-2000, MODIS, GlobCover2005, GEOCOVER, cropland probability layer | Global | 1 km | Analyze the consistency of remote sensing data products, set weights, and establish fusion rules | [59,63] | |
FROM-GLC, GlobCover2009 et al. regional data set (Corine Land Cover et al.), national data set | Global | 250 m | Multi-index analysis, scoring different data sets, setting weights, and fusion | [64] | |
Regression analysis | USGS-Hydro1k DEM, PELCOM, slope, soil data, meteorological data, land use ratio data | Belgium | 1.1 km | Construct a logistic regression model of spatial autocorrelation to predict the spatial distribution of different land cover types | [65] |
GLC2000, MOD12C5, MOD12C4, GLCNMO, UMD, GlobCover | Global | 5′ | Using logistic regression model to predict types of land cover | [62] | |
GLCC, GlobCover GLC2000, UMD LC, MODIS LC, MODIS VCF, | North America | 5 km | Use regression tree model to integrate global and regional land cover products | [66] | |
GlobCover, GLC2000, MODIS | Global | 1 km | Using GWR logistic regression model to predict the type of land cover in the sample-free area | [57] | |
Land cover (MODIS LC, regional mosaics GLC2000, GlobeCover, GLCNMO), tree cover (Hansen’s TC, Landsat VCF, MODIS VCF) | Global | 1 km | Using GWR logistic regression model to predict the proportion of forest coverage in the sample-free area | [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, D.; Su, X.; Weng, B.; Wang, T.; Yang, F. Research Progress on Remote Sensing Classification Methods for Farmland Vegetation. AgriEngineering 2021, 3, 971-989. https://doi.org/10.3390/agriengineering3040061
Fan D, Su X, Weng B, Wang T, Yang F. Research Progress on Remote Sensing Classification Methods for Farmland Vegetation. AgriEngineering. 2021; 3(4):971-989. https://doi.org/10.3390/agriengineering3040061
Chicago/Turabian StyleFan, Dongliang, Xiaoyun Su, Bo Weng, Tianshu Wang, and Feiyun Yang. 2021. "Research Progress on Remote Sensing Classification Methods for Farmland Vegetation" AgriEngineering 3, no. 4: 971-989. https://doi.org/10.3390/agriengineering3040061
APA StyleFan, D., Su, X., Weng, B., Wang, T., & Yang, F. (2021). Research Progress on Remote Sensing Classification Methods for Farmland Vegetation. AgriEngineering, 3(4), 971-989. https://doi.org/10.3390/agriengineering3040061