An Open-Source Urban Digital Twin for Enhancing Outdoor Thermal Comfort in the City of Huelva (Spain)
Abstract
Highlights
- A functional Urban Digital Twin prototype was developed to assess outdoor thermal comfort using real-time data and open-source tools.
- The system integrates spatial modeling, microclimate simulation, and web-based 3D visualization in a modular, replicable architecture.
- Urban thermal comfort analysis can be made more accessible and transferable using public data and new technologies.
- The prototype sets the basis for future interactive tools that support climate-sensitive urban planning.
Abstract
1. Introduction
1.1. Digital Twins in Urban Planning
1.2. UDT for Assessing Thermal Comfort
1.3. Enabling Technologies and Research Advancement
1.4. Key Challenges
1.5. Research Objectives
- Open-source stack and open standards: exclusive use of open-source tools (QGIS, UMEP, PostGIS, GeoServer, and Cesium), with OGC-compliant services (WMS/WFS) ensuring transparency and interoperability.
- Real-time data ingestion: continuous sensor integration through Node-RED into a spatial database, directly linked with the model.
- Open data pipeline: reliance solely on public cadastral and LiDAR datasets, enabling reproducibility and transferability to other cities.
- Thermal comfort focus: open-source physics-based digital twin for high spatial resolution and accuracy.
- Browser-based user interface: interactive 3D environment, open-source and license-free, designed for deployment in any standard web browser.
- Connection layer for modularity: explicit design of a connection layer that synchronizes real-time data, simulations, and visualization, facilitating future extensions (user-triggered simulations, participatory planning).
2. Materials and Methods
2.1. Digital Twin Proposed Architecture
2.1.1. Data Layer
2.1.2. Physical Layer
2.1.3. Virtual Layer
2.1.4. Service Layer
- Simulation models.
- User interface.
2.1.5. Connection Layer
2.2. Case Study Description and Scenarios
2.3. Performance Parameters
2.4. Hardware and Software Specifications
3. Results
3.1. Model Construction
3.2. Model Operation and Visualization
3.3. Thermal Comfort Analysis Applications
4. Discussion
5. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UHI | Urban Heat Island |
DT | Digital Twin |
UDT | Urban Digital Twin |
OTC | Outdoor Thermal Comfort |
DEM | Digital Elevation Model |
DSM | Digital Surface Model |
CDSM | Canopy Digital Surface Model |
UMEP | Urban Multi-scale Environmental Predictor (QGIS plugin) |
LoD | Level of Detail (CityGML standard) |
MRT | Mean Radiant Temperature |
UTCI | Universal Thermal Climate Index |
STD | Standard deviation |
SVF | Sky View Factor |
WMS | Web Map Service |
WFS | Web Feature Service |
Ta | Air temperature |
RH | Relative Humidity |
WS | Wind Speed |
SR | Solar Radiation |
Appendix A
City/Project | Application/Services | Technology Summary | Limitations |
---|---|---|---|
Matera, Italy [26,27] | Mobility, environmental quality | 3D CityGML, AI-based virtual camera, DMD simulations via ML, cognitive DSS | Does not directly model thermal comfort indexes |
Cooling Singapore [14] | UHI mitigation, outdoor thermal comfort | Unity-based 3D model, mesoscale/microscale climate models, DSS | Advanced DT, but privately available |
Padua, Italy [46] | Heat-prone areas, NBS analysis | 3D DSM + UAV + Sentinel-2, LORAWAN sensors, PET simulation, web frontend/backend with APIs | Proof of concept; simulation methods could be further enhanced |
Imola, Italy [16,17] | Green Pedestrian Network thermal comfort assessment and green planning | GIS + Rhinoceros, DSM + weather data (OpenWeather API), Ladybug Tools | No user interface; designed for researchers and specialized practitioners |
Herrenberg, Germany [19] | Urban mobility, wind flow, participative and collaborative planning. | DEM, LIDAR, space syntax models, SUMO, OpenFOAM, VR (CAVEs, HMDs) | No direct modeling of thermal comfort; focus on related variables |
Zurich, Switzerland [9] | Urban planning, urban climate, and citizen participation | GIS + CityGML, LIDAR, web and game-based interaction | Simulation methods not specified; future plans include urban climate integration |
Docklands area, Dublin, Ireland [15] | Urban and green space planning, crowd and flood simulation. | Unity + FBX + BIM, public DB, crowd/flood sim, web feedback app | Still under development; lacks real-time updates; no thermal comfort simulation |
Busan, South Korea [28] | Urban planning and thermal comfort assessment | Unreal Engine + Cesium, Revit (via DataSmith), SunSky sim + deep learning (MoE) | Complete DT with surrogate thermal comfort prediction |
Hangzhou, China [11] | Inform landscape planning of waterfront environments | Rhino 3D, UAV + LIDAR + IoT, statistical analysis | Research-oriented; includes citizen data on thermal comfort |
Enschede, Netherlands [24] | Urban planning, PET-based thermal comfort | 3D GIS, PET simulation using LIDAR + remote data | Limited wind data integration; unclear PET model adaptation to surroundings |
Tokyo, Japan [29] | Urban heat and pedestrian exposure | GIS + Rhino/Grasshopper, ArcGIS web UI, path/heat simulation | Limited to transportation and heat stress; lacks real-time data integration |
DUET (EU project) [10] | Urban system modeling and integration | T-cell architecture, API-based cloud of models for traffic, air quality, noise | Ongoing project; emphasis on secure data sharing, not specific to thermal comfort |
Kalasatama, Helsinki, Iceland [18] | Built environment lifecycle management | CityGML, Ladybug, Ansys Fluent, Unity + Umbra + Cesium | Immersive experience; lacks real-time data integration |
Wuppertal City, Germany [69] | UHI mitigation and planning support | LIDAR + GIS, Unreal Engine (via City Engine), LST sim with ML | Prototype with limitations: computational load, data availability, GIS–Unreal interoperability, ML model limits |
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- United Nations. SDG Goal 11 Indicators. Available online: https://unstats.un.org/sdgs/report/2023/goal-11/ (accessed on 14 February 2025).
- Kim, S.W.; Brown, R.D. Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. Sci. Total Environ. 2021, 779, 146389. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F.; Hu, T.; Anwer, N.; Liu, A.; Wei, Y.; Wang, L.; Nee, A.Y.C. Enabling technologies and tools for digital twin. J. Manuf. Syst. 2019, 58, 3–21. [Google Scholar] [CrossRef]
- Mylonas, G.; Kalogeras, A.; Kalogeras, G.; Anagnostopoulos, C.; Alexakos, C.; Munoz, L. Digital Twins From Smart Manufacturing to Smart Cities: A Survey. IEEE Access 2021, 9, 143222–143249. [Google Scholar] [CrossRef]
- Peldon, D.; Banihashemi, S.; LeNguyen, K.; Derrible, S. Navigating urban complexity: The transformative role of digital twins in smart city development. Sustain. Cities Soc. 2024, 111, 105583. [Google Scholar] [CrossRef]
- Lopez-Cabeza, V.P.; Videras-Rodriguez, M.; Gomez-Melgar, S.J.; Andujar-Marquez, J.M. The Role of Digital Twins in Enhancing Outdoor Thermal Comfort: A systematic review. In Proceedings of the INCREaSE 2025, Faro, Portugal, 1–4 July 2025. [Google Scholar]
- Park, J.; Yang, B. GIS-enabled digital twin system for sustainable evaluation of carbon emissions: A case study of Jeonju city, south Korea. Sustainability 2020, 12, 9186. [Google Scholar] [CrossRef]
- Schrotter, G.; Hürzeler, C. The Digital Twin of the City of Zurich for Urban Planning. PFG–J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 99–112. [Google Scholar] [CrossRef]
- Raes, L.; Michiels, P.; Adolphi, T.; Tampere, C.; Dalianis, A.; McAleer, S.; Kogut, P. DUET: A Framework for Building Interoperable and Trusted Digital Twins of Smart Cities. IEEE Internet Comput. 2021, 26, 43–50. [Google Scholar] [CrossRef]
- Luo, J.; Yuan, Z.; Xu, L.; Xu, W. Assessing the Impact of Waterfront Environments on Public Well-being through Digital Twin Technology. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 4536–4553. [Google Scholar] [CrossRef]
- Liu, T.; Fan, C. A Digital Twin Framework to Simulate Urban Microclimates, ASCE Inspire. 2023. Available online: https://ascelibrary.org (accessed on 18 February 2025).
- Ramani, V.; Ignatius, M.; Lim, J.; Biljecki, F.; Miller, C. A Dynamic Urban Digital Twin Integrating Longitudinal Thermal Imagery for Microclimate Studies. In Proceedings of the 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, Istanbul Turkey, 15–16 November 2023; ACM: New York, NY, USA, 2023; pp. 421–428. [Google Scholar] [CrossRef]
- Singapore, C. Available online: https://sec.ethz.ch/research/cs.html (accessed on 1 February 2025).
- White, G.; Zink, A.; Codecá, L.; Clarke, S. A digital twin smart city for citizen feedback. Cities 2021, 110, 103064. [Google Scholar] [CrossRef]
- Gholami, M.; Torreggiani, D.; Barbaresi, A.; Tassinari, P. Smart Green Planning for Urban Environments: The City Digital Twin of Imola; Springer: Berlin/Heidelberg, Germany, 2024; pp. 133–150. [Google Scholar] [CrossRef]
- Gholami, M.; Torreggiani, D.; Tassinari, P.; Barbaresi, A. Developing a 3D City Digital Twin: Enhancing Walkability through a Green Pedestrian Network (GPN) in the City of Imola, Italy. Land 2022, 11, 1917. [Google Scholar] [CrossRef]
- KIRA-digi. The Kalasatama Digital Twins Project. Available online: https://www.kiradigi.fi/en/experiments/ongoing-projects/kalasatama-digital-twins.html (accessed on 23 February 2025).
- Dembski, F.; Wössner, U.; Letzgus, M.; Ruddat, M.; Yamu, C. Urban Digital Twins for Smart Cities and Citizens: The Case Study of Herrenberg, Germany. Sustainability 2020, 12, 2307. [Google Scholar] [CrossRef]
- Maiullari, D.; Nageli, C.; Rudena, A.; Isacson, Å.; Dokter, G.; Ellenbroek, I.; Wallbaum, H.; Thuvander, L. Digital twin for supporting decision-making and stakeholder collaboration in urban decarbonization processes. A participatory development in Gothenburg. Environ. Plan B Urban Anal. City Sci. 2024, 1–25. [Google Scholar] [CrossRef]
- Liu, X.; Gou, Z.; Yuan, C. Application of human-centric digital twins: Predicting outdoor thermal comfort distribution in Singapore using multi-source data and machine learning. Urban Clim. 2024, 58, 102210. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, T.; Luo, J.; Lei, B.; Frei, M.; Miller, C.; Biljecki, F. Towards Human-centric Digital Twins: Leveraging Computer Vision and Graph Models to Predict Outdoor Comfort. Sustain. Cities Soc. 2023, 93, 104480. [Google Scholar] [CrossRef]
- Pan, X.; Mavrokapnidis, D.; Ly, H.T.; Mohammadi, N.; Taylor, J.E. Assessing and forecasting collective urban heat exposure with smart city digital twins. Sci. Rep. 2024, 14, 9653. [Google Scholar] [CrossRef]
- Cárdenas-León, I.; Morales-Ortega, R.; Koeva, M.; Atún, F.; Pfeffer, K. Digital Twin-based Framework for Heat Stress Calculation. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, X-4-2024, 67–74. [Google Scholar] [CrossRef]
- Ignatius, M.; Lim, J.; Gottkehaskamp, B.; Fujiwara, K.; Miller, C.; Biljecki, F. Digital Twin and Wearables Unveiling Pedestrian Comfort Dynamics and Walkability in Cities. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, X-4/W5-202, 195–202. [Google Scholar] [CrossRef]
- Castelli, G.; Cesta, A.; Ciampi, M.; De Benedictis, R.; De Pietro, G.; Diez, M.; Felici, G.; Malvezzi, R.; Masini, B.; Pellegrini, R.; et al. Urban Intelligence: Toward the Digital Twin of Matera and Catania. In Proceedings of the 2022 Workshop on Blockchain for Renewables Integration (BLORIN), Palermo, Italy, 2–3 September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 132–137. [Google Scholar] [CrossRef]
- Corrado, S.; Scorza, F. Towards Sustainable Urban Development: Matera’s Urban Digital Twin and Challenges in Data Integration. In Lecture Notes in Civil Engineering; Springer Science and Business Media: Deutschland, Germany, 2024; pp. 230–236. [Google Scholar] [CrossRef]
- Lam, H.-K.; Lam, P.-D.; Ok, S.-Y.; Lee, S.-H. Digital Twin Smart City Visualization with MoE-Based Personal Thermal Comfort Analysis. Sensors 2025, 25, 705. [Google Scholar] [CrossRef]
- Garrett, A.; Ginensky, K.; Wang, X.; Ahmed, H.; Shen, J.; Yoshida, T.; Murayama, A.; Yang, P.P.J. Leveraging a Digital Twin Interface for Multimodal Transportation Resilience, Connectivity, and Equity—A Case Study of Toyosu, Tokyo. Energy Proc. 2025, 51. [Google Scholar] [CrossRef]
- Pađen, I.; Peters, R.; García-Sánchez, C.; Ledoux, H. Automatic high-detailed building reconstruction workflow for urban microscale simulations. Build. Environ. 2024, 265, 111978. [Google Scholar] [CrossRef]
- Kim, Y.; Ham, Y. Spatio-temporal heat risk analysis in construction: Digital twin-enabled monitoring. Autom. Constr. 2024, 168, 105805. [Google Scholar] [CrossRef]
- Miller, C.; Abdelrahman, M.; Chong, A.; Biljecki, F.; Quintana, M.; Frei, M.; Chew, M.; Wong, D. The Internet-of-Buildings (IoB) —Digital twin convergence of wearable and IoT data with GIS/BIM. J. Phys. Conf. Ser. 2021, 2042, 012041. [Google Scholar] [CrossRef]
- Ahn, J.; Kim, J.; Kang, J. Development of an artificial intelligence model for CFD data augmentation and improvement of thermal environment in urban areas using nature-based solutions. Urban For. Urban Green. 2024, 104, 128629. [Google Scholar] [CrossRef]
- Wang, H.; Ma, W.; Niu, J.; You, R. Evaluating a deep learning-based surrogate model for predicting wind distribution in urban microclimate design. Build. Environ. 2024, 269, 112426. [Google Scholar] [CrossRef]
- CesiumJS–Cesium. Available online: https://cesium.com/platform/cesiumjs/ (accessed on 20 June 2025).
- Unity. Available online: https://unity.com/es (accessed on 3 February 2025).
- Unreal Engine. Available online: https://www.unrealengine.com/es-ES (accessed on 3 February 2025).
- Gonzalez-Caceres, A.; Hunger, F.; Forssén, J.; Somanath, S.; Mark, A.; Naserentin, V.; Bohlin, J.; Logg, A.; Wästberg, B.; Komisarczyk, D.; et al. Towards digital twinning for multi-domain simulation workflows in urban design: A case study in Gothenburg. J. Build. Perform. Simul. 2024, 18, 311–332. [Google Scholar] [CrossRef]
- Kolokotsa, D.; Lilli, A.; Tsekeri, E.; Gobakis, K.; Katsiokalis, M.; Mania, A.; Baldacchino, N.; Polychronaki, S.; Buckley, N.; Micallef, D.; et al. The Intersection of the Green and the Smart City: A Data Platform for Health and Well-Being through Nature-Based Solutions. Smart Cities 2023, 7, 1–32. [Google Scholar] [CrossRef]
- Arif, Y.M.; Kusumadewi, T.; Karami, A.F.; A’rof, B.G.F.; Wijayanti, L.; Mulyadi, M. A Novel Digital Twin Framework for Adaptive Urban Weather Visualization Using IoT and Fuzzy Logic. Int. J. Intell. Eng. Syst. 2024, 17, 494–507. [Google Scholar] [CrossRef]
- Elnabawi, M.H.; Raveendran, R. Meta-pragmatic investigation of passive strategies from ‘UHI– climatology’ nexus perspective with digital twin as assessment mechanism. J. Urban Manag. 2024, 13, 332–356. [Google Scholar] [CrossRef]
- Zheng, L.; Lu, W. Urban micro-scale street thermal comfort prediction using a ‘graph attention network’ model. Build. Environ. 2024, 262, 111780. [Google Scholar] [CrossRef]
- Seleem, O.; Ayzel, G.; Bronstert, A.; Heistermann, M. Transferability of data-driven models to predict urban pluvial flood water depth in Berlin, Germany. Nat. Hazards Earth Syst. Sci. 2023, 23, 809–822. [Google Scholar] [CrossRef]
- Prasad, A.; Harder, P.; Yang, Q.; Sattegeri, P.; Szwarcman, D.; Watson, C.; Rolnick, D. Evaluating the Transferability Potential of Deep Learning Models for Climate Downscaling. 2024. Available online: https://arxiv.org/pdf/2407.12517 (accessed on 6 September 2025).
- Sukma, A.I.; Koeva, M.N.; Reckien, D.; Bockarjova, M.; da Silva Mano, A.; Canili, G.; Vicentini, G.; Kerle, N. 3D City Digital Twin Simulation to Mitigate Heat Risk of Urban Heat Islands. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, XLVIII-4/W, 129–136. [Google Scholar] [CrossRef]
- Spanish Ministry, CARTOGRAFÍA CATASTRAL-INSPIRE. Available online: https://www.catastro.hacienda.gob.es/webinspire/index.html (accessed on 7 July 2022).
- MITMA, Plan Nacional de Ortografía Aérea (PNOA). Available online: https://pnoa.ign.es/web/portal/pnoa-imagen/visualizadores-y-servicios-web (accessed on 4 July 2023).
- Procesamiento de los datos-Plan Nacional de Ortofotografía Aérea. Available online: https://pnoa.ign.es/pnoa-lidar/procesamiento-de-los-datos (accessed on 7 July 2025).
- PostGIS. Available online: https://postgis.net/ (accessed on 30 May 2025).
- GeoServer. Available online: https://geoserver.org/ (accessed on 30 May 2025).
- García, D.H. Analysis of Urban Heat Island and Heat Waves Using Sentinel-3 Images: A Study of Andalusian Cities in Spain. Earth Syst. Environ. 2021, 6, 199–219. [Google Scholar] [CrossRef]
- Open Source Geospatial Foundation (OSGeo), QGIS. Available online: https://www.qgis.org/en/site/ (accessed on 1 July 2022).
- Lindberg, F.; Grimmond, C.S.B.; Gabey, A.; Huang, B.; Kent, C.W.; Sun, T.; Theeuwes, N.E.; Järvi, L.; Ward, H.C.; Capel-Timms, I.; et al. Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services. Environ. Model. Softw. 2018, 99, 70–87. [Google Scholar] [CrossRef]
- Lindberg, F.; Holmer, B.; Thorsson, S. SOLWEIG 1.0–Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. Int. J. Biometeorol. 2008, 52, 697–713. [Google Scholar] [CrossRef]
- Bernard, J.; Lindberg, F.; Oswald, S. URock 2023a: An open-source GIS-based wind model for complex urban settings. Geosci. Model Dev. 2023, 16, 5703–5727. [Google Scholar] [CrossRef]
- Lindberg, F.; Grimmond, C.S.B. The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: Model development and evaluation. Theor. Appl. Climatol. 2011, 105, 311–323. [Google Scholar] [CrossRef]
- Colaninno, N.; Salvati, A.; Lopez, J.; Morganti, M. District-Scale Cumulative Heat Stress Mapping Using Very-High-Resolution Spatiotemporal Simulation. Sustain. Cities Soc. 2025, 130, 106498. [Google Scholar] [CrossRef]
- Rockle, R. Bestimmung der Stomungsverhaltnisse im Bereich Komplexer Bebauungsstrukturen; Technischen Hochschule Darmstadt: Darmstadt, Germany, 1990. [Google Scholar]
- Girard, P.; Nadeau, D.F.; Pardyjak, E.R.; Overby, M.; Willemsen, P.; Stoll, R.; Bailey, B.N.; Parlange, M.B. Evaluation of the QUIC-URB wind solver and QESRadiant radiation-transfer model using a dense array of urban meteorological observations. Urban Clim. 2018, 24, 657–674. [Google Scholar] [CrossRef]
- GitHub-orbisgis/h2gis: A Spatial Extension of the H2 Database. Available online: https://github.com/orbisgis/h2gis#readme (accessed on 26 May 2025).
- OpenJS Foundation & Contributors, Node-RED. Available online: https://nodered.org (accessed on 20 June 2025).
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- McGregor, G.R. Special issue: Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2012, 56, 419. [Google Scholar] [CrossRef]
- Fiala, D.; Havenith, G.; Bröde, P.; Kampmann, B.; Jendritzky, G. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int. J. Biometeorol. 2011, 56, 429–441. [Google Scholar] [CrossRef]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef] [PubMed]
- Romaszko, J.; Dragańska, E.; Jalali, R.; Cymes, I.; Glińska-Lewczuk, K. Universal Climate Thermal Index as a prognostic tool in medical science in the context of climate change: A systematic review. Sci. Total. Environ. 2022, 828, 154492. [Google Scholar] [CrossRef] [PubMed]
- CityGML Standard|OGC Publications. Available online: https://www.ogc.org/standards/citygml/ (accessed on 30 May 2025).
- Chajaei, F.; Bagheri, H. Machine learning framework for high-resolution air temperature downscaling using LiDAR-derived urban morphological features. Urban Clim. 2024, 57, 102102. [Google Scholar] [CrossRef]
- Afzalinezhad, A. Digital Twin-Based Planning Support System for Urban Heat Island Mitigation; University of Twente: Enschede, The Netherlands, 2024. [Google Scholar]
Parameter | Source | Data Type | Acquisition Method | Frequency | Format |
---|---|---|---|---|---|
Climate parameters | Weather Stations Bresser 9 in 1 | Weather Data | Real-time monitoring | Continuous (every minute) | CSV/JSON |
Building footprints | Cadastral information (public) | Spatial Data | Bulk download (manual/API) | Static (periodic updates) | Shapefile |
Elevations and land surface classification | Public LiDAR repositories (IGN) | Spatial Data | Bulk download (manual/API) | Static (periodic updates) | LAZ/LAS |
Digital Terrain Model | Obtained from LiDAR | Spatial Data | QGIS transformations | Static (periodic updates) | Raster (GeoTiff) |
Digital Surface Model | Obtained from LiDAR | Spatial Data | QGIS transformations | Static (periodic updates) | Raster (GeoTiff) |
Canopy Digital Surface Model | Obtained from LiDAR | Vegetation Data | QGIS transformations | Static (periodic updates) | Raster (GeoTiff) |
Thermal comfort | UMEP processing | Simulation Data | QGIS + UMEP simulations | User selected | Raster (GeoTiff) |
Model | Wi-Fi Standard | Wi-Fi Frequency | Transmission Interval |
Bresser 9 in 1 | 802.11 b/g/n | 2.4 GHz | 12 s |
Variable | Range | Accuracy | Resolution |
Pressure | 540~1100 hPa | (700~1100 hPa ± 5 hPa) | 1 hPa |
(540~696 hPa ± 8 hPa) | |||
Temperature | −20~80 °C | 0.1~60 °C ± 0.4 °C −19.9~0 °C ± 0.7 °C −40~−20 °C ± 1 °C | 0.1 °C |
Relative | 1–100% | 1~9% ± 5% 10~90% ± 3.5% 91~99% ± 5% (at 25 °C) | 1% |
Humidity | |||
Wind speed | 0–50 m/s | <5 m/s: +/−0.8 m/s; | 0.1 m/s |
>5 m/s: +/−6% | |||
(whichever is greater) | |||
Rain | 0~19,999 mm | ± 7% or 1 tip | 0.254 mm |
Light intensity | 0~200 Klux | Not defined | 0.01 Klux |
Process: Urban Geometry: Sky View Factor | |
Building and Ground DSM | Processed raster file from LIDAR data |
Vegetation Canopy DSM | Processed raster file from LIDAR data |
Transmissivity of Light Through Vegetation | 3% |
Vegetation crown base height | 25% of the crown top height |
Anisotropic sky | True |
Process: Outdoor Thermal Comfort: SOLWEIG | |
Simulation period | 30 May 2025 from 1:00 h to 23:00 h |
Time step | 1 h |
Spatial data | |
Building and Ground DSM | Processed raster file from LIDAR data |
Vegetation Canopy DSM | Processed raster file from LIDAR data |
DEM | Processed raster file from LIDAR data |
Transmissivity of Light Through Vegetation | 3% |
Vegetation crown base height | 25% of the crown top height |
First day of year with leaves | 97 |
Last day of year with leaves | 300 |
Conifer trees | True |
Input land cover classification | Processed raster file from LIDAR data |
Anisotropic model | Output from Urban Geometry: Sky View Factor process |
Meteorological data | .met file built from weather station data |
Environmental parameters | |
Albedo (Buildings) | 0.35 |
Albedo (Ground) | From land cover classification (standard values) |
Emissivity (Buildings) | 0.9 |
Emissivity (Ground) | From land cover classification (standard values) |
Human exposure parameters | |
Absorption of shortwave radiation | 0.70 |
Absorption of longwave radiation | 0.95 |
Consider human as cylinder | True |
Posture of the human body | Standing |
Process: URock Prepare | |
Building footprints | Vector data from public cadastral information |
Building raster DSM | Processed raster file from LIDAR data |
DEM | Processed raster file from LIDAR data |
Vegetation raster DSM (3D canopy) | Processed raster file from LIDAR data |
Tree height/tree crown radius ratio | 0.75 |
Process: Urban Wind Field: URock V2023a | |
Building polygons and height field | Vector data from URock prepare outputs |
Vegetation polygons and crown top height | Vector data from URock prepare outputs |
Vegetation crown base height | 25% of the crown top height |
Vegetation wind attenuation factor | 1.00 |
Vertical wind profile type | Urban |
Height of the reference wind speed (m) | 10 m |
Wind speed at the reference height (m) | Hourly data from the weather station |
Wind direction (° clockwise from North) | Hourly data from the weather station |
Horizontal resolution (m) | 1 × 1 m |
Vertical resolution (m) | 2 m |
Output wind height (m) | 1.5 m |
Process: Outdoor Thermal Comfort: Spatial Thermal Comfort | |
---|---|
Mean Radiant Temperature | Output from Outdoor Thermal Comfort: SOLWEIG |
Wind speed and direction | Output from Urban Wind Field: URock V2023a |
Thermal comfort parameter | UTCI |
Age | 35 years |
Activity | 80 W |
Clothing | 0.9 clo |
Weight | 75 kg |
Height | 180 cm |
Sex | Male |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez-Cabeza, V.P.; Videras-Rodriguez, M.; Gomez-Melgar, S. An Open-Source Urban Digital Twin for Enhancing Outdoor Thermal Comfort in the City of Huelva (Spain). Smart Cities 2025, 8, 160. https://doi.org/10.3390/smartcities8050160
Lopez-Cabeza VP, Videras-Rodriguez M, Gomez-Melgar S. An Open-Source Urban Digital Twin for Enhancing Outdoor Thermal Comfort in the City of Huelva (Spain). Smart Cities. 2025; 8(5):160. https://doi.org/10.3390/smartcities8050160
Chicago/Turabian StyleLopez-Cabeza, Victoria Patricia, Marta Videras-Rodriguez, and Sergio Gomez-Melgar. 2025. "An Open-Source Urban Digital Twin for Enhancing Outdoor Thermal Comfort in the City of Huelva (Spain)" Smart Cities 8, no. 5: 160. https://doi.org/10.3390/smartcities8050160
APA StyleLopez-Cabeza, V. P., Videras-Rodriguez, M., & Gomez-Melgar, S. (2025). An Open-Source Urban Digital Twin for Enhancing Outdoor Thermal Comfort in the City of Huelva (Spain). Smart Cities, 8(5), 160. https://doi.org/10.3390/smartcities8050160