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Abstract: Accurate mapping of weed distribution within a field is a first step towards effective weed
management. The aim of this work was to improve the mapping of milk thistle (Silybum marianum)
weed patches through unmanned aerial vehicle (UAV) images using auxiliary layers of information,
such as spatial texture and estimated vegetation height from the UAV digital surface model. UAV
multispectral images acquired in the visible and near-infrared parts of the spectrum were used
as the main source of data, together with texture that was estimated for the image bands using a
local variance filter. The digital surface model was created from structure from motion algorithms
using the UAV image stereopairs. From this layer, the terrain elevation was estimated using a focal
minimum filter followed by a low-pass filter. The plant height was computed by subtracting the
terrain elevation from the digital surface model. Three classification algorithms (maximum likelihood,
minimum distance and an object-based image classifier) were used to identify S. marianum from other
vegetation using various combinations of inputs: image bands, texture and plant height. The resulting
weed distribution maps were evaluated for their accuracy using field-surveyed data. Both texture
and plant height have helped improve the accuracy of classification of S. marianum weed, increasing
the overall accuracy of classification from 70% to 87% in 2015, and from 82% to 95% in 2016. Thus,
as texture is easier to compute than plant height from a digital surface model, it may be preferable to
be used in future weed mapping applications.

Keywords: milk thistle; precision farming; digital surface model; plant height; texture; Sf structure
from motion

1. Introduction

Understanding and limiting the damage that can be caused by weeds to a crop, either within
the current or upcoming growing season, is central to the effective overall management of the crop.
The most common way of treating weeds is the application of herbicides, but this method exposes
both the consumers and the environment to potential risks. Silybum marianum or milk thistle is a weed
akin to the common thistle. It belongs to the Asteraceae family and can be either an annual or biennial
plant. It has a characteristic purple-coloured flower, while its leaves are green with white veins. It is
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hard to control using herbicides in fields, and its thorny leaves and high posture are a nuisance to
grazing animals in pastures. It grows in dense strands and is more competitive than grass weeds,
growing taller to overshadow adjacent species that compete for light [1].

In recent years, unmanned aerial vehicles (UAVs) have proven to be useful in agricultural
management. Their applications vary, but usually involve remote sensing, mapping, land modelling
and precision agriculture. The most common use of UAVs in weed management is to acquire
multispectral images in the visible and infrared spectrum for weed identification and mapping,
however, a number of other potential uses have emerged, including the application of pesticides
and other agrochemicals by the UAV itself [2]. Mapping weeds using UAVs provides high spatial
resolutions, usually on the order of a few centimetres. This is vital in order to detect small weeds,
weeds at a young stage, or within low crop cover with high background soil signal. In addition to
the advantage of spatial resolution, UAVs offer temporal flexibility and can collect data at any time
that fits the user’s requirements, as compared to the satellite images. Moreover, UAVs can acquire
images during overcast conditions, thus bypassing a frequent problem with satellite remote sensing,
although cloud shadows and varying illumination conditions during image acquisition may affect
data quality [3,4].

A challenge encountered with remote sensing of weeds is low identification accuracy. The mixing
of the spectral reflectance of weeds, crop and bare soil in pixels confuses the classification algorithm—an
issue that has been ignored in most applications of remote sensing in the detection of weeds [5].
Although satisfactory for site-specific weed management, rather medium to low overall accuracies
(53-69%) were reported while mapping weeds (mainly Cyperus rotundus L.) in four maize fields in
central Italy [6]. The lowest accuracies were attributed to the spectral resolution and spectral sensitivity
of the near infrared (NIR) band. The accuracy of mapping broadleaved weeds (Chenopodium album L.
and Convolvulus arvensis L.) in a sunflower field in southern Spain ranged from 19% to 100%, with lower
performances attributed to the use of a UAV camera capturing images in the visible wavelengths
only [7]. Tamouridou et al. [8] achieved accuracy of 87.04% and Kappa statistic of 74% using the
maximum likelihood algorithm in multispectral images (green—red-near-infrared) along with the layer
of texture, for the determination of S. marianum clusters in a field in which the dominant species was
Avena sterilis L. Pantazi et al. [9] used the Supervised Kohonen Network, Counter-Propagation Artificial
Network and XY-Fusion Network on a multispectral UAV image (green-red-near-infrared) along
with texture, for the determination of S. marianum clusters in the same field. The levels of accuracy
achieved were high (>95% overall accuracy), partially attributed to the near-infrared band and texture
layer. Using machine learning algorithms (support vector machines) it was possible to achieve high
accuracies of mapping broadleaved weeds in maize and sunflower fields even using RGB images
acquired from a UAV [10]. The features offering the higher discrimination capacity were selected from
a set of several statistics and measures of different nature, and the resulting map achieved an accuracy
as high as 95.5%.

With the increasing availability of very-fine-resolution UAV imagery, the question of optimum
spatial resolution has been examined in weed mapping [8,11]. While mapping the early stages of
broadleaved weeds, spatial resolution better than 2 cm had higher performance than 4 cm [7]. However,
the highest resolutions did not necessarily produce the best results, as some of the detailed information
was merely noise to the classification algorithm. This is the case for large broadleaved weeds (e.g.,
S. marianum) or weed patches [8]. The use of lower resolutions and the subsequent speed of processing
could lead to effective real-time decision support systems [11].

Object-based image analysis (OBIA) is an image processing concept that treats adjacent pixels
as objects, taking into consideration parameters of object shape and homogeneity, on top of the
spectral information. As weeds tend to grow into patches, OBIA has been used in weed mapping
using UAV images. Multispectral UAV images in visible and near-infrared wavelengths of a maize
field were used to identify a broadleaved weed (Amaranthus blitoides) and a grass weed (Sorghum
halepense) through OBIA. The resulting map achieved very high weed detection accuracy (86%) and
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very high agreement with observed field densities (r> = 0.89) [3]. A UAV was used to collect visible
and near-infrared multispectral images over two sunflower fields infested with broadleaved weeds
(Amaranthus blitoides S. Wats, Sinapis arvensis L., Convolvulus arvensis L., and Chenopodium album L.).
Using OBIA, the weeds were mapped with variable accuracy, ranging from 50% for images in the
visible wavelengths and up to almost 100% for visible and near-infrared images, for both flying heights
tested (30-60 m above ground) [12].

In several studies, vegetation canopy height has been used to map biomass, identify vegetation
type, map ecological focus area for the European Common Agricultural Policy, and other applications.
Lidar (light detection and ranging) is an accurate method to measure canopy height through terrestrial
and aerial laser scanners onboard manned aircraft and UAVs, however, it requires expensive equipment
as compared to other methods and well-trained personnel to achieve accurate results. The use of
remotely sensed image stereopairs is a lower-cost alternative, which is based on photogrammetric
algorithms to estimate object height, such as structure from motion (SfM) and multiview stereo [13,14].
SfM has been popular for estimating object heights and volumes in various applications including
urban mapping, archaeological surveys and quarry monitoring [15]. In vegetation mapping, StM
has been used for mapping orchards’ tree height [14], maize height and above-ground biomass [16],
wheat height for fast field phenotyping [17], and barley biomass estimation [18]. Recently, plant
height was incorporated into a random forest-OBIA algorithm for segmentation of objects containing
weeds within rows of cotton and sunflower [19]. They report an improved weed detection accuracy,
as compared with previous work on maize [3]. Plant height in conjunction with a vegetation index
were also thresholded into binary maps to identify weeds in maize and sugar beet fields, and produce
site-specific herbicide application maps [20]. With this body of work, there is ample precedent for
the efficacy of using data on vegetation canopy height for a variety of purposes, which has not been
adequately tested in weed mapping.

The aim of this work was to demonstrate the improvement of accuracy of S. marianum weed
mapping through UAV images with the use of auxiliary layers of information, such as spatial texture
and estimated vegetation height from a UAV digital surface model.

2. Materials and Methods

2.1. Study Area

The research study to map S. marianum has taken place in a field of 10.1 ha in the southeast
suburbs of the city of Thessaloniki, Greece, with central coordinates (WGS’84) N 40°34'14”, E 22°59'44"
(Figure 1), where biological control of S. marianum using the fungus Microbotryum silybum had been
previously applied. The climate is Mediterranean with average annual precipitation of 450 mm and
average annual temperature of 20 °C.

The elevation is approximately 75 m a.m.s.l. and the topography is slightly inclined towards
southwest. This field was previously cultivated with cereals, but has not been used since 1990.
During these years, the intensity of S. marianum has increased. Other weeds that appear in the field
include Avena sterilis L., Bromus sterilis L., Solanum elaeagnifolium Cav, Conium maculatum L., Cardaria
draba L. and Rumex sp. L.

Figure 1 shows the orthomosaics of UAV images acquired in 2015 and 2016 (RGB = NIR, R, G).
Pink hues appear in areas where vegetation is healthy and chlorophyll is the dominant pigment, found
mainly in the central north and central south parts of the field in 2015 and central north and eastern
parts in 2016. Cyan hues appear in areas where herbaceous vegetation has senesced, mainly towards
the western part of the study area and other scattered locations. The cyan rectangular patch at the
southern tip in 2016 is a section where tillage was applied but not cultivated further.

Normally, S. marianum grows up to 1.5-2.0 m x 0.4-1.2 m (height x width) in the study area.
A photo of an S. marianum patch in the study area is displayed in Figure 2.
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Figure 1. Location of study area, unmanned aerial vehicle (UAV) orthomosaics acquired on
19 May 2015 and 22 April 2016, and field-surveyed data.

Figure 2. Photo of S. marianum patch in the study area, taken on 22 April 2016.

2.2. Data

2.2.1. UAV Data

The UAV images were acquired on two sunny days May 19, 2015 and April 22, 2016 using a
Canon 5110 NIR (12 Mpixels) attached to a fixed-wing UAV (Sensefly’s eBee). The camera’s sensor size
was 7.44 x 5.58 mm, providing images of 3000 x 4000 pixels in 4:3 aspect ratio, and during acquisitions
the focal length was 5.2 mm, shutter speed 1/2000 s, and aperture and ISO set to Auto. The image
bands include green (560 nm, full-width half-maximum (FWHM): 50 nm), red (625 nm, FWHM: 90 nm)
and near-infrared (850 nm, FWHM: 100 nm). Fifty-five images were taken during each flight from
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an altitude of 115 m above ground, with a 75% overlap and a 70% lateral overlap, each covering an
area of 120 m by 160 m with a ground sampling distance of 0.04 m (Figure 3). The individual images
were imported using the original geocoding information stored in the metadata of each image from
the UAV GPS, and numerous tie-points were automatically generated for the matching of the image
mosaic in Pix4Dmapper Pro software (http://pix4d.com/). Ground control points” locations were
collected using a dual frequency Spectra Precision SP80 GNSS receiver, using a real-time kinematic
(RTK) method. The final orthomosaics had a pixel size of 0.1 m (horizontal RMSE 0.08 m) (Figure 1).
The digital surface models (DMSs) of the area were produced from the point cloud using the SfM
technique of Pix4Dmapper Pro software.

e

Figure 3. A raw image acquired by the UAV on 22 April 2016 depicting weed patches (in dark) in the
centre of the study area (not in scale).

2.2.2. In-Situ Data

A Trimble GeoXH 2008 GPS (Sunnyvale, CA, USA) with EGNOS correction was used for in-situ
recording of vegetation types with accuracy better than 0.3 m. Plant patches were preferred over
individual plants to overcome the mismatch of accuracy between the orthomosaic and GPS receiver.
Thus, the in-situ field surveys recorded locations of large homogeneous patches of S. marianum and
patches of other vegetation types. Due to the large density and variation of other vegetation, more
than one species could be found in each patch of other vegetation type, excluding S. marianum.
These locations were verified visually on the orthomosaics before further use in the analyses. The field
surveys took place on 19 and 29 May 2015, 12 and 22 April 2016, and on 20 May 2016, where 245 points
were collected randomly along transects of the test site. Using a set of points, several polygons were
created that described the location of S. marianum patches and other vegetation patches. The area
covered by the training polygons of the two categories was the same to avoid bias of statistical
classification algorithms (142,000 pixels each). The remaining 188 points were used for evaluation
of the accuracy of the classification. This exceeded the minimum sample size for validation (N = 51),
which was estimated using the binomial probability theory, as applied previously in land cover
classification [21,22]:

N=272pq/E?

where p is the expected percent accuracy, 4 = 100 — p, E is the margin of error, and Z = 1.96 from
the standard normal deviant for the 95% 2-sided confidence level. An expected accuracy of 95% and


http://pix4d.com/

J. Imaging 2018, 4, 132 6 of 14

allowable error of 5% were selected for this standard field survey, resulting in a minimum sample size
of 51 points.

2.3. Digital Image Processing and Geographic Analysis

2.3.1. Surface Elevation Information and Texture

Auxiliary layers of information were produced to increase the level of description of vegetation
features, and eventually the accuracy of classification. These layers comprise image texture and
vegetation height across the field.

The layers of texture information were created by applying a local variance filter (7 x 7) to the
UAV image bands (Figure 4a—c,e—g). Higher discrimination ability of S. marianum was observed using
the texture from the near-infrared band, as reported for similar data in the same area [8], thus it was
retained for use in the image classification.

a 4, b W c o
e e f ,_ g o, h
,J:"" \d‘a\ %@\ !
i N , 3 |
b 4»} b ag ;
Texture ! ¥ Plant height ‘
5 T -f;j . (m) A
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|| - 0 100 200m A 1 G-
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Figure 4. Surface elevation information of 2015 (a-d) and 2016 (e-h) imagery in forms of texture from
green (a,e), red (b,f) and near-infrared bands (c¢,g), and plant height (d,h).

The DSM was employed to produce the plant height layer. In this study, a focal minimum of
40 x 40 was first applied on the DSM to locate local lower points. The choice of filter size was made
after experimentation in various filter dimensions so as to cover the largest S. marianum patches of the
study area. A low-pass filter of 40 x 40 was then applied to eliminate the extreme values. The resulting
layer was the terrain elevation (digital elevation model—DEM) where the ground was visible among
the plants, or the height of the lower plants in the locations with a consistent vegetation cover larger
than 40 x 40 pixels. The DEM layer was subtracted from the original DSM to estimate the plant
height [14,18] (Figure 4d,h).

The three texture layers (Figure 4a—c,d—f) appear rather similar in the north and east sides of the
field. However, texture from the green band (Figure 4a,d) has less contrast among patches of vegetation,
especially in the central and southern parts of the field. Several similarities are also evident between
the three texture layers and the plant height layer of each year (Figure 4d,h), as higher vegetation
appears to have more pronounced texture.
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2.3.2. Image Classification and Accuracy Assessment

Image classification in two classes (S. marianum weed and other vegetation) was performed
with three standard classifiers that have been used in weed mapping, two pixel-based and an
object-based classifier:

e The maximum likelihood (ML) algorithm is based on the assessment of the likelihood of a
pixel belonging to a specific category. This method uses the data of the training areas for the
assessment of the class centres, and the coexistence of the spectral classes are used to estimate
probabilities. In addition to average values, the variability of reflectance values of each spectral
class is considered.

e  The minimum distance (MD) algorithm uses the median vectors of each pure pixel class from
training areas (centre of each spectral class) and calculates the Euclidean distance of each unknown
pixel to each centre. Pixels are classified to the nearest centre unless a standard deviation or
threshold is set.

e  For the object-based image analysis (OBIA), the commercial software eCognition Developer 9.0
(Trimble GeoSpatial, Munich, Germany) was used. To create the object-oriented environment,
segmentation was applied using the ‘multiresolution segmentation” algorithm on a 40 scale,
which was more appropriate after testing for the size of the weed patches. The parameters for
determining object homogeneity, that is, shape and compactness, were assigned the values 0.1 and
1, respectively, which produced objects in a more meaningful way [23]. Classification of objects
was done using the nearest neighbour algorithm [24]. The in-situ collected samples were assigned
into objects that defined the classes of interest. The mean values of each input layer were used
appropriately as the features for each respective case of object-based classification. The algorithm
uses the distance between the features’ range of values for the object being classified with the
features’ range of values for the classes of interest, to define the membership degree to each class
and eventually assign the object to a class.

In addition to the image bands, the auxiliary layers of information (texture and plant height) were
used as inputs in the classification to improve its performance. A 3 x 3 majority filter was applied on
the classified image to remove the scattered individual pixels and improve the homogeneity of the
result. The filter size was selected following the suggestion of previous work for similar data in the
same area [8].

The classification evaluation was based on a comparison between the pixel classes derived by
the classification algorithms and those identified in-situ (ground truthing) by creating an error matrix
for each classification, from which the user, producer, total accuracy, and the Kappa statistics were
calculated [25].

3. Results

After applying the three classification algorithms on various combinations of input data layers,
nine maps with the distribution of S. marianum weeds were produced for each year (Figures 5 and 6).
In all of the classifications, large patches of S. marianum were identified along the eastern border and in
the centre of the study area. In the remaining part, other vegetation types dominate with few scattered
small S. marianum patches. A location with variable results appears in the northern central and western
parts of the study area, where high texture vegetation appears (Figure 4a—c,e-g), low vegetation height
(Figure 4d,h), but no S. marianum patches are present (Figure 1).

Table 1 outlines the summary of error matrices produced during accuracy assessment of the
resulting maps, showing the following performance metrics: overall classification accuracy, Kappa
statistic, user’s accuracy (for S. marianum) and producer’s accuracy (for S. marianum). Overall
classification accuracies were lower in 2015 in all combinations of input data. This could be due
to later acquisition date in 2015, which together with the different meteorological conditions led
to more advanced senescence of all vegetation types, thus prohibiting the distinction among them.
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When compared for the same input data, pixel-based classifiers generally performed better than
the object-based classifier in 2015, while the object-based classifier performed equally well in 2016.
Between the two pixel-based classifiers, higher accuracy levels were achieved with the MD classifier
than with the ML classifier for both years. Examining the user’s and producer’s accuracies between
the two pixel-based classifiers, lower user’s accuracies were consistently noted for MD in 2015 and
for one case of 2016. This is due to the high levels of commission errors observed because of the
high number of false positives (overestimation) of other vegetation class. This was an expected
result for this rather generic class with a classifier that does not take into account the class spectral
variation. Another general finding, higher accuracy was achieved by using the auxiliary layers of
information (texture layer and plant height), accompanied by the highest reliability rates and user’s
and producer’s accuracy.

G, R, NIR bands G, R, NIR, texture G, R, NIR, plant height

Maximum likelihood

B silybum marianum
[] other vegetation

o

Minimum distance

OBIA

Figure 5. Weed distribution maps using three classifiers on various input layers acquired on
19 May 2015. G, R and NIR are the green, red and near-infrared bands of the UAV orthomosaic,
respectively, OBIA is object-based image analysis.
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Figure 6. Weed distribution maps using three classifiers on various input layers acquired
on 22 April2016. G, R and NIR are the green, red and near-infrared bands of the UAV
orthomosaic, respectively.

Examining the spatial distribution of S. marianum together with the error matrices in 2015,
all algorithms overestimated S. marianum distribution in the western side of the study area when
using the image bands only as input (Figure 5a,d,g), producing low scores of user’s accuracy (Table 1).
After inserting the texture as additional input dataset, there was a notable increase in overall accuracy
for the MD algorithm (87.04%), which was due to the elimination of false positive S. marianum in the
western and northern parts of the study area (Figure 5b,e,h). The overall accuracy was equally high
when plant height was added as input dataset for both pixel-based classifiers, providing a similar
pattern of S. marianum distribution in the study area (Figure 5c f,i). User’s and producer’s accuracy
were also increased (66-96%). Despite the clear segmentation of weed patches in the area (Figure 5g—i),
OBIA did not perform as well as the other algorithms, reaching only 75.9% overall accuracy.
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Table 1. Classification accuracy using independent validation samples (ML is maximum likelihood, MD is minimum distance, G, R and NIR are the green, red and
near-infrared bands of the UAV orthomosaics, respectively).

Overall Accuracy Kappa Statistic User’s Accuracy Producer’s Accuracy User’s Accuracy Producer’s Accuracy

Input Data (Classifier) o (S. marianum) (S. marianum) (Other Vegetation) (Other Vegetation)

(%) (-) (%) (%) (%) (%)
19/05/2015
G, R, NIR (ML) 70.37 0.41 65.52 76 76 65.5
G, R, NIR (MD) 70.37 0.4 69.57 64 70.9 75.8
G, R, NIR (OBIA) 57.4 0.17 52.6 80 68.7 37.3
G, R, NIR, texture (ML) 79.63 0.71 75 84 96.1 86.2
G, R, NIR, texture (MD) 87.04 0.73 87.5 84 86.6 89.6
G, R, NIR, texture (OBIA) 75.9 0.53 66.6 96 94.4 58.6
G, R, NIR, plant height (ML) 87.04 0.71 77.78 95 92.3 82.7
G, R, NIR, plant height (MD) 87.04 0.73 87.5 84 86.6 89.6
G, R, NIR, plant height (OBIA) 75.92 0.52 68.75 88 86.3 65.5
22/04/2016
G, R, NIR (ML) 79.85 0.5 100 43.75 76.1 100
G, R, NIR (MD) 82.09 0.58 83.33 62.5 81.6 93

G, R, NIR (OBIA) 88.81 0.75 88.37 79.16 89 94.1
G, R, NIR, texture (ML) 79.85 0.5 100 43.75 76.1 100
G, R, NIR, texture (MD) 95.52 0.9 100 87.5 93.4 100
G, R, NIR, texture (OBIA) 92.53 0.83 93.18 85.41 922 96.5
G, R, NIR, plant height (ML) 93.28 0.85 89.8 91.67 95.3 94.2
G, R, NIR, plant height (MD) 94.78 0.88 97.67 87.5 93.4 98.8

G, R, NIR, plant height (OBIA) 91.79 0.81 97.43 79.16 89.4 98.8
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For 2016, ML with image bands only (Figure 6a) underestimated S. marianum in several locations,
providing low overall accuracy and very low producer’s accuracy (43.75%). On the contrary, MD
overestimated S. marianum in the central-eastern part of the image (Figure 6d), providing higher overall
accuracy (82.09%) but lower user’s accuracy (83.33%). OBIA performed even higher (88.81% overall
accuracy) with very high user’s and producer’s accuracies (88.37% and 79.16%, respectively). Having
included the texture layer in the input data, ML again underestimated S. marianum in several locations
(Figure 6b), which is evident from the low producer’s accuracy (43.75%), while MD identified several
small patches in the northern and southern ends of the study area reaching the highest overall accuracy
of the study (95.52%) (Figure 6e). OBIA performed slightly lower, reaching an overall accuracy of
92.53%. After including the plant height layer together with the three image bands (Figure 6¢,f),
all classifiers produced good results reaching high overall, user’s and producer’s accuracies.

4. Discussion

This study tested the use of vegetation canopy height together with multispectral UAV images
in mapping mature S. marianum weeds. Relevant work has used plant height indirectly, with the
incorporation of image texture for weed mapping with several classifiers [9,26] and object-based image
analysis [27], as well as with the use of estimated plant height for segmentation of crops and weeds
into objects but not directly in the classification algorithm [19]. However, none of the above-mentioned
studies has evaluated the improvement of the multispectral image classification that was achieved by
using the vegetation elevation information.

Using a combination of surface elevation information together with image bands had a notable
improvement on weed mapping performance, increasing the overall accuracy of classification from
70% to 87% in 2015, and 82% to 95% in 2016. The reliability was also notably increased (k statistic
increased from 0.4 to 0.7 in 2015, and 0.5 to 0.9 in 2016), thus results were unlikely to be by chance.
Similar increase in biomass model accuracy was reported when using combinations of barley height
and vegetation indices from UAV images, rather than vegetation indices alone [18]. The combination
of multispectral UAV imagery with cotton and sunflower height was reported to have improved the
accuracy of weed mapping to an R? of 0.91, as compared to an R? of 0.89 achieved with previous work
on maize [3,19].

The highest accuracy in this study was achieved by the image bands and texture layer classified
using the MD algorithm, reaching 95.5%. The positive influence of the texture layer is due to its wide
contrast between the S. marianum patches with a very high texture due to the interchange between the
tall plants and the gaps between them, and on the other hand the relatively low and uniform other
types of vegetation that are characterised by very low texture. A positive influence was also noted by
the inclusion of a texture layer together with UAV bands, when evaluating the weights of features in
the hidden neurons of an artificial neural network (multilayer perceptron with automatic relevance
determination) that was tested for weed mapping in the study area [28].

The incorporation of the plant height layer appeared to be as equally effective as the incorporation
of texture, achieving a total accuracy as high as 94.8%, which was consistent across the two classifiers.
This slightly lower performance—compared to the 95.5% of the previous effort—is due to the fact that
this classification failed to recognize an additional validation point in the category ‘other vegetation’.
Therefore, because these two results are quite similar, it can be concluded that the plant height layer
provided equal accuracy with the frequently used texture layer. It is probably due to the fact that
the information layers of the DSM and texture are analogous because they both utilise the height of
the plants, the first one directly and the other indirectly by the alternations between the tall plants,
their shadows and the gaps between them.

Overall, the MD algorithm produced better results than ML. In particular, in the combination
of image bands and texture layer, the comparison of the two rankings shows great differences.
The increased weed detection performance with the MD algorithm is probably due to the non-normal
distribution of texture data used (skewness = 6.74), which affects only the ML algorithm negatively.
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The OBIA classifier produced results equal to the pixel-based classifiers in 2016, but achieved
consistently lower accuracies in 2015, probably due to the lack of regular objects (patches) that favour
this classifier [3,27].

The plant height information appears to be an effective improvement to the classification accuracy
of S. marianum in this study. S. marianum grows taller compared to the crop species (Triticum spp.)
as well as the predominant grass weeds (e.g., A. sterilis), from germination to maturation, making
it possible to distinguish by height, from young rosette, to mature dry plant [29]. The plant height
information could be useful to other combinations of weeds and crops or pasture with pronounced
height difference. Early detection could be possible for broadleaved competitive weed species,
which grow taller and faster to overshadow adjacent species and successfully compete for light,
such as Carduus sp., Onopordum sp. and other thistles [1,29].

5. Conclusions

In this work, the mapping of S. marianum weed clusters was achieved with high accuracy using
UAV images and complementary secondary layers of information related to plant height. Both texture
and plant height have helped improve the accuracy of classification of S. marianum weed, enabled
by the relatively high posture of S. marianum. The minimum distance classifier using texture with
multispectral bands provided equally accurate results using plant height and multispectral bands.
Thus, as texture is easier to compute than plant height from DSM, it may be preferable to be used in
future weed mapping applications.

The conclusions derived from this work can be applicable to other combinations of weeds
and crops or pasture with pronounced height difference. Future work could study the effect of
different crops, phenological stages, illumination and cloud cover conditions on the use of surface
elevation information.

The produced weed maps are the first step towards site-specific weed management. This is one of
the common applications of precision farming, contributing to reduce the amount of herbicides used
in the field, and in the long term, benefit the farmers, the consumers and the environment [30].
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