Blockchain and Smart Cities: Co-Word Analysis and BERTopic Modeling
Abstract
Highlights
- Blockchain plays a foundational role in supporting secure, interoperable infrastructure for key urban services, particularly through integration with IoT, edge computing, and smart contracts.
- Research has shifted from general blockchain exploration to sector-specific applications, including decentralized healthcare, energy trading, smart mobility, and drone coordination.
- Blockchain enables cross-sectoral innovation in smart cities by enhancing transparency, data integrity, and trust across complex urban systems.
- As both a technological and ethical infrastructure, blockchain supports the development of secure, resilient, and sustainable smart city ecosystems aligned with Industry 5.0 values.
Abstract
1. Introduction
- What are the main thematic clusters that reflect current trends and the development of blockchain in smart cities?
- What emerging research topics are likely to shape the future of blockchain applications in smart cities?
2. Methodology
2.1. Data Collection
2.2. Thematic Cluster Analysis
2.3. Topic Modeling
3. Discussion of Results
3.1. Keyword Co-Occurrence Analysis
3.1.1. Technological Infrastructure for Secure Smart Cities
3.1.2. AI-Driven Sustainability and Intelligent Urban Services
3.1.3. Decentralized Intelligence and Secure Mobility
3.1.4. Decentralized Energy Ecosystems and Trusted Home-Scale Infrastructure
3.1.5. Blockchain for Health, Built Environments, and Sustainable Development
3.2. Findings from BERTopic Modeling
3.2.1. Blockchain-Driven Security and Privacy Solutions for IoT-Enabled Smart Cities
3.2.2. Strategic and Technological Perspectives on Blockchain Adoption
3.2.3. Blockchain-Enabled Intelligent Transportation and Mobility
3.2.4. Blockchain Applications for Sustainable Energy and Electric Mobility
3.2.5. Blockchain-Enabled Smart Healthcare Systems for Urban Health Resilience
3.2.6. Blockchain Applications in Smart Waste Management and Recycling Systems
3.2.7. Blockchain-Based Security and Trust Mechanisms for the Internet of Drones
3.2.8. Temporal Dynamics of Research on Blockchain and Smart Cities
3.2.9. Comparative Analysis of Co-Word and BERTopic Findings
4. Conclusions
4.1. Research Limitations
4.2. Future Research Directions
4.3. Research Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Park, J.; Yoo, S. Evolution of the Smart City: Three Extensions to Governance, Sustainability, and Decent Urbanisation from an ICT-Based Urban Solution. Int. J. Urban Sci. 2023, 27, 10–28. [Google Scholar] [CrossRef]
- Trindade, E.P.; Hinnig, M.P.F.; Da Costa, E.M.; Marques, J.S.; Bastos, R.C.; Yigitcanlar, T. Sustainable Development of Smart Cities: A Systematic Review of the Literature. J. Open Innov. Technol. Mark. Complex. 2017, 3, 1–14. [Google Scholar] [CrossRef]
- Bibri, S.E.; Alexandre, A.; Sharifi, A.; Krogstie, J. Environmentally Sustainable Smart Cities and Their Converging AI, IoT, and Big Data Technologies and Solutions: An Integrated Approach to an Extensive Literature Review. Energy Inform. 2023, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, A. Cities in the Context of Global Change: Challenges and the Need for Smart and Resilient Cities. In Resilient Smart Cities; Sharifi, A., Salehi, P., Eds.; The Urban Book Series; Springer International Publishing: Cham, Switzerland, 2022; pp. 3–16. ISBN 978-3-030-95036-1. [Google Scholar]
- Asadzadeh, A.; Kötter, T.; Fekete, A.; Moghadas, M.; Alizadeh, M.; Zebardast, E.; Weiss, D.; Basirat, M.; Hutter, G. Urbanization, Migration, and the Challenges of Resilience Thinking in Urban Planning: Insights from Two Contrasting Planning Systems in Germany and Iran. Cities 2022, 125, 103642. [Google Scholar] [CrossRef]
- Sun, J.; Yan, J.; Zhang, K.Z.K. Blockchain-Based Sharing Services: What Blockchain Technology Can Contribute to Smart Cities. Financ. Innov. 2016, 2, 26. [Google Scholar] [CrossRef]
- Majeed, U.; Khan, L.U.; Yaqoob, I.; Kazmi, S.M.A.; Salah, K.; Hong, C.S. Blockchain for IoT-Based Smart Cities: Recent Advances, Requirements, and Future Challenges. J. Netw. Comput. Appl. 2021, 181, 103007. [Google Scholar] [CrossRef]
- Treiblmaier, H.; Rejeb, A.; Strebinger, A. Blockchain as a Driver for Smart City Development: Application Fields and a Comprehensive Research Agenda. Smart Cities 2020, 3, 853–872. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Simske, S.J.; Keogh, J.G. Blockchain Technology in the Smart City: A Bibliometric Review. Qual. Quant. 2022, 56, 2875–2906. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Abdollahi, A.; Keogh, J.G.; Zailani, S.; Iranmanesh, M. Smart City Research: A Bibliometric and Main Path Analysis. J. Data Inf. Manag. 2022, 4, 343–370. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Simske, S.; Treiblmaier, H.; Zailani, S. The Big Picture on the Internet of Things and the Smart City: A Review of What We Know and What We Need to Know. Internet Things 2022, 19, 100565. [Google Scholar] [CrossRef]
- Tan, E.; Mahula, S.; Crompvoets, J. Blockchain Governance in the Public Sector: A Conceptual Framework for Public Management. Gov. Inf. Q. 2022, 39, 101625. [Google Scholar] [CrossRef]
- Bahrepour, D.; Maleki, R. Benefit and Limitation of Using Blockchain in Smart Cities to Improve Citizen Services. GeoJournal 2024, 89, 57. [Google Scholar] [CrossRef]
- Fu, Y.; Zhu, J. Trusted Data Infrastructure for Smart Cities: A Blockchain Perspective. Build. Res. Inf. 2021, 49, 21–37. [Google Scholar] [CrossRef]
- Mohd Shari, N.F.; Malip, A. State-of-the-Art Solutions of Blockchain Technology for Data Dissemination in Smart Cities: A Comprehensive Review. Comput. Commun. 2022, 189, 120–147. [Google Scholar] [CrossRef]
- Yu, Z.; Song, L.; Jiang, L.; Khold Sharafi, O. Systematic Literature Review on the Security Challenges of Blockchain in IoT-Based Smart Cities. Kybernetes 2022, 51, 323–347. [Google Scholar] [CrossRef]
- Ullah, A.; Anwar, S.M.; Li, J.; Nadeem, L.; Mahmood, T.; Rehman, A.; Saba, T. Smart Cities: The Role of Internet of Things and Machine Learning in Realizing a Data-Centric Smart Environment. Complex Intell. Syst. 2024, 10, 1607–1637. [Google Scholar] [CrossRef]
- Chiu, W.-Y.; Meng, W. EdgeTC—A PBFT Blockchain-Based ETC Scheme for Smart Cities. Peer Peer Netw. Appl. 2021, 14, 2874–2886. [Google Scholar] [CrossRef]
- Ahmad, R.W.; Salah, K.; Jayaraman, R.; Yaqoob, I.; Omar, M. Blockchain for Waste Management in Smart Cities: A Survey. IEEE Access 2021, 9, 131520–131541. [Google Scholar] [CrossRef]
- Khan, A.U.R.; Ahmad, R.W. A Blockchain-Based IoT-Enabled E-Waste Tracking and Tracing System for Smart Cities. IEEE Access 2022, 10, 86256–86269. [Google Scholar] [CrossRef]
- Ullah, Z.; Naeem, M.; Coronato, A.; Ribino, P.; De Pietro, G. Blockchain Applications in Sustainable Smart Cities. Sustain. Cities Soc. 2023, 97, 104697. [Google Scholar] [CrossRef]
- Krishnamurthy, R.; Rathee, G.; Jaglan, N. An Enhanced Security Mechanism through Blockchain for E-Polling/Counting Process Using IoT Devices. Wirel. Netw. 2020, 26, 2391–2402. [Google Scholar] [CrossRef]
- Ullah, F.; Al-Turjman, F. A Conceptual Framework for Blockchain Smart Contract Adoption to Manage Real Estate Deals in Smart Cities. Neural Comput. Appl. 2023, 35, 5033–5054. [Google Scholar] [CrossRef]
- Kamruzzaman, M.M.; Yan, B.; Sarker, M.N.I.; Alruwaili, O.; Wu, M.; Alrashdi, I. Blockchain and Fog Computing in IoT-Driven Healthcare Services for Smart Cities. J. Healthc. Eng. 2022, 2022, 9957888. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Kumar, D. Blockchain-Based Smart Dairy Supply Chain: Catching the Momentum for Digital Transformation. J. Agribus. Dev. Emerg. Econ. 2025, 15, 225–248. [Google Scholar] [CrossRef]
- Bekkali, A.E.; Essaaidi, M.; Boulmalf, M. A Blockchain-Based Architecture and Framework for Cybersecure Smart Cities. IEEE Access 2023, 11, 76359–76370. [Google Scholar] [CrossRef]
- Mohd Shari, N.F.; Malip, A. Blockchain-Based Decentralized Data Dissemination Scheme in Smart Transportation. J. Syst. Archit. 2023, 134, 102800. [Google Scholar] [CrossRef]
- Aqleem Abbas, S.M.; Khattak, M.A.K.; Boulila, W.; Kouba, A.; Shahbaz Khan, M.; Ahmad, J. UAVs and Blockchain Synergy: Enabling Secure Reputation-Based Federated Learning in Smart Cities. IEEE Access 2024, 12, 154035–154053. [Google Scholar] [CrossRef]
- Abd El-Latif, A.A.; Abd-El-Atty, B.; Mehmood, I.; Muhammad, K.; Venegas-Andraca, S.E.; Peng, J. Quantum-Inspired Blockchain-Based Cybersecurity: Securing Smart Edge Utilities in IoT-Based Smart Cities. Inf. Process. Manag. 2021, 58, 102549. [Google Scholar] [CrossRef]
- Tiwari, A.; Batra, U. Internet of Medical Things Enabled by Permissioned Blockchain on Distributed Storage. In International Conference on IoT, Intelligent Computing and Security; Agrawal, R., Mitra, P., Pal, A., Sharma Gaur, M., Eds.; Lecture Notes in Electrical Engineering; Springer Nature Singapore: Singapore, 2023; Volume 982, pp. 3–17. ISBN 978-981-19813-5-7. [Google Scholar]
- Xie, J.; Tang, H.; Huang, T.; Yu, F.R.; Xie, R.; Liu, J.; Liu, Y. A Survey of Blockchain Technology Applied to Smart Cities: Research Issues and Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 2794–2830. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Keogh, J.G.; Süle, E. When Industry 5.0 Meets the Circular Economy: A Systematic Literature Review. Circ. Econ. Sustain. 2025, 1–32. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B.; PRISMA-S Group. PRISMA-S: An Extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Syst. Rev. 2021, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Sarkis-Onofre, R.; Catalá-López, F.; Aromataris, E.; Lockwood, C. How to Properly Use the PRISMA Statement. Syst. Rev. 2021, 10, 117. [Google Scholar] [CrossRef] [PubMed]
- Rejeb, A.; Rejeb, K.; Simske, S.; Süle, E. Industry 5.0 Research: An Approach Using Co-Word Analysis and BERTopic Modeling. Discov. Sustain. 2025, 6, 402. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Zrelli, I.; Kayikci, Y.; Hassoun, A. The Research Landscape of Industry 5.0: A Scientific Mapping Based on Bibliometric and Topic Modeling Techniques. Flex. Serv. Manuf. J. 2024, 1–48. [Google Scholar] [CrossRef]
- Fidelis, A.; Moreira, A.C.; Vitória, A. Multiple Perspectives of Spiritual Intelligence: A Systematic Literature Review. Soc. Sci. Humanit. Open 2024, 9, 100879. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Zrelli, I. Exploring the State-of-the-Art of Halal Food Research Using Latent Dirichlet Allocation. Discov. Food 2025, 5, 24. [Google Scholar] [CrossRef]
- Ligorio, L.; Venturelli, A.; Caputo, F. Tracing the Boundaries between Sustainable Cities and Cities for Sustainable Development. An LDA Analysis of Management Studies. Technol. Forecast. Soc. Change 2022, 176, 121447. [Google Scholar] [CrossRef]
- Braun, V.; Clarke, V. Using Thematic Analysis in Psychology. Qual. Res. Psychol. 2006, 3, 77–101. [Google Scholar] [CrossRef]
- Gan, Q.; Lau, R.Y.K.; Hong, J. A Critical Review of Blockchain Applications to Banking and Finance: A Qualitative Thematic Analysis Approach. Technol. Anal. Strateg. Manag. 2025, 37, 387–403. [Google Scholar] [CrossRef]
- Idrissi Gartoumi, K. Five-Year Review of Blockchain in Construction Management: Scientometric and Thematic Analysis (2017-2023). Autom. Constr. 2024, 168, 105773. [Google Scholar] [CrossRef]
- Parappallil Mathew, B.; Bangwal, D. People Centric Governance Model for Smart Cities Development: A Systematic Review, Thematic Analysis, and Findings. Res. Glob. 2024, 9, 100237. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, A.; Ghaderi, Z.; Béal, L.; Cooper, C. The Intersection between Knowledge Management and Organizational Learning in Tourism and Hospitality: A Bibliometric Analysis. J. Hosp. Tour. Manag. 2023, 55, 11–28. [Google Scholar] [CrossRef]
- Callon, M.; Courtial, J.P.; Laville, F. Co-Word Analysis as a Tool for Describing the Network of Interactions between Basic and Technological Research: The Case of Polymer Chemsitry. Scientometrics 1991, 22, 155–205. [Google Scholar] [CrossRef]
- Asmussen, C.B.; Møller, C. Smart Literature Review: A Practical Topic Modelling Approach to Exploratory Literature Review. J. Big Data 2019, 6, 93. [Google Scholar] [CrossRef]
- Nikolenko, S.I.; Koltcov, S.; Koltsova, O. Topic Modelling for Qualitative Studies. J. Inf. Sci. 2017, 43, 88–102. [Google Scholar] [CrossRef]
- Soltani, M.; Kythreotis, A.; Roshanpoor, A. Two Decades of Financial Statement Fraud Detection Literature Review; Combination of Bibliometric Analysis and Topic Modeling Approach. J. Financ. Crime 2023, 30, 1367–1388. [Google Scholar] [CrossRef]
- Kim, J.J.; Jang, H.; Roh, S. A Systematic Literature Review on Humanitarian Logistics Using Network Analysis and Topic Modeling. Asian J. Shipp. Logist. 2022, 38, 263–278. [Google Scholar] [CrossRef]
- Chen, X.; Xie, H. A Structural Topic Modeling-Based Bibliometric Study of Sentiment Analysis Literature. Cogn. Comput. 2020, 12, 1097–1129. [Google Scholar] [CrossRef]
- Chen, X.; Bandara, D.; Sanford, B. A Literature Review on Transnational Diaspora Entrepreneurship: Utilizing a Combined Approach of Traditional and Topic Modeling. N. Engl. J. Entrep. 2024, 27, 136–151. [Google Scholar] [CrossRef]
- Lin, H.-J.; Sheu, P.C.-Y.; Tsai, J.J.P.; Wang, C.C.N.; Chou, C.-Y. Text Mining in a Literature Review of Urothelial Cancer Using Topic Model. BMC Cancer 2020, 20, 462. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Peng, Z.; Kim, S.-H.; Choi, C.W. What We Can Do and Cannot Do with Topic Modeling: A Systematic Review. Commun. Methods Meas. 2023, 17, 111–130. [Google Scholar] [CrossRef]
- Grootendorst, M. BERTopic: Neural Topic Modeling with a Class-Based TF-IDF Procedure. arXiv 2022, arXiv:2203.05794. [Google Scholar]
- McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2018, arXiv:1802.03426. [Google Scholar]
- Aguilera, R.C.; Ortiz, M.P.; Ortiz, J.P.; Banda, A.A. Internet of Things Expert System for Smart Cities Using the Blockchain Technology. Fractals 2021, 29, 2150036. [Google Scholar] [CrossRef]
- Gong, S.; Tcydenova, E.; Jo, J.; Lee, Y.; Park, J.H. Blockchain-Based Secure Device Management Framework for an Internet of Things Network in a Smart City. Sustainability 2019, 11, 3889. [Google Scholar] [CrossRef]
- Abbasi, S.; Khaledian, N.; Rahmani, A.M. Trust Management in the Internet of Vehicles: A Systematic Literature Review of Blockchain Integration. Int. J. Inf. Secur. 2024, 23, 3065–3088. [Google Scholar] [CrossRef]
- Alsayaydeh, J.A.J.; Irianto; Ali, M.F.; Al-Andoli, M.N.M.; Herawan, S.G. Improving the Robustness of IoT-Powered Smart City Applications Through Service-Reliant Application Authentication Technique. IEEE Access 2024, 12, 19405–19417. [Google Scholar] [CrossRef]
- Al Ridhawi, I.; Aloqaily, M.; Boukerche, A.; Jararweh, Y. Enabling Intelligent IoCV Services at the Edge for 5G Networks and Beyond. IEEE Trans. Intell. Transp. Syst. 2021, 22, 5190–5200. [Google Scholar] [CrossRef]
- Haque, A.K.M.B.; Bhushan, B.; Dhiman, G. Conceptualizing Smart City Applications: Requirements, Architecture, Security Issues, and Emerging Trends. Expert Syst. 2022, 39, e12753. [Google Scholar] [CrossRef]
- Alaeddini, M.; Hajizadeh, M.; Reaidy, P. A Bibliometric Analysis of Research on the Convergence of Artificial Intelligence and Blockchain in Smart Cities. Smart Cities 2023, 6, 764–795. [Google Scholar] [CrossRef]
- Kundu, D. Blockchain and Trust in a Smart City. Environ. Urban. ASIA 2019, 10, 31–43. [Google Scholar] [CrossRef]
- Sameer Jabar, M. Blockchain-Enabled Secure Data Communication Protocols for 5G Networks. Eng. Technol. Appl. Sci. Res. 2025, 15, 20151–20161. [Google Scholar] [CrossRef]
- Jaiswal, R.; Davidrajuh, R.; Rong, C. Fog Computing for Realizing Smart Neighborhoods in Smart Grids. Computers 2020, 9, 76. [Google Scholar] [CrossRef]
- Aljarrah, E. AI-Based Model for Prediction of Power Consumption in Smart Grid-Smart Way towards Smart City Using Blockchain Technology. Intell. Syst. Appl. 2024, 24, 200440. [Google Scholar] [CrossRef]
- Kumari, A.; Gupta, R.; Tanwar, S. Amalgamation of Blockchain and IoT for Smart Cities Underlying 6G Communication: A Comprehensive Review. Comput. Commun. 2021, 172, 102–118. [Google Scholar] [CrossRef]
- Foschini, L.; Martuscelli, G.; Montanari, R.; Solimando, M. Edge-Enabled Mobile Crowdsensing to Support Effective Rewarding for Data Collection in Pandemic Events. J. Grid Comput. 2021, 19, 28. [Google Scholar] [CrossRef]
- Kim, M.; Kim, Y. Multi-Blockchain Structure for a Crowdsensing-Based Smart Parking System. Future Internet 2020, 12, 90. [Google Scholar] [CrossRef]
- Wang, J.; Feng, X.; Xu, T.; Ning, H.; Qiu, T. Blockchain-Based Model for Nondeterministic Crowdsensing Strategy with Vehicular Team Cooperation. IEEE Internet Things J. 2020, 7, 8090–8098. [Google Scholar] [CrossRef]
- Kaur, E.; Oza, A. Blockchain-Based Multi-Organization Taxonomy for Smart Cities. SN Appl. Sci. 2020, 2, 440. [Google Scholar] [CrossRef]
- Khalil, U.; Malik, O.A.; Hong, O.W.; Uddin, M. Leveraging a Novel NFT-Enabled Blockchain Architecture for the Authentication of IoT Assets in Smart Cities. Sci. Rep. 2023, 13, 19785. [Google Scholar] [CrossRef] [PubMed]
- Khalili, N.; Makrakis, D.; Baseri, Y.; Senhaji Hafid, A. Toward Secure and Transparent Global Authentication: A Blockchain-Based System Integrating Biometrics and Subscriber Identification Module. IEEE Access 2025, 13, 45936–45950. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, J. Research on the Application of Block Chain Big Data Platform in the Construction of New Smart City for Low Carbon Emission and Green Environment. Comput. Commun. 2020, 149, 332–342. [Google Scholar] [CrossRef]
- Anthony Jnr, B. Artificial Intelligence of Things and Distributed Technologies as Enablers for Intelligent Mobility Services in Smart Cities-A Survey. Internet Things 2024, 28, 101399. [Google Scholar] [CrossRef]
- Gera, B.; Raghuvanshi, Y.S.; Rawlley, O.; Gupta, S.; Dua, A.; Sharma, P. Leveraging AI-Enabled 6G-Driven IoT for Sustainable Smart Cities. Int. J. Commun. Syst. 2023, 36, e5588. [Google Scholar] [CrossRef]
- Badidi, E. Edge AI and Blockchain for Smart Sustainable Cities: Promise and Potential. Sustainability 2022, 14, 7609. [Google Scholar] [CrossRef]
- Alnaser, A.A.; Maxi, M.; Elmousalami, H. AI-Powered Digital Twins and Internet of Things for Smart Cities and Sustainable Building Environment. Appl. Sci. 2024, 14, 12056. [Google Scholar] [CrossRef]
- Javed, A.R.; Shahzad, F.; Rehman, S.U.; Zikria, Y.B.; Razzak, I.; Jalil, Z.; Xu, G. Future Smart Cities Requirements, Emerging Technologies, Applications, Challenges, and Future Aspects. Cities 2022, 129, 103794. [Google Scholar] [CrossRef]
- Sharma, P.; Jain, S.; Gupta, S.; Chamola, V. Role of Machine Learning and Deep Learning in Securing 5G-Driven Industrial IoT Applications. Ad Hoc Netw. 2021, 123, 102685. [Google Scholar] [CrossRef]
- Hangan, A.; Chiru, C.-G.; Arsene, D.; Czako, Z.; Lisman, D.F.; Mocanu, M.; Pahontu, B.; Predescu, A.; Sebestyen, G. Advanced Techniques for Monitoring and Management of Urban Water Infrastructures—An Overview. Water 2022, 14, 2174. [Google Scholar] [CrossRef]
- Shah, K.; Jadav, N.K.; Tanwar, S.; Singh, A.; Pleșcan, C.; Alqahtani, F.; Tolba, A. AI and Blockchain-Assisted Secure Data-Exchange Framework for Smart Home Systems. Mathematics 2023, 11, 4062. [Google Scholar] [CrossRef]
- Nayyer, N.; Javaid, N.; Akbar, M.; Aldegheishem, A.; Alrajeh, N.; Jamil, M. A New Framework for Fraud Detection in Bitcoin Transactions Through Ensemble Stacking Model in Smart Cities. IEEE Access 2023, 11, 90916–90938. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Alrashdi, I.; Hawash, H.; Sallam, K.; Hameed, I.A. Towards Efficient and Trustworthy Pandemic Diagnosis in Smart Cities: A Blockchain-Based Federated Learning Approach. Mathematics 2023, 11, 3093. [Google Scholar] [CrossRef]
- Al-Aswad, H.; El-Medany, W.M.; Balakrishna, C.; Ababneh, N.; Curran, K. BZKP: Blockchain-Based Zero-Knowledge Proof Model for Enhancing Healthcare Security in Bahrain IoT Smart Cities and COVID-19 Risk Mitigation. Arab J. Basic Appl. Sci. 2021, 28, 154–171. [Google Scholar] [CrossRef]
- Appasani, B.; Mishra, S.K.; Jha, A.V.; Mishra, S.K.; Enescu, F.M.; Sorlei, I.S.; Bîrleanu, F.G.; Takorabet, N.; Thounthong, P.; Bizon, N. Blockchain-Enabled Smart Grid Applications: Architecture, Challenges, and Solutions. Sustainability 2022, 14, 8801. [Google Scholar] [CrossRef]
- Swain, A.; Salkuti, S.R.; Swain, K. An Optimized and Decentralized Energy Provision System for Smart Cities. Energies 2021, 14, 1451. [Google Scholar] [CrossRef]
- Samuel, O.; Javaid, N. A Secure Blockchain-Based Demurrage Mechanism for Energy Trading in Smart Communities. Int. J. Energy Res. 2021, 45, 297–315. [Google Scholar] [CrossRef]
- Samuel, O.; Javaid, N.; Alghamdi, T.A.; Kumar, N. Towards Sustainable Smart Cities: A Secure and Scalable Trading System for Residential Homes Using Blockchain and Artificial Intelligence. Sustain. Cities Soc. 2022, 76, 103371. [Google Scholar] [CrossRef]
- Montakhabi, M.; Madhusudan, A.; Mustafa, M.A.; Vanhaverbeke, W.; Almirall, E.; van der Shenja, G. Leveraging Blockchain for Energy Transition in Urban Contexts. Big Data Soc. 2023, 10, e20539517231205503. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, Y. Chapter 9—Blockchain Technologies for Automatic, Secure, and Tamper-Proof Energy Trading. In Advances in Digitalization and Machine Learning for Integrated Building-Transportation Energy Systems; Zhou, Y., Yang, J., Zhang, G., Lund, P.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 159–170. ISBN 978-0-443-13177-6. [Google Scholar]
- Nica, E.; Popescu, G.H.; Poliak, M.; Kliestik, T.; Sabie, O.-M. Digital Twin Simulation Tools, Spatial Cognition Algorithms, and Multi-Sensor Fusion Technology in Sustainable Urban Governance Networks. Mathematics 2023, 11, 1981. [Google Scholar] [CrossRef]
- Abbas, K.; Tawalbeh, L.A.; Rafiq, A.; Muthanna, A.; Elgendy, I.A.; Abd El-Latif, A.A. Convergence of Blockchain and IoT for Secure Transportation Systems in Smart Cities. Secur. Commun. Netw. 2021, 2021, 5597679. [Google Scholar] [CrossRef]
- Zhou, Y. Unmanned Aerial Vehicles Based Low-Altitude Economy with Lifecycle Techno-Economic-Environmental Analysis for Sustainable and Smart Cities. J. Clean. Prod. 2025, 499, 145050. [Google Scholar] [CrossRef]
- Szpilko, D.; de la Torre Gallegos, A.; Jimenez Naharro, F.; Rzepka, A.; Remiszewska, A. Waste Management in the Smart City: Current Practices and Future Directions. Resources 2023, 12, 115. [Google Scholar] [CrossRef]
- Alladi, T.; Chamola, V.; Sahu, N.; Venkatesh, V.; Goyal, A.; Guizani, M. A Comprehensive Survey on the Applications of Blockchain for Securing Vehicular Networks. IEEE Commun. Surv. Tutor. 2022, 24, 1212–1239. [Google Scholar] [CrossRef]
- Surapaneni, P.; Bojjagani, S.; Bharathi, V.C.; Kumar Morampudi, M.; Kumar Maurya, A.; Khurram Khan, M. A Systematic Review on Blockchain-Enabled Internet of Vehicles (BIoV): Challenges, Defenses, and Future Research Directions. IEEE Access 2024, 12, 123529–123560. [Google Scholar] [CrossRef]
- Bagga, P.; Sutrala, A.K.; Das, A.K.; Vijayakumar, P. Blockchain-Based Batch Authentication Protocol for Internet of Vehicles. J. Syst. Archit. 2021, 113, 101877. [Google Scholar] [CrossRef]
- Raza, A.; Badidi, E.; Hayajneh, M.; Barka, E.; Harrouss, O.E. Blockchain-Based Reputation and Trust Management for Smart Grids, Healthcare, and Transportation: A Review. IEEE Access 2024, 12, 196887–196913. [Google Scholar] [CrossRef]
- Sey, C.; Lei, H.; Qian, W.; Li, X.; Fiasam, L.D.; Kodjiku, S.L.; Adjei-Mensah, I.; Agyemang, I.O. VBlock: A Blockchain-Based Tamper-Proofing Data Protection Model for Internet of Vehicle Networks. Sensors 2022, 22, 8083. [Google Scholar] [CrossRef]
- Iordache, S.; Patilea, C.C.; Paduraru, C. Enhancing Autonomous Vehicle Safety with Blockchain Technology: Securing Vehicle Communication and AI Systems. Future Internet 2024, 16, 471. [Google Scholar] [CrossRef]
- Zrikem, M.; Hasnaoui, I.; Elassali, R. Vehicle-to-Blockchain (V2B) Communication: Integrating Blockchain into V2X and IoT for Next-Generation Transportation Systems. Electronics 2023, 12, 3377. [Google Scholar] [CrossRef]
- Feng, H.; Chen, D.; Lv, Z. Blockchain in Digital Twins-Based Vehicle Management in VANETs. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19613–19623. [Google Scholar] [CrossRef]
- Alharbi, M.; Alabdulatif, A. Intelligent Transport System Based Blockchain to Preventing Routing Attacks. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 2023, 14, 126–143. [Google Scholar] [CrossRef]
- Karger, E.; Jagals, M.; Ahlemann, F. Blockchain for Smart Mobility-Literature Review and Future Research Agenda. Sustainability 2021, 13, 13268. [Google Scholar] [CrossRef]
- Dwivedi, S.K.; Amin, R.; Vollala, S.; Chaudhry, R. Blockchain-Based Secured Event-Information Sharing Protocol in Internet of Vehicles for Smart Cities. Comput. Electr. Eng. 2020, 86, 106719. [Google Scholar] [CrossRef]
- Karri, C.; Machado, J.J.M.; Tavares, J.M.R.S.; Jain, D.K.; Dannana, S.; Gottapu, S.K.; Gandomi, A.H. Recent Technology Advancements in Smart City Management: A Review. Comput. Mater. Contin. 2024, 81, 3617–3663. [Google Scholar] [CrossRef]
- Muhammad, M.H.G.; Ahmad, R.; Fatima, A.; Mohammed, A.S.; Raza, M.A.; Khan, M.A. Secure and Transparent Traffic Congestion Control System for Smart City Using a Federated Learning Approach. Int. J. Adv. Appl. Sci. 2024, 11, 1–10. [Google Scholar] [CrossRef]
- Yin, X.; Qiu, H.; Wu, X.; Zhang, X. An Efficient Attribute-Based Participant Selecting Scheme with Blockchain for Federated Learning in Smart Cities. Computers 2024, 13, 118. [Google Scholar] [CrossRef]
- Khan, S.; Imtiaz, N.; Kumar Biswas, A.; Bin Siddique, Z.; Ali Khan, Q. An Expert Hybrid Federated Learning and Trust Management for Security, Efficiency, and Power Optimization in Smart Health Systems. IEEE Access 2025, 13, 58191–58210. [Google Scholar] [CrossRef]
- Shah, S.F.A.; Mazhar, T.; Shloul, T.A.; Shahzad, T.; Hu, Y.-C.; Mallek, F.; Hamam, H. Applications, Challenges, and Solutions of Unmanned Aerial Vehicles in Smart City Using Blockchain. PeerJ Comput. Sci. 2024, 10, e1776. [Google Scholar] [CrossRef]
- Qin, C.; Li, P.; Liu, J.; Liu, J. Blockchain-Enabled Charging Scheduling for Unmanned Vehicles in Smart Cities. J. Internet Technol. 2021, 22, 327–337. [Google Scholar] [CrossRef]
- Yang, W.; Wang, S.; Yin, X.; Wang, X.; Hu, J. A Review on Security Issues and Solutions of the Internet of Drones. IEEE Open J. Comput. Soc. 2022, 3, 96–110. [Google Scholar] [CrossRef]
- Yazdinejad, A.; Parizi, R.M.; Dehghantanha, A.; Karimipour, H.; Srivastava, G.; Aledhari, M. Enabling Drones in the Internet of Things with Decentralized Blockchain-Based Security. IEEE Internet Things J. 2021, 8, 6406–6415. [Google Scholar] [CrossRef]
- Liao, S.; Wu, J.; Li, J.; Bashir, A.K.; Yang, W. Securing Collaborative Environment Monitoring in Smart Cities Using Blockchain Enabled Software-Defined Internet of Drones. IEEE Internet Things Mag. 2021, 4, 12–18. [Google Scholar] [CrossRef]
- Rathee, G.; Kumar, A.; Kerrache, C.A.; Iqbal, R. A Trust-Based Mechanism for Drones in Smart Cities. IET Smart Cities 2022, 4, 255–264. [Google Scholar] [CrossRef]
- Al-Rimawi, T.; Nadler, M. Leveraging Smart City Technologies for Enhanced Real Estate Development: An Integrative Review. Smart Cities 2025, 8, 10. [Google Scholar] [CrossRef]
- Rejeb, A.; Keogh, J.G. 5G Networks in the Value Chain. Wirel. Pers. Commun. 2021, 117, 1577–1599. [Google Scholar] [CrossRef]
- Serrano, W. The Blockchain Random Neural Network for Cybersecure IoT and 5G Infrastructure in Smart Cities. J. Netw. Comput. Appl. 2021, 175, 102909. [Google Scholar] [CrossRef]
- Alotaibi, A.; Aldawghan, H.; Aljughaiman, A. A Review of the Authentication Techniques for Internet of Things Devices in Smart Cities: Opportunities, Challenges, and Future Directions. Sensors 2025, 25, 1649. [Google Scholar] [CrossRef]
- Mahapatra, S.N.; Singh, B.K.; Kumar, V. A Survey on Secure Transmission in Internet of Things: Taxonomy, Recent Techniques, Research Requirements, and Challenges. Arab. J. Sci. Eng. 2020, 45, 6211–6240. [Google Scholar] [CrossRef]
- Ali, S.A.; Elsaid, S.A.; Ateya, A.A.; ElAffendi, M.; El-Latif, A.A.A. Enabling Technologies for Next-Generation Smart Cities: A Comprehensive Review and Research Directions. Future Internet 2023, 15, 398. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Khezr, S.; Yassine, A.; Benlamri, R. Blockchain for Smart Homes: Review of Current Trends and Research Challenges. Comput. Electr. Eng. 2020, 83, 106585. [Google Scholar] [CrossRef]
- Bhawana; Kumar, S.; Rathore, R.S.; Mahmud, M.; Kaiwartya, O.; Lloret, J. BEST—Blockchain-Enabled Secure and Trusted Public Emergency Services for Smart Cities Environment. Sensors 2022, 22, 5733. [Google Scholar] [CrossRef] [PubMed]
- Park, L.W.; Lee, S.; Chang, H. A Sustainable Home Energy Prosumer-Chain Methodology with Energy Tags over the Blockchain. Sustainability 2018, 10, 658. [Google Scholar] [CrossRef]
- Almuqren, L.; Mahmood, K.; Aljameel, S.S.; Salama, A.S.; Mohammed, G.P.; Alneil, A.A. Blockchain-Assisted Secure Smart Home Network Using Gradient-Based Optimizer with Hybrid Deep Learning Model. IEEE Access 2023, 11, 86999–87008. [Google Scholar] [CrossRef]
- Khan, P.W.; Byun, Y.-C. Blockchain-Based Peer-to-Peer Energy Trading and Charging Payment System for Electric Vehicles. Sustainability 2021, 13, 7962. [Google Scholar] [CrossRef]
- Teimoori, Z.; Yassine, A. A Review on Intelligent Energy Management Systems for Future Electric Vehicle Transportation. Sustainability 2022, 14, 14100. [Google Scholar] [CrossRef]
- Danish, S.M.; Zhang, K.; Jacobsen, H.-A.; Ashraf, N.; Qureshi, H.K. BlockEV: Efficient and Secure Charging Station Selection for Electric Vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4194–4211. [Google Scholar] [CrossRef]
- Duan, Q.; Quynh, N.V.; Abdullah, H.M.; Almalaq, A.; Duc Do, T.; Abdelkader, S.M.; Mohamed, M.A. Optimal Scheduling and Management of a Smart City within the Safe Framework. IEEE Access 2020, 8, 161847–161861. [Google Scholar] [CrossRef]
- Alexandridis, A.; Al-Sumaidaee, G.; Zilic, Z.; Jeon, G.; Wang, J. An IoT Ecosystem Platform for the Evaluation of Blockchain Feasibility. IEEE Internet Things J. 2023, 10, 21515–21527. [Google Scholar] [CrossRef]
- Jamil, F.; Cheikhrouhou, O.; Jamil, H.; Koubaa, A.; Derhab, A.; Ferrag, M.A. Petroblock: A Blockchain-Based Payment Mechanism for Fueling Smart Vehicles. Appl. Sci. 2021, 11, 3055. [Google Scholar] [CrossRef]
- Miron, R.; Hulea, M.; Muresan, V.; Clitan, I.; Rusu, A. Integrating Blockchain Technology into Mobility-as-a-Service Platforms for Smart Cities. Smart Cities 2025, 8, 9. [Google Scholar] [CrossRef]
- Khattak, H.A.; Tehreem, K.; Almogren, A.; Ameer, Z.; Din, I.U.; Adnan, M. Dynamic Pricing in Industrial Internet of Things: Blockchain Application for Energy Management in Smart Cities. J. Inf. Secur. Appl. 2020, 55, 102615. [Google Scholar] [CrossRef]
- Mithul Raaj, A.T.; Balaji, B.; Sai Arun Pravin, R.R.; Naidu, R.C.; Rajesh Kumar, M.; Ramachandran, P.; Rajkumar, S.; Kumar, V.N.; Aggarwal, G.; Siddiqui, A.M. Intelligent Energy Management across Smart Grids Deploying 6G IoT, AI, and Blockchain in Sustainable Smart Cities. IoT 2024, 5, 560–591. [Google Scholar] [CrossRef]
- Guan, Z.; Lu, X.; Yang, W.; Wu, L.; Wang, N.; Zhang, Z. Achieving Efficient and Privacy-Preserving Energy Trading Based on Blockchain and ABE in Smart Grid. J. Parallel Distrib. Comput. 2021, 147, 34–45. [Google Scholar] [CrossRef]
- Liu, F.; Wang, P. A Novel Privacy Protection Method of Residents’ Travel Trajectories Based on Federated Blockchain and InterPlanetary File Systems in Smart Cities. PeerJ Comput. Sci. 2023, 9, e1495. [Google Scholar] [CrossRef]
- Omar, A.A.; Jamil, A.K.; Khandakar, A.; Uzzal, A.R.; Bosri, R.; Mansoor, N.; Rahman, M.S. A Transparent and Privacy-Preserving Healthcare Platform with Novel Smart Contract for Smart Cities. IEEE Access 2021, 9, 90738–90749. [Google Scholar] [CrossRef]
- Umair, M.; Cheema, M.A.; Cheema, O.; Li, H.; Lu, H. Impact of COVID-19 on Iot Adoption in Healthcare, Smart Homes, Smart Buildings, Smart Cities, Transportation and Industrial IoT. Sensors 2021, 21, 3838. [Google Scholar] [CrossRef]
- Sarhan, A.Y. An Agent-Based Secure Privacy-Preserving Decentralized Protocol for Sharing and Managing Digital Health Passport Information during Crises. PeerJ Comput. Sci. 2023, 9, e1458. [Google Scholar] [CrossRef]
- Alhavan, M.; Azimi, A.; Corchado, J.M. A CoviReader Architecture Based on IOTA Tangle for Outbreak Control in Smart Cities during COVID-19 Pandemic. Med. J. Islam. Repub. Iran 2022, 36, 1406–1415. [Google Scholar] [CrossRef]
- Rejeb, A.; Treiblmaier, H.; Rejeb, K.; Zailani, S. Blockchain Research in Healthcare: A Bibliometric Review and Current Research Trends. J. Data Inf. Manag. 2021, 3, 109–124. [Google Scholar] [CrossRef]
- Albahli, S.; Khan, R.U.; Qamar, A.M. A Blockchain-Based Architecture for Smart Healthcare System: A Case Study of Saudi Arabia. Adv. Sci. Technol. Eng. Syst. 2020, 5, 40–47. [Google Scholar] [CrossRef]
- Mayouf, M.; Afsar, F.; Iqbal, A.; Javidroozi, V.; Mohandes, S.R. Synergies between Digital Construction Technologies in Smart Buildings and Smart City Development to Meet Building Users’ Expectations. Heliyon 2024, 10, e28585. [Google Scholar] [CrossRef] [PubMed]
- Varfolomeev, A.A.; Al-Farhani, L.H. Blockchain Fog-Based Scheme for Identity Authentication in Smart Building. Al-Qadisiyah J. Eng. Sci. 2023, 16, 218–227. [Google Scholar] [CrossRef]
- Rejeb, A.; Appolloni, A.; Rejeb, K.; Treiblmaier, H.; Iranmanesh, M.; Keogh, J.G. The Role of Blockchain Technology in the Transition toward the Circular Economy: Findings from a Systematic Literature Review. Resour. Conserv. Recycl. Adv. 2022, 17, 200126. [Google Scholar] [CrossRef]
- Kayikci, Y.; Gozacan-Chase, N.; Rejeb, A. Blockchain Entrepreneurship Roles for Circular Supply Chain Transition. Bus. Strategy Environ. 2023, 33, 197–222. [Google Scholar] [CrossRef]
- Mora, H.; Mendoza-Tello, J.C.; Varela-Guzmán, E.G.; Szymanski, J. Blockchain Technologies to Address Smart City and Society Challenges. Comput. Hum. Behav. 2021, 122, 106854. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.E. Differentiating Digital Twin from Digital Shadow: Elucidating a Paradigm Shift to Expedite a Smart, Sustainable Built Environment. Buildings 2021, 11, 151. [Google Scholar] [CrossRef]
- Iftikhar, A.; Qureshi, K.N.; Hussain, F.B.; Shiraz, M.; Sookhak, M. A Blockchain Based Secure Authentication Technique for Ensuring User Privacy in Edge Based Smart City Networks. J. Netw. Comput. Appl. 2025, 233, 104052. [Google Scholar] [CrossRef]
- Luo, F.; Huang, R.; Chen, Y. BLECA: A Blockchain-Based Lightweight and Efficient Cross-Domain Authentication Scheme for Smart Parks. Comput. Mater. Contin. 2023, 77, 1815–1835. [Google Scholar] [CrossRef]
- Goyat, R.; Kumar, G.; Saha, R.; Conti, M. Pribadi: A Decentralized Privacy-Preserving Authentication in Wireless Multimedia Sensor Networks for Smart Cities. Clust. Comput. 2024, 27, 4823–4839. [Google Scholar] [CrossRef]
- Mishra, S.; Chaurasiya, V.K. Hybrid Deep Learning Algorithm for Smart Cities Security Enhancement through Blockchain and Internet of Things. Multimed. Tools Appl. 2024, 83, 22609–22637. [Google Scholar] [CrossRef]
- Awotunde, J.B.; Gaber, T.; Prasad, L.V.N.; Folorunso, S.O.; Lalitha, V.L. Privacy and Security Enhancement of Smart Cities Using Hybrid Deep Learning-Enabled Blockchain. Scalable Comput. 2023, 24, 561–584. [Google Scholar] [CrossRef]
- Faris Alketbi, S.A.; Bin Mahmuddin, M.; Binti Ahmad, M. Blockchain Technology and Smart Cities: A Technological Framework for Innovation and Sustainability in the UAE and Beyond [Tecnología Blockchain y Ciudades Inteligentes: Un Marco Tecnológico Para La Innovación y La Sostenibilidad En Los Emiratos Árabes Unidos y Otros Países]. Data Metadata 2025, 4, 697. [Google Scholar] [CrossRef]
- Sahoo, S.; Kumar, S.; Vyas, M. How Does Blockchain Technology Contribute to the Development and Functioning of Smart Cities?—A Scoping Review and Future Research Directions. J. Econ. Surv. 2025; early view. [Google Scholar] [CrossRef]
- Alkhaldi, A.; Alrashidi, H.; Alhasan, K.; Alsadeeqi, A.; Alshami, A. The Use of Blockchain Technology to Build Smart Cities: Creating Public Value in Kuwait. Glob. Knowl. Mem. Commun. 2025, 74, 1242–1256. [Google Scholar] [CrossRef]
- Das, D.; Banerjee, S.; Chatterjee, P.; Ghosh, U.; Biswas, U. Blockchain for Intelligent Transportation Systems: Applications, Challenges, and Opportunities. IEEE Internet Things J. 2023, 10, 18961–18970. [Google Scholar] [CrossRef]
- Ge, C.; Qin, S. Digital Twin Intelligent Transportation System (DT-ITS)—A Systematic Review. IET Intell. Transp. Syst. 2024, 18, 2325–2358. [Google Scholar] [CrossRef]
- Gantla, H.R.; Pandey, S.K.; Mantha, S.; Goyal, P.; Jabeen, A.; Fatima, S.; Mamodiya, U. Fusion of Real-Time Traffic and Environmental Sensor Data with Machine Learning for Optimizing Smart City Operations. Fusion Pract. Appl. 2025, 19, 328–340. [Google Scholar] [CrossRef]
- Singh, S.K.; Pan, Y.; Park, J.H. Blockchain-Enabled Secure Framework for Energy-Efficient Smart Parking in Sustainable City Environment. Sustain. Cities Soc. 2022, 76, 103364. [Google Scholar] [CrossRef]
- Amu, D.; Baskaran, S. Hybrid Energy Efficient Deep Learning and Redactable Consortium Blockchain-Based Secure Framework for Smart Parking in Smart Cities. Multimed. Tools Appl. 2024, 83, 85391–85420. [Google Scholar] [CrossRef]
- Yahaya, A.S.; Javaid, N.; Javed, M.U.; Almogren, A.; Radwan, A. Blockchain-Based Secure Energy Trading With Mutual Verifiable Fairness in a Smart Community. IEEE Trans. Ind. Inform. 2022, 18, 7412–7422. [Google Scholar] [CrossRef]
- Draz, U.; Ali, T.; Yasin, S.; Hijji, M.; Ayaz, M.; Aggoune, E.-H.M. Decentralized Energy Swapping for Sustainable Wireless Sensor Networks Using Blockchain Technology. Mathematics 2025, 13, 395. [Google Scholar] [CrossRef]
- Cui, S.; Xu, S.; Hu, F.; Zhao, Y.; Wen, J.; Wang, J. A Consortium Blockchain-Enabled Double Auction Mechanism for Peer-to-Peer Energy Trading among Prosumers. Prot. Control Mod. Power Syst. 2024, 9, 82–97. [Google Scholar] [CrossRef]
- Ali, A.; Ali, H.; Saeed, A.; Ahmed Khan, A.; Tin, T.T.; Assam, M.; Ghadi, Y.Y.; Mohamed, H.G. Blockchain-Powered Healthcare Systems: Enhancing Scalability and Security with Hybrid Deep Learning. Sensors 2023, 23, 7740. [Google Scholar] [CrossRef]
- Aldhyani, T.H.H.; Khan, M.A.; Almaiah, M.A.; Alnazzawi, N.; Hwaitat, A.K.A.; Elhag, A.; Shehab, R.T.; Alshebami, A.S. A Secure Internet of Medical Things Framework for Breast Cancer Detection in Sustainable Smart Cities. Electronics 2023, 12, 858. [Google Scholar] [CrossRef]
- Dwivedi, A.D.; Srivastava, G.; Dhar, S.; Singh, R. A Decentralized Privacy-Preserving Healthcare Blockchain for IoT. Sensors 2019, 19, 326. [Google Scholar] [CrossRef]
- Palagan, C.A.; Sebastin Antony Joe, S.; Mary, S.J.J.; Jijo, E.E. Predictive Analysis-Based Sustainable Waste Management in Smart Cities Using IoT Edge Computing and Blockchain Technology. Comput. Ind. 2025, 166, 104234. [Google Scholar] [CrossRef]
- Kou, G.; Dinçer, H.; Pamucar, D.; Yüksel, S.; Simic, V. Analyzing Blockchain-Based Waste Management Investments in Smart Cities Using Quantum Picture Fuzzy Rough Modelling. Int. J. Environ. Sci. Technol. 2024, 22, 6467–6490. [Google Scholar] [CrossRef]
- Herraiz-Faixó, F.; Arroyo-Cañada, F.-J. Driving Municipal Recycling by Connecting Digital Value Endpoints in Smart Cities. Sustainability 2020, 12, 6433. [Google Scholar] [CrossRef]
- Ju, S.; Park, H.; Son, S.; Kim, H.; Park, Y.; Park, Y. Blockchain-Assisted Secure and Lightweight Authentication Scheme for Multi-Server Internet of Drones Environments. Mathematics 2024, 12, 3965. [Google Scholar] [CrossRef]
- Ajakwe, S.O.; Kim, D.-S.; Lee, J.-M. Drone Transportation System: Systematic Review of Security Dynamics for Smart Mobility. IEEE Internet Things J. 2023, 10, 14462–14482. [Google Scholar] [CrossRef]
- Calzada, I. Data Co-Operatives through Data Sovereignty. Smart Cities 2021, 4, 1158–1172. [Google Scholar] [CrossRef]
- Lepore, D.; Testi, N.; Pasher, E. Building Inclusive Smart Cities through Innovation Intermediaries. Sustainability 2023, 15, 4024. [Google Scholar] [CrossRef]
- Pieroni, A.; Scarpato, N.; Di Nunzio, L.; Fallucchi, F.; Raso, M. Smarter City: Smart Energy Grid Based on Blockchain Technology. Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 298–306. [Google Scholar] [CrossRef]
- Bin Hasan, K.M.; Sajid, M.; Lapina, M.A.; Shahid, M.; Kotecha, K. Blockchain Technology Meets 6 G Wireless Networks: A Systematic Survey. Alex. Eng. J. 2024, 92, 199–220. [Google Scholar] [CrossRef]
- Bhushan, B.; Khamparia, A.; Sagayam, K.M.; Sharma, S.K.; Ahad, M.A.; Debnath, N.C. Blockchain for Smart Cities: A Review of Architectures, Integration Trends and Future Research Directions. Sustain. Cities Soc. 2020, 61, 102360. [Google Scholar] [CrossRef]
- Alnahari, M.S.; Ariaratnam, S.T. The Application of Blockchain Technology to Smart City Infrastructure. Smart Cities 2022, 5, 979–993. [Google Scholar] [CrossRef]
- Kim, S.; Zhang, A.; Liao, R.; Zheng, W.; Hu, Z.; Sun, Z. Sampling Blockchain-Enabled Smart City Applications among South Korea, the United States and China. J. Smart Cities Soc. 2022, 1, 53–70. [Google Scholar] [CrossRef]
- Dhingra, S.; Raut, R.; Kumar, M.; Naik, B.K.R. Factors Impacting Indian Healthcare Supply Chain Performance and Influence in the Public and Private Sector: The Mediating Role of Blockchain Technology Adoption. Benchmarking Int. J. 2024; ahead-of-print. [Google Scholar] [CrossRef]
- Sharma, M.; Joshi, S. Barriers to Blockchain Adoption in Health-Care Industry: An Indian Perspective. J. Glob. Oper. Strateg. Sourc. 2021, 14, 134–169. [Google Scholar] [CrossRef]
- Kabra, G. Determinants of Blockchain Adoption and Organizational Performance in the Healthcare Sector in India. Am. J. Bus. 2023, 38, 152–171. [Google Scholar] [CrossRef]
- Lücking, M.; Kretzer, F.; Kannengießer, N.; Beigl, M.; Sunyaev, A.; Stork, W. When Data Fly: An Open Data Trading System in Vehicular Ad Hoc Networks. Electronics 2021, 10, 654. [Google Scholar] [CrossRef]
- Dritsas, E.; Trigka, M. Machine Learning for Blockchain and IoT Systems in Smart Cities: A Survey. Future Internet 2024, 16, 324. [Google Scholar] [CrossRef]
- Jaramillo-Alcazar, A.; Govea, J.; Villegas-Ch, W. Advances in the Optimization of Vehicular Traffic in Smart Cities: Integration of Blockchain and Computer Vision for Sustainable Mobility. Sustainability 2023, 15, 15736. [Google Scholar] [CrossRef]
- Paiva, S.; Ahad, M.A.; Tripathi, G.; Feroz, N.; Casalino, G. Enabling Technologies for Urban Smart Mobility: Recent Trends, Opportunities and Challenges. Sensors 2021, 21, 2143. [Google Scholar] [CrossRef]
Topic | BERTopic (NPMI) | LDA (NPMI) |
---|---|---|
0 | 0.72 | 0.6 |
1 | 0.75 | 0.58 |
2 | 0.71 | 0.62 |
3 | 0.69 | 0.55 |
4 | 0.74 | 0.61 |
5 | 0.7 | 0.59 |
6 | 0.73 | 0.57 |
Average | 0.72 | 0.59 |
Topic | Top Keywords |
---|---|
0 | “iot”×0.0427 + “smart”×0.0383 + “blockchain”×0.0371 + “smart city”×0.0314 + “city”×0.0308 + “security”×0.0279 + “data”×0.0239 + “device”×0.0186 + “network”×0.0183 + “system”×0.0172 |
1 | “city”×0.0534 + “smart”×0.0517 + “smart city”×0.0452 + “blockchain”×0.0365 + “technology”×0.0285 + “research”×0.0175 + “digital”×0.0159 + “data”×0.0154 + “urban”×0.0146 + “sustainable”×0.0136 |
2 | “vehicle”×0.0438 + “blockchain”×0.0329 + “data”×0.0282 + “traffic”×0.0259 + “system”×0.0259 + “smart”×0.0258 + “transportation”×0.0234 + “network”×0.0221 + “city”×0.0221 + “smart city”×0.0188 |
3 | “energy”×0.0772 + “smart”×0.0340 + “trading”×0.0327 + “grid”×0.0308 + “blockchain”×0.0296 + “energy trading”×0.0247 + “system”×0.0219 + “smart grid”×0.0210 + “charging”×0.0209 + “power”×0.0204 |
4 | “healthcare”×0.0692 + “medical”×0.0442 + “patient”×0.0423 + “data”×0.0415 + “health”×0.0350 + “blockchain”×0.0339 + “smart”×0.0264 + “privacy”×0.0250 + “iot”×0.0213 + “city”×0.0209 |
5 | “waste”×0.1545 + “waste management”×0.0940 + “management”×0.0672 + “blockchain”×0.0277 + “city”×0.0266 + “smart”×0.0264 + “solid waste”×0.0231 + “system”×0.0230 + “management system”×0.0220 + “solid”×0.0220 |
6 | “drone”×0.1575 + “iod”×0.0660 + “security”×0.0545 + “internet drone”×0.0326 + “monitoring”×0.0276 + “authentication”×0.0247 + “network”×0.0235 + “blockchain”×0.0234 + “uav”×0.0233 + “internet”×0.0227 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rejeb, A.; Rejeb, K.; Zaher, H.F.; Simske, S. Blockchain and Smart Cities: Co-Word Analysis and BERTopic Modeling. Smart Cities 2025, 8, 111. https://doi.org/10.3390/smartcities8040111
Rejeb A, Rejeb K, Zaher HF, Simske S. Blockchain and Smart Cities: Co-Word Analysis and BERTopic Modeling. Smart Cities. 2025; 8(4):111. https://doi.org/10.3390/smartcities8040111
Chicago/Turabian StyleRejeb, Abderahman, Karim Rejeb, Heba F. Zaher, and Steve Simske. 2025. "Blockchain and Smart Cities: Co-Word Analysis and BERTopic Modeling" Smart Cities 8, no. 4: 111. https://doi.org/10.3390/smartcities8040111
APA StyleRejeb, A., Rejeb, K., Zaher, H. F., & Simske, S. (2025). Blockchain and Smart Cities: Co-Word Analysis and BERTopic Modeling. Smart Cities, 8(4), 111. https://doi.org/10.3390/smartcities8040111