Development of a Novel Enzymatic Pretreatment for Improving the Digestibility of Protein in Feather Meal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment 1
2.1.1. Feather Meal and Reagents
2.1.2. Experimental Design and Procedures
2.1.3. Laboratory Analyses
2.1.4. Calculations and Statistical Analyses
2.2. Experiment 2
2.2.1. Feather Meal Samples and Reagents
2.2.2. Enzymatic Pretreatment of Feather Meal
2.2.3. In Vitro Digestibility of Feather Meal
3. Results and Discussion
3.1. Experiment 1
3.1.1. Effect of Variables, and Their Interaction, on Degree of Hydrolysis
3.1.2. Selecting Savinase® 16L level
3.1.3. Selecting Sodium Sulphite Level
3.1.4. Selecting Digestion Buffer Level
3.2. Experiment 2
3.2.1. Effect of Enzymatic Pretreatment on In Vitro Digestibility
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pfeuti, G.; Cant, J.P.; Shoveller, A.K.; Bureau, D.P. A novel enzymatic pre-treatment improves amino acid utilization in feather meal fed to rainbow trout (Oncorhynchus mykiss). Aquac. Res. 2019, 50, 1459–1474. [Google Scholar] [CrossRef]
- Pfeuti, G.; Longstaffe, J.; Brown, L.S.; Shoveller, A.K.; Taylor, C.M.; Bureau, D.P. Disulphide bonds and cross-linked amino acids may affect amino acid utilization in feather meal fed to rainbow trout (Oncorhynchus mykiss). Aquac. Res. 2019, 50, 2081–2095. [Google Scholar] [CrossRef]
- Grazziotin, A.; Pimentel, F.; De Jong, E.; Brandelli, A. Nutritional improvement of feather protein by treatment with microbial keratinase. Anim. Feed Sci. Technol. 2006, 126, 135–144. [Google Scholar] [CrossRef]
- Ramnani, P.; Gupta, R. Keratinases vis-à-vis conventional proteases and feather degradation. World J. Microbiol. Biotechnol. 2007, 23, 1537–1540. [Google Scholar] [CrossRef]
- Eslahi, N.; Dadashian, F.; Nejad, N.H. An investigation on keratin extraction from wool and feather waste by enzymatic hydrolysis. Prep. Biochem. Biotechnol. 2013, 43, 624–648. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Ramnani, P. Microbial keratinases and their prospective applications: An overview. Appl. Microbiol. Biotechnol. 2006, 70, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Mokrejs, P.; Svoboda, P.; Hrncirik, J.; Janacova, D.; Vasek, V. Processing poultry feathers into keratin hydrolysate through alkaline-enzymatic hydrolysis. Waste Manag. Res. 2011, 29, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Benjakul, S.; Morrissey, M.T. Protein hydrolysates from Pacific whiting solid wastes. J. Agric. Food Chem. 1997, 45, 3423–3430. [Google Scholar] [CrossRef]
- Coll, B.A.; Garcia, R.A.; Marmer, W.N. Diffusion of protease into meat & bone meal for solubility improvement and potential inactivation of the BSE prion. PLoS ONE 2007, 2, e245. [Google Scholar]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Hoyle, N.T.; Merrit, J. Quality of fish protein hydrolysates from herring (Clupea harengus). J. Food Sci. 1994, 59, 76–79. [Google Scholar] [CrossRef]
- Ross, D.; Gutierrez-Botero, M.; Van Amburgh, M. Development of an In Vitro Intestinal Digestibility Assay for Ruminant Feeds. Available online: https://www.semanticscholar.org/paper/development-of-an-in-vitro-intestinal-digestibility-Ross-Gutierrez-Botero/c184631b49ab95c55b5161d9ad31f5e509268aab (accessed on 15 June 2019).
- Shahidi, F.; Han, X.-Q.; Synowiecki, J. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chem. 1995, 53, 285–293. [Google Scholar] [CrossRef]
- Surowka, K.; Fik, M. Studies on the recovery of proteinaceous substances from chicken heads: II—Application of pepsin to the production of protein hydrolysate. J. Sci. Food Agric. 1994, 65, 289–296. [Google Scholar] [CrossRef]
- Kristinsson, H.G.; Rasco, B.A. Kinetics of the hydrolysis of Atlantic salmon (Salmo salar) muscle proteins by alkaline proteases and a visceral serine protease mixture. Process Biochem. 2000, 36, 131–139. [Google Scholar] [CrossRef]
- Deeslie, W.D.; Cheryan, M. Functional properties of soy protein hydrolyzates from a continuous ultrafiltration reactor. J. Agric. Food Chem. 1988, 36, 26–31. [Google Scholar] [CrossRef]
- Normah, I.; Jamilah, B.; Saari, N.; Yaakob, B. Optimization of hydrolysis conditions for the production of threadfin bream (Nemipterus japonicus) hydrolysate by Alcalase. J. Muscle Foods 2005, 16, 87–102. [Google Scholar] [CrossRef]
- Guerard, F.; Guimas, L.; Binet, A. Production of tuna waste hydrolysates by a commercial neutral protease preparation. J. Mol. Catal. B Enzymatic 2002, 19, 489–498. [Google Scholar] [CrossRef]
- Sigma-Aldrich USA. Available online: https://www.sigmaaldrich.com/united-states.html (accessed on 15 August 2019).
- AAFCO. 2016 Official Publication; Association of American Feed Control Officials: Champaign, IL, USA, 2016. [Google Scholar]
- Han, Y.; Parsons, C. Protein and amino acid quality of feather meals. Poult. Sci. 1991, 70, 812–822. [Google Scholar] [CrossRef]
- Papadopoulos, M.C. In vitro and in vivo estimation of protein quality of laboratory treated feather meal. Biol. Wastes 1987, 21, 143–148. [Google Scholar] [CrossRef]
- Cotanch, K.; Grant, R.; Dann, H.; Darrah, J.; VanAmburgh, M.; Ross, D. Ruminal and Intestinal Protein and Amino Acid Digestibility of Feather Meal and Feather Meal with Blood Products. Available online: https://www.uspoultry.org/ppfc/docs/FeatherMealCornell.pdf (accessed on 4 October 2019).
| Feather Meals | ||||
|---|---|---|---|---|
| FeM1 | PTFeM1 | FeM2 | PTFeM2 | |
| Proximate composition (as is) | ||||
| Dry matter (g/kg) | 934 | 933 | 866 | 931 |
| Crude protein (g/kg) | 819 | 803 | 763 | 817 |
| Lipid (g/kg) | 83 | 79 | 65 | 65 |
| Total carbohydrates (g/kg) 1 | 13 | 13 | 15 | 6 |
| Ash (g/kg) | 19 | 38 | 23 | 43 |
| Gross energy (kJ/g) 1 | 22.6 | 22.1 | 20.7 | 21.8 |
| Essential amino acids (g/kg as is) | ||||
| Arginine | 59 | 57 | 57 | 61 |
| Histidine | 6 | 6 | 7 | 8 |
| Isoleucine | 40 | 39 | 35 | 38 |
| Leucine | 67 | 65 | 62 | 66 |
| Lysine | 18 | 18 | 22 | 23 |
| Methionine | 5 | 5 | 6 | 6 |
| Phenylalanine | 40 | 39 | 34 | 36 |
| Threonine | 39 | 38 | 38 | 40 |
| Valine | 60 | 58 | 51 | 56 |
| Non-essential amino acids (g/kg as is) | ||||
| Alanine | 38 | 37 | 36 | 38 |
| Aspartic acid | 56 | 55 | 55 | 58 |
| Cyst(e)ine | 35 | 36 | 41 | 43 |
| Glutamic acid | 92 | 90 | 97 | 101 |
| Glycine | 65 | 63 | 58 | 62 |
| Proline | 83 | 78 | 68 | 73 |
| Serine | 93 | 88 | 81 | 84 |
| Cross-linked amino acids (g/kg as is) | ||||
| Lanthionine | 31.8 | 31.7 | 25.5 | 28 |
| DL-Lysinoalanine | 1.6 | 1.5 | 0.6 | 0.7 |
| Β-aminoalanine | 1.4 | 1.3 | 0.5 | 0.6 |
| Run | Independent Variables | Degree of Hydrolysis (%) 4 | ||||
|---|---|---|---|---|---|---|
| Number | X11 | X22 | X33 | |||
| 1 | 0 | 0 | 200 | 9.3 | ± | 0.14 |
| 2 | 1 | 0 | 200 | 16.1 | ± | 0.71 |
| 3 | 2 | 0 | 200 | 17.3 | ± | 0.48 |
| 4 | 3 | 0 | 200 | 18.5 | ± | 0.42 |
| 5 | 0 | 1.5 | 200 | 9.7 | ± | 0.33 |
| 6 | 1 | 1.5 | 200 | 22.4 | ± | 1.09 |
| 7 | 2 | 1.5 | 200 | 25.7 | ± | 0.80 |
| 8 | 3 | 1.5 | 200 | 27.1 | ± | 0.31 |
| 9 | 0 | 3 | 200 | 9.8 | ± | 0.51 |
| 10 | 1 | 3 | 200 | 27.4 | ± | 1.32 |
| 11 | 2 | 3 | 200 | 31.2 | ± | 0.37 |
| 12 | 3 | 3 | 200 | 32.9 | ± | 0.60 |
| 13 | 0 | 0 | 350 | 9.4 | ± | 0.30 |
| 14 | 1 | 0 | 350 | 17.0 | ± | 0.22 |
| 15 | 2 | 0 | 350 | 18.7 | ± | 0.13 |
| 16 | 3 | 0 | 350 | 21.2 | ± | 0.59 |
| 17 | 0 | 1.5 | 350 | 10.2 | ± | 0.31 |
| 18 | 1 | 1.5 | 350 | 27.4 | ± | 0.57 |
| 19 | 2 | 1.5 | 350 | 30.7 | ± | 0.68 |
| 20 | 3 | 1.5 | 350 | 31.8 | ± | 1.56 |
| 21 | 0 | 3 | 350 | 10.3 | ± | 0.38 |
| 22 | 1 | 3 | 350 | 36.2 | ± | 0.39 |
| 23 | 2 | 3 | 350 | 40.1 | ± | 0.25 |
| 24 | 3 | 3 | 350 | 43.5 | ± | 1.62 |
| 25 | 0 | 0 | 500 | 10.0 | ± | 0.42 |
| 26 | 1 | 0 | 500 | 18.6 | ± | 0.06 |
| 27 | 2 | 0 | 500 | 20.4 | ± | 0.76 |
| 28 | 3 | 0 | 500 | 22.0 | ± | 0.82 |
| 29 | 0 | 1.5 | 500 | 10.2 | ± | 0.08 |
| 30 | 1 | 1.5 | 500 | 28.8 | ± | 0.79 |
| 31 | 2 | 1.5 | 500 | 30.5 | ± | 0.76 |
| 32 | 3 | 1.5 | 500 | 33.2 | ± | 0.37 |
| 33 | 0 | 3 | 500 | 10.7 | ± | 0.28 |
| 34 | 1 | 3 | 500 | 38.3 | ± | 1.85 |
| 35 | 2 | 3 | 500 | 39.3 | ± | 1.68 |
| 36 | 3 | 3 | 500 | 45.1 | ± | 1.62 |
| Source | DF | Sum of Squares | F Ratio | p-Value |
|---|---|---|---|---|
| Model | 9 | 11,718.33 | 176.09 | <0.0001 |
| X1: Savinase® 16L Level | 1 | 5565.90 | 752.75 | <0.0001 |
| X2: Sodium Sulphite Level | 1 | 3459.98 | 467.94 | <0.0001 |
| X3: Digestion Buffer Level | 1 | 443.33 | 59.96 | <0.0001 |
| X12 | 1 | 780.70 | 105.58 | <0.0001 |
| X22 | 1 | 6.48 | 0.88 | 0.3515 |
| X32 | 1 | 61.31 | 8.29 | 0.0049 |
| X1*X2 | 1 | 1230.06 | 166.36 | <0.0001 |
| X1*X3 | 1 | 76.93 | 10.40 | 0.0017 |
| X2*X3 | 1 | 93.64 | 12.66 | 0.0006 |
| Residual | 98 | 724.617 | 7.39 | |
| Correlation total | 107 | 12,442.949 |
| Statistical Parameter | Independent Variables | ||
|---|---|---|---|
| X11 | X22 | X33 | |
| Tukey’s HSD (Inclusion Level; DH 4) | |||
| 200%; 20.6 b | 0%; 10.0 c | 0%; 16.5 a | |
| 350%; 24.7 a | 1%; 25.0 b | 1.5%; 24.0 b | |
| 500%; 25.6 a | 2%; 28.2 ab | 3%; 30.4 c | |
| 3%; 30.6 a | |||
| Linear Effect (p-value; r2) | |||
| 0.0504; 0.04 | <0.0001; 0.45 | <0.0001; 0.45 | |
| Quadratic Effect (p-value; r2) | |||
| 0.0504; 0.04 | <0.0001; 0.55 | <0.0001; 0.28 | |
| Pepsin-HCl Digestibility (% N) | Multistep Protein Evaluation | |||||
|---|---|---|---|---|---|---|
| FeM | SP (% N) | RDP (% N) | RUP (% N) | IDP (% N) | TTDP (% N) | |
| FeM1 | 79.4 | 6.2 | 18.9 | 81.1 | 33.9 | 52.8 |
| PTFeM1 | 92.0 | 49.4 | 61.8 | 38.2 | 17.2 | 79.0 |
| FeM2 | 84.3 | 11.1 | 27.1 | 73.0 | 45.4 | 72.5 |
| PTFeM2 | 90.5 | 47.8 | 61.8 | 38.2 | 21.1 | 82.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfeuti, G.; Osborne, V.; Shoveller, A.K.; Ignatz, E.H.; Bureau, D.P. Development of a Novel Enzymatic Pretreatment for Improving the Digestibility of Protein in Feather Meal. AgriEngineering 2019, 1, 475-484. https://doi.org/10.3390/agriengineering1040034
Pfeuti G, Osborne V, Shoveller AK, Ignatz EH, Bureau DP. Development of a Novel Enzymatic Pretreatment for Improving the Digestibility of Protein in Feather Meal. AgriEngineering. 2019; 1(4):475-484. https://doi.org/10.3390/agriengineering1040034
Chicago/Turabian StylePfeuti, Guillaume, Vernon Osborne, Anna K. Shoveller, Eric H. Ignatz, and Dominique P. Bureau. 2019. "Development of a Novel Enzymatic Pretreatment for Improving the Digestibility of Protein in Feather Meal" AgriEngineering 1, no. 4: 475-484. https://doi.org/10.3390/agriengineering1040034
APA StylePfeuti, G., Osborne, V., Shoveller, A. K., Ignatz, E. H., & Bureau, D. P. (2019). Development of a Novel Enzymatic Pretreatment for Improving the Digestibility of Protein in Feather Meal. AgriEngineering, 1(4), 475-484. https://doi.org/10.3390/agriengineering1040034

