Impact of Microwave Thermal Processing on Major Grain Quality Traits of Linseed (Linum usitatissium L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation Procedure
2.2. Nutritive Value Analyses
2.3. Crude Protein Solubility Analyses
2.4. Urease Activity Analyses
2.5. Amino Acid Profile Analyses
2.6. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goyal, A.; Sharma, V.; Upadhyay, N.; Gill, S.; Sihag, M. Flax and flaxseed oil: An ancient medicine & modern functional food. J. Food Sci. Technol. 2014, 51, 1633–1653. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Puvača, N.; LukaČ, D.; Ljubojević, D.; Stanaćev, V.; Beuković, M.; Kostadinović, L.; Plavša, N. Fatty acid composition and regression prediction of fatty acid concentration in edible chicken tissues. Worlds Poult. Sci. J. 2014, 70, 585–592. [Google Scholar] [CrossRef]
- Oomah, B.D. Flaxseed by-products. In Food Wastes and By-products; Campos-Vega, R., Oomah, B.D., Vergara-Castañeda, H.A., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 267–289. ISBN 978-1-119-53410-5. [Google Scholar]
- Tirgar, M.; Silcock, P.; Carne, A.; Birch, E.J. Effect of extraction method on functional properties of flaxseed protein concentrates. Food Chem. 2017, 215, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Whenham, N.; Bedford, M.R. Review on docosahexaenoic acid in poultry and swine nutrition: Consequence of enriched animal products on performance and health characteristics. Anim. Nutr. 2019, 5, 11–21. [Google Scholar] [CrossRef]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Abd El-Hack, M.E.; Khafaga, A.F.; Taha, A.E.; Tiwari, R.; Yatoo, M.I.; Bhatt, P.; Khurana, S.K.; et al. Omega-3 and omega-6 fatty acids in poultry nutrition: Effect on production performance and health. Animals 2019, 9. [Google Scholar] [CrossRef][Green Version]
- Cherian, G.; Quezada, N. Egg quality, fatty acid composition and immunoglobulin Y content in eggs from laying hens fed full fat camelina or flax seed. J. Anim. Sci. Biotechnol. 2016, 7, 15. [Google Scholar] [CrossRef][Green Version]
- Bakowska-Barczak, A.; de Larminat, M.-A.; Kolodziejczyk, P.P. The application of flax and hempseed in food, nutraceutical and personal care products. In Handbook of Natural Fibres; Elsevier: Amsterdam, The Netherlands, 2020; pp. 557–590. ISBN 978-0-12-818782-1. [Google Scholar]
- Ghosh, N.; Das, A.; Sen, C.K. Nutritional supplements and functional foods. In Nutraceutical and Functional Food Regulations in the United States and around the World; Elsevier: Amsterdam, The Netherlands, 2019; pp. 13–35. ISBN 978-0-12-816467-9. [Google Scholar]
- Zárate, R.; el Jaber-Vazdekis, N.; Tejera, N.; Pérez, J.A.; Rodríguez, C. Significance of long chain polyunsaturated fatty acids in human health. Clin. Trans. Med. 2017, 6, 25. [Google Scholar] [CrossRef][Green Version]
- Ahmad, S.; Kamran, Z.; Koutoulis, K.C. Supplemental linseed on egg production. In Egg Innovations and Strategies for Improvements; Elsevier: Amsterdam, The Netherlands, 2017; pp. 349–363. ISBN 978-0-12-800879-9. [Google Scholar]
- Hao, X.Y.; Yu, S.C.; Mu, C.T.; Wu, X.D.; Zhang, C.X.; Zhao, J.X.; Zhang, J.X. Replacing soybean meal with flax seed meal: Effects on nutrient digestibility, rumen microbial protein synthesis and growth performance in sheep. Animal 2020, 1–8. [Google Scholar] [CrossRef]
- Li, T.; Tian, Y.; Sun, F.; Wang, Z.; Zhou, N. Preparation of high Fischer’s ratio corn oligopeptides using directed enzymatic hydrolysis combined with adsorption of aromatic amino acids for efficient liver injury repair. Process. Biochem. 2019, 84, 60–72. [Google Scholar] [CrossRef]
- Gangadharan, A.; Choi, S.E.; Hassan, A.; Ayoub, N.M.; Durante, G.; Balwani, S.; Kim, Y.H.; Pecora, A.; Goy, A.; Suh, K.S. Protein calorie malnutrition, nutritional intervention and personalized cancer care. Oncotarget 2017, 8, 24009–24030. [Google Scholar] [CrossRef][Green Version]
- Fofana, B.; Ghose, K.; McCallum, J.; You, F.M.; Cloutier, S. UGT74S1 is the key player in controlling secoisolariciresinol diglucoside (SDG) formation in flax. BMC Plant Biol. 2017, 17, 35. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nwachukwu, I.D.; Aluko, R.E. Physicochemical and emulsification properties of flaxseed (Linum usitatissimum) albumin and globulin fractions. Food Chem. 2018, 255, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Puvača, N.; Bjedov, S.; Ljubjević, D.; Stanaćev, V.; Milić, D.; Stanaćev, V.; Vukelić, N. Influence of applied heat tretaments on chemical composition of flaxseed intended for broilers nutriton. Res. J. Agri. Sci. 2013, 45, 215–219. [Google Scholar]
- Lafarga, T.; Hayes, M. Bioactive protein hydrolysates in the functional food ingredient industry: Overcoming current challenges. Food Rev. Inter. 2017, 33, 217–246. [Google Scholar] [CrossRef]
- Rusu, M.E.; Gheldiu, A.-M.; Mocan, A.; Vlase, L.; Popa, D.-S. Anti-aging potential of tree nuts with a focus on the phytochemical composition, molecular mechanisms and thermal stability of major bioactive compounds. Food Funct. 2018, 9, 2554–2575. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.E.-D.A.; Shavandi, A.; Jodjaja, T.; Birch, J.; Teh, S.; Mohamed Ahmed, I.A.; Al-Juhaimi, F.Y.; Saeedi, P.; Bekhit, A.A. Flaxseed: Composition, detoxification, utilization, and opportunities. Biocatal. Agric. Biotechnol. 2018, 13, 129–152. [Google Scholar] [CrossRef]
- Glencross, B.D.; Baily, J.; Berntssen, M.H.G.; Hardy, R.; MacKenzie, S.; Tocher, D.R. Risk assessment of the use of alternative animal and plant raw material resources in aquaculture feeds. Rev. Aquacult. 2019. [Google Scholar] [CrossRef][Green Version]
- Zając, M.; Kiczorowska, B.; Samolińska, W.; Klebaniuk, R. Inclusion of camelina, flax, and sunflower seeds in the diets for broiler chickens: Apparent digestibility of nutrients, growth performance, health status, and carcass and meat quality traits. Animals 2020, 10, 321. [Google Scholar] [CrossRef][Green Version]
- Ivanov, D.; Kokic, B.; Brlek, T.; Colovic, R.; Vukmirovic, D.; Levic, J.; Sredanovic, S. Effect of microwave heating on content of cyanogenic glycosides in linseed. Ratar. Povrt. 2012, 49, 63–68. [Google Scholar] [CrossRef][Green Version]
- Anaya, K.; Cruz, A.C.B.; Cunha, D.C.S.; Monteiro, S.M.N.; dos Santos, E.A. Growth impairment caused by raw linseed consumption: Can trypsin inhibitors be harmful for health? Plant Foods Hum. Nutr. 2015, 70, 338–343. [Google Scholar] [CrossRef]
- Nikmaram, N.; Leong, S.Y.; Koubaa, M.; Zhu, Z.; Barba, F.J.; Greiner, R.; Oey, I.; Roohinejad, S. Effect of extrusion on the anti-nutritional factors of food products: An overview. Food Control. 2017, 79, 62–73. [Google Scholar] [CrossRef]
- Khan, A.N.; Booker, H.; Yu, P. Effect of heating method on alteration of protein molecular structure in flaxseed: Relationship with changes in protein subfraction profile and digestion in dairy cows. J. Agric. Food Chem. 2015, 63, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Kaur, M.; Gill, B.S. Phenolic acid composition of flaxseed cultivars by ultra-performance liquid chromatography (UPLC) and their antioxidant activities: Effect of sand roasting and microwave heating. J. Food Process. Preserv. 2017, 41, e13181. [Google Scholar] [CrossRef]
- Sun, X.; Li, W.; Hu, Y.; Zhou, X.; Ji, M.; Yu, D.; Fujita, K.; Tatsumi, E.; Luan, G. Comparison of pregelatinization methods on physicochemical, functional and structural properties of tartary buckwheat flour and noodle quality. J. Cereal Sci. 2018, 80, 63–71. [Google Scholar] [CrossRef]
- Wu, M.; Li, D.; Wang, L.; Zhou, Y.; Brooks, M.; Chen, X.; Mao, Z. Extrusion detoxification technique on flaxseed by uniform design optimization. Sep. Purif. Technol. 2008, 61, 51–59. [Google Scholar] [CrossRef]
- Puvača, N.; Kostadinović, L.; Popović, S.; Lević, J.; Ljubojević, D.; Tufarelli, V.; Jovanović, R.; Tasić, T.; Ikonić, P.; Lukač, D. Proximate composition, cholesterol concentration and lipid oxidation of meat from chickens fed dietary spice addition (Allium sativum, Piper nigrum, Capsicum annuum). Anim. Prod. Sci. 2016, 56, 1920–1927. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Tech. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Bachmann, M.; Kuhnitzsch, C.; Okon, P.; Martens, S.D.; Greef, J.M.; Steinhöfel, O.; Zeyner, A. Ruminal in vitro protein degradation and apparent digestibility of energy and nutrients in sheep fed native or ensiled + toasted pea (Pisum sativum) grains. Animals 2019, 9, 401. [Google Scholar] [CrossRef][Green Version]
- McCullough, H. The determination of ammonia in whole blood by a direct colorimetric method. Clin. Chim. Acta 1967, 17, 297–304. [Google Scholar] [CrossRef]
- Watson, C.J.; Miller, H. Short-term effects of urea amended with the urease inhibitor N-(n-butyl) thiophosphoric triamide on perennial ryegrass. Plant Soil 1996, 184, 33–45. [Google Scholar] [CrossRef]
- Wahid Herchi, A review of the methods used in the determination of flaxseed components. Afr. J. Biotechnol. 2012, 11. [CrossRef]
- Shen, Y.; Feng, D.; Oresanya, T.F.; Chavez, E.R. Fatty acid and nitrogen utilization of processed flaxseed by adult chickens. J. Sci. Food Agric. 2005, 85, 1137–1142. [Google Scholar] [CrossRef]
- Feng, D.; Shen, Y.; Chavez, E.R. Effectiveness of different processing methods in reducing hydrogen cyanide content of flaxseed. J. Sci Food Agric. 2003, 83, 836–841. [Google Scholar] [CrossRef]
- Čolović, R.; Puvača, N.; Cheli, F.; Avantaggiato, G.; Greco, D.; Đuragić, O.; Kos, J.; Pinotti, L. Decontamination of mycotoxin-contaminated feedstuffs and compound feed. Toxins 2019, 11, 617. [Google Scholar] [CrossRef][Green Version]
Treatment | Microwave Processing (450 W) | ||||
---|---|---|---|---|---|
L1 | L2 | L3 | L4 | L5 | |
Processing time (s) | 0 | 60 | 180 | 300 | 420 |
Parameter | Microwave Processing (450 W) | ||||
---|---|---|---|---|---|
L1 | L2 | L3 | L4 | L5 | |
Moister (%) | 5.82 a ± 0.06 | 5.90 a ± 0.01 | 3.31 b ± 0.01 | 1.71 c ± 0.01 | 1.78 c ± 0.02 |
Crude protein (%) | 23.26 b ± 0.49 | 23.24 b ± 0.61 | 23.57 b ± 0.39 | 23.99 b ± 0.07 | 24.76 a ± 0.43 |
Crude fat (%) | 39.52 a ± 0.34 | 35.42 b ± 0.83 | 39.22 a ± 0.20 | 38.42 a ± 0.23 | 39.25 a ± 0.31 |
Crude fiber (%) | 10.09 a ± 0.13 | 10.35 a ± 0.54 | 10.80 a ± 0.39 | 10.50 a ± 0.24 | 8.58 b ± 0.51 |
Ash (%) | 3.49 a ± 0.17 | 3.48 a ± 0.37 | 3.75 a ± 0.15 | 3.69 a ± 0.29 | 3.63 a ± 0.16 |
Ca (%) | 0.26 a ± 0.01 | 0.28 a ± 0.07 | 0.29 a ± 0.01 | 0.28 a ± 0.01 | 0.27 a ± 0.12 |
P (%) | 0.52 a ± 0.01 | 0.54 a ± 0.04 | 0.55 a ± 0.01 | 0.61 a ± 0.01 | 0.55 a ± 0.04 |
PDI (%) | 27.06 b ± 0.03 | 36.62 a ± 0.56 | 12.19 d ± 0.22 | 9.24 e ± 0.15 | 15.58 c ± 0.39 |
Urease activity (mgN/g/min) | 0.12 a ± 0.01 | 0.09 b ± 0.02 | 0.09 b ± 0.01 | 0.07 c ± 0.01 | 0.10 b ± 0.39 |
Urease activity index (%) | 100.00 | 75.00 | 75.00 | 58.33 | 83.33 |
Amino Acids | Microwave Processing (450 W) | ||||
---|---|---|---|---|---|
L1 | L2 | L3 | L4 | L5 | |
Serine (%) | 0.721 a ± 0.26 | 0.648 a ± 0.18 | 0.657 a ± 0.12 | 0.636 a ± 0.26 | 0.644 a ± 0.14 |
Histidine (%) | 0.239 a ± 0.32 | 0.203 a ± 0.41 | 0.205 a ± 0.47 | 0.207 a ± 0.14 | 0.194 a ± 0.22 |
Glycine (%) | 0.475 a ± 0.45 | 0.423 a ± 0.31 | 0.439 a ± 0.22 | 0.470 a ± 0.47 | 0.428 a ± 0.10 |
Threonine (%) | 0.254 a ± 0.12 | 0.219 a ± 0.12 | 0.237 a ± 0.87 | 0.220 a ± 0.64 | 0.218 a ± 0.45 |
Arginine (%) | 1.960 a ± 0.22 | 1.855 a ± 0.17 | 2.201 a ± 0.31 | 1.843 a ± 0.37 | 1.836 a ± 0.15 |
Alanine (%) | 0.467 a ± 0.63 | 0.428 a ± 0.54 | 0.498 a ± 0.14 | 0.472 a ± 0.49 | 0.440 a ± 0.08 |
Tyrosine (%) | 0.480 a ± 0.48 | 0.469 a ± 0.47 | 0.454 a ± 0.25 | 0.477 a ± 0.33 | 0.480 a ± 0.14 |
Valine (%) | 1.035 a ± 0.15 | 1.009 a ± 0.19 | 1.102 a ± 0.41 | 1.083 a ± 0.21 | 1.012 a ± 0.12 |
Methionine (%) | 0.447 a ± 0.55 | 0.453 a ± 0.43 | 0.432 a ± 0.65 | 0.486 a ± 0.09 | 0.442 a ± 0.54 |
Phenylalanine (%) | 0.642 a ± 0.14 | 0.623 a ± 0.17 | 0.609 a ± 0.31 | 0.654 a ± 0.42 | 0.651 a ± 0.41 |
Isoleucine (%) | 1.410 a ± 0.32 | 1.240 b ± 0.29 | 1.241 b ± 0.47 | 1.391 a ± 0.60 | 1.354 a ± 0.39 |
Leucine (%) | 1.500 a ± 0.74 | 1.395 b ± 0.86 | 1.400 a ± 0.36 | 1.485 a ± 0.47 | 1.449 a ± 0.23 |
Lysine (%) | 1.078 a ± 0.25 | 1.099 a ± 0.44 | 0.940 a ± 0.34 | 0.982 a ± 0.87 | 0.938 a ± 0.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puvača, N.; Ljubojević Pelić, D.; Živkov Baloš, M.; Lević, J.; Prodanović, R.; Puvača Čović, V.; Popović, S.; Đuragić, O. Impact of Microwave Thermal Processing on Major Grain Quality Traits of Linseed (Linum usitatissium L.). AgriEngineering 2020, 2, 256-263. https://doi.org/10.3390/agriengineering2020016
Puvača N, Ljubojević Pelić D, Živkov Baloš M, Lević J, Prodanović R, Puvača Čović V, Popović S, Đuragić O. Impact of Microwave Thermal Processing on Major Grain Quality Traits of Linseed (Linum usitatissium L.). AgriEngineering. 2020; 2(2):256-263. https://doi.org/10.3390/agriengineering2020016
Chicago/Turabian StylePuvača, Nikola, Dragana Ljubojević Pelić, Milica Živkov Baloš, Jovanka Lević, Radivoj Prodanović, Vidosava Puvača Čović, Sanja Popović, and Olivera Đuragić. 2020. "Impact of Microwave Thermal Processing on Major Grain Quality Traits of Linseed (Linum usitatissium L.)" AgriEngineering 2, no. 2: 256-263. https://doi.org/10.3390/agriengineering2020016