Application of Quantitative Methods to Identify Analogous Cities: A Search for Relevant Experiences in the Development of Smart Cities for Implementation in Kazakhstan
Abstract
:Highlights
- A three-method quantitative approach (PCA, cluster analysis, t-SNE) reliably pinpoints the most similar smart cities to Almaty and Astana.
- Ottawa and Denver emerge as the closest matches, with Ankara and Phoenix also forming a second tier of comparable cities.
- Focusing on these analogous cities can streamline the transfer of their successful smart city strategies to Almaty and Astana.
- The combined use of these statistical methods can serve as a replicable framework for other cities seeking evidence-based reference points for smart city development.
Abstract
1. Introduction
- Principal component analysis (PCA), which captures the overall structure of multivariate data.
- Hierarchical cluster analysis (Ward’s method), which helps to group cities into clusters based on similarities in selected attributes and thus form logical groups for further detailed study.
- t-distributed stochastic neighbor embedding (t-SNE), which provides visualization of nonlinear relationships and reveals local “clusters” of cities that may not be obvious when using purely linear algorithms.
2. Literature Review
- -
- Focus on outcome measures: Most analyses focus on assessing the outcomes of smart technology adoption or the level of smartness achieved (e.g., level of technological adoption, governance performance indicators), rather than the underlying development conditions that shape the preconditions and determine the specificity of smart city strategies. This makes it difficult to identify truly comparable cities for experience transfer, especially if their current level of “smartness” is different.
- -
- Limited use of integrated methodologies: While individual quantitative methods are widely used, few studies use a combination of several complementary methods to validate results and compensate for the limitations of individual approaches.
- -
- Lack of attention to specific contexts: Most studies focus on large, often metropolitan or seaside, cities in economically developed regions of Europe, North America, and East Asia. Cities located inland, especially in developing countries and regions with low population densities and specific geographical contexts, remain understudied.
- -
- Weak links to practical recommendations for transfer of experience: Often, studies end up constructing rankings or typologies without offering clear mechanisms or criteria for identifying the most relevant peer cities for targeted exchange of specific policies and strategies.
- -
- Focus on fundamental development conditions: A key original aspect of our approach lies in shifting the focus from the resulting indicators of “smartness” to the analysis of defining variables. We focus on the underlying socio-demographic, geographic, and climatic characteristics that form the baseline conditions for smart city development. This approach allows us to identify peer cities based on the fundamental preconditions for their development, which is necessary for correct and effective transfer of experience, since these conditions determine the applicability of certain smart city strategies and the associated infrastructure costs. This avoids distortions associated with comparing cities that have already achieved different levels of “smartness” or cities with fundamentally different starting opportunities.
- -
- Application of a comprehensive three-stage quantitative methodology: We sequentially use three complementary quantitative methods—principal component analysis (PCA), hierarchical cluster analysis (Ward’s method), and t-distributed stochastic neighbor embedding (t-SNE). PCA is used to reduce dimensionality and identify global patterns in the data; hierarchical cluster analysis is used to group cities in detail and identify the most similar pairs; t-SNE is used to visualize nonlinear relationships and confirm local structures. The use of such a combination of methods allows for more reliable, robust, and comprehensively valid results than using a single method, increasing confidence in the objectivity of the identified similarities.
- -
- Adaptation to the specific context: The methodology is tested on a specific task—search for relevant foreign experience for the development of “smart cities” in Kazakhstan (Almaty and Astana), which are continental cities with specific development conditions. In doing so, we control for geographical factors such as landlockedness, which makes our approach particularly valuable for regions with similar constraints.
- -
- Creating a basis for targeted knowledge and policy transfer: By identifying peer cities based on similarities in fundamental conditions, our study lays the groundwork for a more effective and targeted exchange of experiences and specific strategies for building smart cities. This enables a shift from general rankings to a practice-oriented search for relevant solutions.
3. Materials and Methods
- -
- Lowest point (m)—the minimum absolute height within the administrative boundaries of the city;
- -
- Highest point (m)—the maximum absolute height within the administrative boundaries of the city;
- -
- The ratio of the difference between the highest and the lowest point to the city area is an indicator that characterizes the intensity of height change per unit area of the urban area.
- -
- Average annual temperature (°C)—the average value of air temperature for the year within the urban area;
- -
- Average annual precipitation (mm)—total annual precipitation within the urban area;
- -
- Temperature difference (°C)—the difference between the average temperature of the warmest and the coldest month of the year within the urban area.
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
City | Population 2023 | Area (km²) | City Density | Agglomeration Population 2023 | Area of Agglomeration (km²) | Average Annual Population Growth Rate in % | Density of the Agglomeration |
---|---|---|---|---|---|---|---|
Almaty | 2,191,300 | 684 | 3206 | 3,357,100 | 9395.00 | 2.93 | 357 |
Ankara | 5,186,002 | 3991 | 1299 | 5,803,482 | 24,521 | 1.3 | 237 |
Astana | 1,423,726 | 797 | 1786 | 1,596,600 | 7100.00 | 4.67 | 225 |
Berlin | 3,596,999 | 891 | 4037 | 4,679,500 | 1189.00 | 0.81 | 3936 |
Birmingham | 1,166,049 | 267.8 | 4354 | 2,927,631 | 1027 | 0.99 | 2851 |
Bologna | 390,518 | 140.9 | 2772 | 1,018,346 | 3702 | 0.34 | 275 |
Bratislava | 478,040 | 367.6 | 1300 | 732,757 | 2053.00 | 0.18 | 357 |
Brussels | 196,828 | 33 | 5948 | 1,884,358 | 826.90 | 1.70 | 2279 |
Bucharest | 1,719,958 | 237.9 | 7230 | 2,303,505 | 1821 | −0.74 | 1265 |
Budapest | 1,685,342 | 525 | 3210 | 3,019,479 | 6917 | −0.23 | 437 |
Canberra | 452,670 | 393 | 1152 | 503,402 | 517.00 | 1.50 | 974 |
Denver | 716,577 | 396 | 1810 | 2,963,821 | 21,763.67 | 1.36 | 136 |
Dusseldorf | 631,217 | 217 | 2903 | 11,300,000 | 7110.00 | 0.38 | 1589 |
Geneva | 206,635 | 16 | 12,971 | 628,478 | 536.50 | 0.45 | 1171 |
Krakow | 806,201 | 326.9 | 2466 | 1,498,499 | 4065.11 | 0.25 | 369 |
Lausanne | 144,160 | 41 | 3484 | 449,874 | 773.50 | 0.93 | 582 |
Ljubljana | 284,293 | 164 | 1736 | 537,893 | 2334.00 | −0.46 | 230 |
Luxembourg | 134,697 | 51 | 2618 | 207,650 | 238.50 | 2.40 | 871 |
Madrid | 3,340,176 | 606 | 5512 | 6,871,903 | 8028.00 | 0.39 | 856 |
Milan | 1,371,850 | 181.7 | 7550 | 3,247,764 | 1575 | 0.81 | 2062 |
Munich | 1,510,378 | 311 | 4857 | 6,200,000 | 27,700.00 | 0.84 | 224 |
Ottawa | 1,114,316 | 2790 | 399 | 1,488,307 | 6767.41 | 2.10 | 220 |
Paris | 2,087,577 | 105 | 19,806 | 10,896,433 | 2853.00 | −0.72 | 3819 |
Phoenix | 1,650,070 | 1342 | 1230 | 5,186,958 | 37731 | 0.79 | 137 |
Prague | 1,301,432 | 496 | 2623 | 2,264,690 | 4822.00 | 0.25 | 470 |
San José | 352,381 | 44.62 | 7897 | 2,158,898 | 2044 | 0.82 | 1056 |
Santiago | 5,220,161 | 651,5 | 8013 | 7,112,808 | 15,403 | 0.77 | 462 |
Sofia | 1,196,806 | 492 | 2433 | 1,667,314 | 10,738 | −0.04 | 155 |
Vienna | 2,005,760 | 415 | 4836 | 2,339,538 | 1110.00 | 1.87 | 2108 |
Vilnius | 602,430 | 401 | 1502 | 747,864 | 2529.00 | 2.70 | 296 |
Warsaw | 1,861,599 | 517 | 3599 | 3,269,510 | 6100.00 | 0.03 | 536 |
Zagreb | 663,592 | 306 | 2169 | 1,189,279 | 4930 | −0.35 | 241 |
Zaragoza | 691,037 | 973.8 | 710 | 739,788 | 2288.8 | 0.47 | 323 |
Zurich | 433,989 | 88 | 4938 | 1,460,999 | 1305.00 | 0.95 | 1120 |
City | Average Annual Temperature (°C) | Average Annual Precipitation (mm) | Temperature Difference (°C) | Elevation Difference-to-Area Ratio | Lowest Point (m) | Highest Point (m) |
---|---|---|---|---|---|---|
Almaty | 6.5 | 650 | 28.4 | 1.76 | 500 | 1700 |
Ankara | 12.6 | 407 | 23.4 | 0.06 | 850 | 1088 |
Astana | 3.5 | 297 | 35.1 | 0.08 | 347 | 407 |
Berlin | 12 | 640 | 24 | 0.11 | 28.1 | 122 |
Birmingham | 23 | 1343 | 32.2 | 0.61 | 152 | 315 |
Bologna | 17 | 671.3 | 21.9 | 1.92 | 29 | 300 |
Bratislava | 11.1 | 565 | 20.5 | 1.06 | 126 | 514 |
Brussels | 10 | 837.2 | 21.6 | 3.51 | 13 | 129 |
Bucharest | 11 | 648.1 | 35.6 | 0.15 | 55.8 | 91.5 |
Budapest | 9.7 | 516 | 22.2 | 0.82 | 96 | 529 |
Canberra | 13.6 | 632.6 | 22.5 | 0.86 | 550 | 888 |
Denver | 10.2 | 363 | 40 | 0.43 | 1560 | 1730 |
Dusseldorf | 12 | 800 | 18 | 0.73 | 28 | 186 |
Geneva | 12.1 | 928 | 18.4 | 5.46 | 370 | 457 |
Krakow | 8 | 663 | 24 | 0.60 | 187 | 383.6 |
Lausanne | 11.3 | 1132.2 | 20.1 | 13.61 | 372 | 935 |
Ljubljana | 11 | 1400 | 22.5 | 2.53 | 261 | 676 |
Luxembourg | 8.3 | 950.8 | 20 | 3.46 | 230 | 408 |
Madrid | 15.2 | 455 | 26 | 0.26 | 582 | 742 |
Milan | 19.3 | 1186 | 23.5 | 0.67 | 44 | 166 |
Munich | 10 | 1000 | 23.4 | 0.40 | 24 | 148 |
Ottawa | 6 | 1166 | 30.3 | 0.22 | 224 | 824 |
Paris | 12 | 646 | 23.2 | 2.11 | 177 | 399 |
Phoenix | 24.2 | 183 | 33.6 | 0.10 | 1044 | 1176 |
Prague | 8.6 | 676.5 | 20 | 0.60 | 400 | 700 |
San José | 15.9 | 2788 | 11.2 | 4.46 | 500 | 699 |
Santiago | 16.1 | 320 | 21.9 | 0.60 | 151 | 542 |
Sofia | 10.9 | 625.7 | 28.8 | 0.37 | 112 | 294 |
Vienna | 10 | 620 | 21.1 | 0.09 | 78 | 116 |
Vilnius | 7.3 | 675 | 22 | 2.28 | 122 | 1035 |
Warsaw | 9 | 481.7 | 26.1 | 0.92 | 169 | 646 |
Zagreb | 12 | 1050 | 23 | 1.57 | 392 | 871 |
Zaragoza | 18 | 328.8 | 29.9 | 0.56 | 250 | 800 |
Zurich | 9.9 | 1022 | 18.6 | 5.20 | 620 | 1077 |
Appendix B
Script for R Used for Calculations
References
- Macke, J.; Casagrande, R.M.; Sarate, J.A.; da Silva, K.A. Smart city and quality of life: Citizens’ perception in a Brazilian case study. J. Clean. Prod. 2018, 182, 717–726. [Google Scholar] [CrossRef]
- Moser, C.; Wendel, T.; Carabias-Hütter, V. Scientific and Practical Understandings of Smart Cities; ZHAW Zurich University of Applied Sciences: Winterthur, Switzerland, 2014. [Google Scholar] [CrossRef]
- Radchenko, K. Modern Foreign Approaches to Defining the Concept of Smart City. Manag. Econ. Theory Pract. Chumachenko’s Ann. 2022, 2022, 174–188. [Google Scholar] [CrossRef]
- Kim, C.; Kim, K.A. The Institutional Change from E-Government toward Smarter City. J. Open Innov. Technol. Mark. Complex. 2021, 7, 42. [Google Scholar] [CrossRef]
- Meijer, A.; Bolívar, M. Governing the smart city: A review of the literature on smart urban governance. Int. Rev. Adm. Sci. 2016, 82, 392–408. [Google Scholar] [CrossRef]
- Urdabayev, M.; Kireyeva, A.; Vasa, L.; Digel, I.; Nurgaliyeva, K.; Nurbatsin, A. Discovering smart cities’ potential in Kazakhstan: A cluster analysis. PLoS ONE 2024, 19, e0296765. [Google Scholar] [CrossRef]
- Nurbatsin, A.; Kireyeva, A.; Gamidullaeva, L.; Abdykadyr, T. Spatial analysis and technological influences on smart city development in Kazakhstan. J. Infrastruct. Policy Dev. 2023, 8, 3012. [Google Scholar] [CrossRef]
- Digel, I.; Mussabalina, D.; Urdabayev, M.; Nurmukhametov, N.; Akparova, A. Evaluating development prospects of smart cities: Cluster analysis of Kazakhstan’s regions. Probl. Perspect. Manag. 2022, 20, 319–330. [Google Scholar] [CrossRef]
- Mendybayev, B. Imbalances in Kazakhstan’s Smart Cities Development. Environ. Urban. Asia 2022, 13, 389–402. [Google Scholar] [CrossRef]
- Mudronja, G.; Jugović, A.; Škalamera-Alilović, D. Seaports and Economic Growth: Panel Data Analysis of EU Port Regions. J. Mar. Sci. Eng. 2020, 8, 1017. [Google Scholar] [CrossRef]
- Landlocked Developing Countries. UNIS Vienna. Available online: https://unis.unvienna.org/unis/topics/related/2014/landlocked-developing-countries.html (accessed on 5 February 2025).
- Bayar Çağlak, S.; Aydın, G.; Alkan, G. The Impact of Seaport Investments on Regional Economics and Developments. Int. J. Bus. Manag. Stud. 2011, 3, 333–339. [Google Scholar]
- Astana vs. Almaty: Which City Is Best for Connected Cars and EVs? Available online: https://astanahub.com/ru/blog/astana-vs-almaty-kakoi-gorod-luchshe-vsego-podkhodit-dlia-connected-cars-i-evs (accessed on 6 February 2025).
- Kazakhstan Sees Positive Shift in Migration Dynamics—The Astana Times. Available online: https://astanatimes.com/2025/01/kazakhstan-sees-positive-shift-in-migration-dynamics/ (accessed on 7 February 2025).
- OECD. Insights on the Business Climate in Kazakhstan; OECD Publishing: Paris, France, 2023; Available online: https://www.oecd.org/content/dam/oecd/en/publications/reports/2023/05/insights-on-the-business-climate-in-kazakhstan_60af2af3/bd780306-en.pdf (accessed on 8 May 2025).
- Kursiv Media. Where in Kazakhstan Are Utilities the Most Expensive? Kursiv Media, 3 March 2025. Available online: https://kz.kursiv.media/2025-03-03/print1073-kchl-tarif (accessed on 9 May 2025).
- Eurasian Research Institute. A Spatial Analysis of Internal Migration in Kazakhstan; Eurasian Research Institute: Almaty, Kazahstan, 2023; Available online: https://www.eurasian-research.org/publication/41789/ (accessed on 9 May 2025).
- TheGlobalEconomy. Carbon Dioxide Emissions per Capita, European Union (Average of 27 Countries). 2023. Available online: https://www.theglobaleconomy.com/rankings/Carbon_dioxide_emissions_per_capita/European-union/ (accessed on 9 May 2025).
- United Nations Development Programme. Water Management in Kazakhstan: A Systems Approach for a Secure Future. Blog Post, 18 March 2025. Available online: https://www.undp.org/kazakhstan/blog/water-management-kazakhstan-systems-approach-secure-future (accessed on 10 May 2025).
- World Bank. Cleaner Residential Heating Key to Reducing Air Pollution in Kazakhstan’s Cities. Press Release. 28 March 2022. Available online: https://www.worldbank.org/en/news/press-release/2022/03/28/cost-effective-air-quality-management-in-kazakhstan (accessed on 10 May 2025).
- AWEX Almaty. Smart Cities Kazakhstan: Fact Sheet on the “Digital Kazakhstan” State Programme. February 2022. Available online: https://www.awex-export.be/files/library/Fiches-Pays/Kazakhstan/Kazakhstan-fiche-sectorielle-smart-cities.pdf (accessed on 10 May 2025).
- Kogabayev, T.; Banerjee, S. Smart Governance in Kazakhstan: A Systematic Review and Analysis of Development, Challenges, and Future Directions. Smart Cities Reg. Dev. (SCRD) Prepr. 2024, 1. [Google Scholar] [CrossRef]
- Atanasova, A.; Naydenov, K. The Innovative Approaches for the Development of Smart Cities. In Key Challenges in Geography; Nedkov, S., Zhelezov, G., Eds.; Springer: Cham, Switzerland, 2019; pp. 351–367. [Google Scholar] [CrossRef]
- Noori, N.; Hoppe, T.; de Jong, M. Classifying pathways for smart city development: Comparing design, governance and implementation in Amsterdam, Barcelona, Dubai, and Abu Dhabi. Sustainability 2020, 12, 4030. [Google Scholar] [CrossRef]
- Jabłońska, A. Smart Cities in Practice: A Comparative Case Study Between Warsaw, Gdynia, Copenhagen and Malmö. Master’s Thesis, Lund University, Lund, Sweden, 2018. Available online: https://lup.lub.lu.se/luur/download?fileOId=8959739&func=downloadFile&recordOId=8959738 (accessed on 25 February 2025).
- Nunes, S.A.S.; Ferreira, F.; Govindan, K.; Pereira, L. “Cities go smart!”: A system dynamics-based approach to smart city conceptualization. J. Clean. Prod. 2021, 313, 127683. [Google Scholar] [CrossRef]
- Neirotti, P.; Marco, A.; Cagliano, A.C.; Mangano, G.; Scorrano, F. Current trends in Smart City initiatives: Some stylised facts. Cities 2014, 38, 25–36. [Google Scholar] [CrossRef]
- Hedegaard, M.; Kuzior, A.; Tverezovska, O.; Hrytsenko, L.; Kolomiiets, S. Smart City Projects Financing. Socioecon. Chall. 2024, 8, 286–309. [Google Scholar] [CrossRef]
- Oyadeyi, O.A.; Oyadeyi, O.O. Towards Inclusive and Sustainable Strategies in Smart Cities: A Comparative Analysis of Zurich, Oslo, and Copenhagen. Res. Glob. 2025, 10, 100271. [Google Scholar] [CrossRef]
- Vidiasova, L. Conceptualization of the “Smart City” concept: Socio-technical approach. Int. J. Open Inf. Technol. 2017, 5, 52–57. Available online: http://injoit.org/index.php/j1/article/viewFile/506/480 (accessed on 8 May 2025).
- Shi, F.; Shi, W. A Critical Review of Smart City Frameworks: New Criteria to Consider When Building Smart City Framework. ISPRS Int. J. Geo Inf. 2023, 12, 364. [Google Scholar] [CrossRef]
- Kogan, N.; Lee, K. Exploratory Research on the Success Factors and Challenges of Smart City Projects. Asia Pac. J. Inf. Syst. 2014, 24, 141–189. [Google Scholar] [CrossRef]
- Kim, M.; Ko, J. Becoming a Smart Citizen, a Study of Digital Literacy and Perceptions of Smart Life Changes. Korea Real Estate Policy Assoc. 2024, 25, 49–66. [Google Scholar] [CrossRef]
- Berawi, M.A.; Sari, M.; Miraj, P. Citizen and Technology: The Core in Developing Human-Centric Smart Cities. CSID J. Infrastruct. Dev. 2024, 7, 363–365. [Google Scholar] [CrossRef]
- Urdabayev, M.; Utkelbay, R. SWOT analysis of smart city projects in capital cities of Russia and Kazakhstan. R-Economy 2021, 7, 235–247. [Google Scholar] [CrossRef]
- Toxanov, S.; Neftissov, A.; Abzhanova, D.; Kazambayev, I. The concept of the smart city of Astana: Energy-efficient technologies and solutions for sustainable development. Sci. J. Astana IT Univ. 2022, 11, 74–86. [Google Scholar] [CrossRef]
- Irnazarov, F.; Kayumova, M. Toward Smart City Development in Central Asia: A Comparative Assessment. Cent. Asian Aff. 2017, 4, 51–82. [Google Scholar] [CrossRef]
- Turgel, I.; Bozhko, L.; Ulyanova, E.; Khabdullin, A. Implementation of the smart city technology for environmental protection management of cities: The experience of Russia and Kazakhstan. Environ. Clim. Technol. 2019, 23, 148–165. [Google Scholar] [CrossRef]
- Makhatov, N.B.; Alzhanov, A. Human capital development in «smart cities» of Kazakhstan: Networks and «live laboratories». Cent. Asian Econ. Rev. 2022, 3, 100–112. [Google Scholar] [CrossRef]
- Mupfumira, P.; Mutingi, M.; Sony, M. Smart City Frameworks SWOT Analysis: A Systematic Literature Review. Front. Sustain. Cities 2024, 6, 1449983. [Google Scholar] [CrossRef]
- Han, H. Adoption of K-Means Clustering Algorithm in Smart City Security Analysis and Mythical Experience Analysis of Urban Image. PLoS ONE 2025, 20, e0319620. [Google Scholar] [CrossRef]
- Zhu, J.; Gianoli, A.; Noori, N.; de Jong, M.; Edelenbos, J. How Different Can Smart Cities Be? A Typology of Smart Cities in China. Cities 2024, 149, 104992. [Google Scholar] [CrossRef]
- Hammoumi, L.; Rhinane, H. Machine learning (ai) for identifying smart cities. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2024, XLVIII-4/W9-2024, 221–228. [Google Scholar] [CrossRef]
- Cantuarias-Villessuzanne, C.; Weigel, R.; Blain, J. Clustering of European Smart Cities to Understand the Cities’ Sustainability Strategies. Sustainability 2021, 13, 513. [Google Scholar] [CrossRef]
- Ding, C.; He, X. Principal Component Analysis and Effective K-Means Clustering. In Proceedings of the 2004 SIAM International Conference on Data Mining; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2004; pp. 497–501. [Google Scholar] [CrossRef]
- Abdulhafedh, A. Incorporating K-means, Hierarchical Clustering and PCA in Customer Segmentation. J. City Dev. 2021, 3, 12–30. Available online: https://pubs.sciepub.com/jcd/3/1/3/ (accessed on 26 May 2025).
- Akande, A.; Cabral, P.; Casteleyn, S. Assessing the Gap between Technology and the Environmental Sustainability of European Cities. Inf. Syst. Front. 2019, 21, 581–604. [Google Scholar] [CrossRef]
- Bogdanov, O.; Jeremić, V.; Jednak, S.; Čudanov, M. Scrutinizing the Smart City Index: A Multivariate Statistical Approach. Zb. Rad. Ekon. Fak. Rij. 2019, 37, 777–799. [Google Scholar] [CrossRef]
- Kourtzanidis, K.; Angelakoglou, K.; Apostolopoulos, V.; Giourka, P.; Nikolopoulos, N. Assessing Impact, Performance and Sustainability Potential of Smart City Projects: Towards a Case Agnostic Evaluation Framework. Sustainability 2021, 13, 7395. [Google Scholar] [CrossRef]
- Gaurav, A.; Gupta, B.B.; Arya, V.; Attar, R.W.; Bansal, S.; Alhomoud, A.; Chui, K.T. Smart waste classification in IoT-enabled smart cities using VGG16 and Cat Swarm Optimized random forest. PLoS ONE 2025, 20, e0316930. [Google Scholar] [CrossRef]
- Yang, Z.; Li, D.; Nai, W. T-SNE Based on Halton Sequence Initialized Butterfly Optimization Algorithm. In Proceedings of the 2023 IEEE 13th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 14–16 July 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Ivanov, D.; Smith, J.; Petrov, A.; Wang, J.; Volkov, S.; Zhao, D. Integrating IoT Sensors into Smart City Data Visualization Systems. Preprint 2025. [Google Scholar] [CrossRef]
- Da Silva Lopes, M.A.; Doria Neto, A.D.; De Medeiros Martins, A. Parallel T-SNE Applied to Data Visualization in Smart Cities. IEEE Access 2020, 8, 11482–11490. [Google Scholar] [CrossRef]
- Huang, S. Image Data Visualization Using T-SNE for Urban Pavement Disease Recognition. J. Phys. Conf. Ser. 2023, 2547, 012013. [Google Scholar] [CrossRef]
- IMD. Smart City Index 2024. Available online: https://www.imd.org/smart-city-observatory/home/rankings/ (accessed on 3 January 2025).
- Global Data Lab. Available online: https://globaldatalab.org (accessed on 1 April 2025).
- Bafail, O. Optimizing Smart City Strategies: A Data-Driven Analysis Using Random Forest and Regression Analysis. Appl. Sci. 2024, 14, 11022. [Google Scholar] [CrossRef]
- UN-Habitat. What Is a City? Definition of Cities; United Nations Human Settlements Programme: Nairobi, Kenya, 2020; Available online: https://unhabitat.org/sites/default/files/2020/06/city_definition_what_is_a_city.pdf (accessed on 7 January 2025).
- Archova Visuals. Why Urban Development Is Important. 2024. Available online: https://archovavisuals.com/why-urban-development-is-important/ (accessed on 4 January 2025).
- Rosenthal, S.S.; Strange, W.C. Chapter 49 Evidence on the Nature and Sources of Agglomeration Economies. In Handbook of Regional and Urban Economics; Elsevier: Amsterdam, The Netherlands, 2004; pp. 2119–2171. [Google Scholar] [CrossRef]
- Duranton, G.; Puga, D. The Growth of Cities; CEPR Discussion Paper No. 9590; Centre for Economic Policy Research: London, UK, 2013; Available online: https://real-faculty.wharton.upenn.edu/wp-content/uploads/~duranton/Duranton_Papers/Current_Research/urban_growth.pdf (accessed on 6 January 2025).
- Ritchie, H.; Samborska, V.; Roser, M. Urbanization: The World Population Is Moving to Cities. Why Is Urbanization Happening and What Are the Consequences? Our World in Data. 2024. Available online: https://ourworldindata.org/urbanization (accessed on 9 January 2025).
- Aziz, A.; Makkawi, B. Relationship between Foreign Direct Investment and Country Population. Int. J. Bus. Manag. 2012, 7, 63. [Google Scholar] [CrossRef]
- European Commission. Increasing Importance of Cities. Knowledge for Policy. 2020. Available online: https://knowledge4policy.ec.europa.eu/foresight/topic/continuing-urbanisation/increasing-importance-cities_en (accessed on 11 January 2025).
- World Bank. Urban Development Overview. 2023. Available online: https://www.worldbank.org/en/topic/urbandevelopment/overview (accessed on 12 January 2025).
- Bolshakov, V. Boundary delimitation of Chelyabinsk agglomeration. IOP Conf. Ser. Mater. Sci. Eng. 2018, 451, 012134. [Google Scholar] [CrossRef]
- Bolter, K.; Robey, J. Agglomeration Economies: A Literature Review; W.E. Upjohn Institute for Employment Research: Kalamazoo, MI, USA, 2020; Available online: https://research.upjohn.org/reports/252 (accessed on 14 January 2025).
- Wibowo, Y.; Kudo, T. Agglomeration and Urban Manufacture Labor Productivity in Indonesia. Signifikan J. Ilmu Ekon. 2019, 8, 145–158. [Google Scholar] [CrossRef]
- Fu, W.; Luo, C.; He, S. Does Urban Agglomeration Promote the Development of Cities? An Empirical Analysis Based on Spatial Econometrics. Sustainability 2022, 14, 14512. [Google Scholar] [CrossRef]
- United Nations. Population in Urban Agglomerations of More than 1 Million (EN.URB.MCTY). World Development Indicators, World Bank. 2018. Available online: https://databank.worldbank.org/metadataglossary/world-development-indicators/series/EN.URB.MCTY (accessed on 15 January 2025).
- Yao, Y.; Liu, L. Research on Population Mobility and Sustainable Economic Growth from a Communication Perspective. Front. Psychol. 2022, 13, 935606. [Google Scholar] [CrossRef] [PubMed]
- Beyer, S. The 4 Benefits of Urban Agglomeration. Market Urbanism Report. 2019. Available online: https://www.marketurbanist.com/blog/the-4-benefits-of-urban-agglomeration (accessed on 16 January 2025).
- Buch, T.; Hamann, S.; Niebuhr, A.; Rossen, A. What Makes Cities Attractive? The Determinants of Urban Labour Migration in Germany. Urban Stud. 2014, 51, 1960–1978. [Google Scholar] [CrossRef]
- Wilmoth, J.; Menozzi, C.; Bassarsky, L. Why Population Growth Matters for Sustainable Development; UN DESA Policy Brief No. 130; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2022; Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/undesa_pd_2022_policy_brief_population_growth.pdf (accessed on 17 January 2025).
- Filipenco, D. The Impact of Population Growth on Sustainable Development. DevelopmentAid, 21 March 2024. Available online: https://www.developmentaid.org/news-stream/post/163665/population-growth-and-sustainable-development (accessed on 17 January 2025).
- Kremer, M. Population Growth and Technological Change: One Million B.C. to 1990. Q. J. Econ. 1993, 108, 681–716. [Google Scholar] [CrossRef]
- Wogan, J.B. Population Growth Means a City Is Thriving, or Does It? Public Officials and Reporters Alike Adopt the Myth That Bigger Is Better. Governing Magazine, 29 August 2017. Available online: https://www.governing.com/archive/gov-population-city-growth-thriving.html (accessed on 18 January 2025).
- Duranton, G.; Puga, D. The Economics of Urban Density. J. Econ. Perspect. 2020, 34, 3–26. [Google Scholar] [CrossRef]
- Güneralp, B.; Zhou, Y.; Ürge-Vorsatz, D.; Gupta, M.; Yu, S.; Patel, P.L.; Fragkias, M.; Li, X.; Seto, K.C. Global Scenarios of Urban Density and Its Impacts on Building Energy Use through 2050. Proc. Natl. Acad. Sci. USA 2017, 114, 8945–8950. [Google Scholar] [CrossRef]
- Schiller, G. Urban Infrastructure: Challenges for Resource Efficiency in the Building Stock. Build. Res. Inf. 2007, 35, 399–411. [Google Scholar] [CrossRef]
- Brown, J.; Barber, A. Social Infrastructure and Sustainable Urban Communities. Proc. Inst. Civ. Eng.-Eng. Sustain. 2012, 165, 99–110. [Google Scholar] [CrossRef]
- Takano, T.; Morita, H.; Nakamura, S.; Togawa, T.; Kachi, N.; Kato, H.; Hayashi, Y. Evaluating the Quality of Life for Sustainable Urban Development. Cities 2023, 142, 104561. [Google Scholar] [CrossRef]
- Rahman, M.M.; Najaf, P.; Fields, M.G.; Thill, J.-C. Traffic Congestion and Its Urban Scale Factors: Empirical Evidence from American Urban Areas. Int. J. Sustain. Transp. 2021, 16, 406–421. [Google Scholar] [CrossRef]
- Livingstone, N.; Short, M.; Fiorentino, S.; Bunce, S. Editorial: Density, Sustainability and the Governance of Urban Futures. Front. Sustain. Cities 2023, 5, 1277926. [Google Scholar] [CrossRef]
- Oh, S.; Chen, N. Do Public Transit and Agglomeration Economies Collectively Enhance Low-Skilled Job Accessibility in Portland, OR? Transp. Policy 2022, 115, 209–219. [Google Scholar] [CrossRef]
- Chen, L.; Yu, L.; Yin, J.; Xi, M. Impact of population density on spatial differences in the economic growth of urban agglomerations: The case of Guanzhong Plain Urban Agglomeration, China. Sustainability 2023, 15, 14601. [Google Scholar] [CrossRef]
- Henderson, J.V.; Nigmatulina, D.; Kriticos, S. Measuring urban economic density. J. Urban Econ. 2021, 125, 103188. [Google Scholar] [CrossRef]
- Yu, X.; Wu, Z.; Zheng, H.; Li, M.; Tan, T. How urban agglomeration improves emission efficiency? A spatial econometric analysis of the Yangtze River Delta urban agglomeration in China. J. Environ. Manag. 2020, 260, 110061. [Google Scholar] [CrossRef]
- Jia, Y.; Tang, L.; Zhang, P.; Xu, M.; Luo, L.; Zhang, Q. Exploring the scaling relations between urban spatial form and infrastructure. Int. J. Sustain. Dev. World Ecol. 2022, 29, 665–675. [Google Scholar] [CrossRef]
- Akinyemi, A.D.; Egogo-Stanley, A.O.; Ibrahim, O.M.; Ezeamii, G.C. Assessing the role of topographical analysis in sustainable urban development: Insights from GIS-driven terrain studies. EPRA Int. J. Econ. Growth Environ. Issues 2025, 13, 9–22. [Google Scholar] [CrossRef]
- Ilham, I. Impact of regional structure and topography on the effectiveness of public transportation services. West Sci. Soc. Humanit. Stud. 2024, 2, 2083–2092. [Google Scholar] [CrossRef]
- Kuang, M.; Zheng, Y.; Deng, X.; Yang, Y.; Wang, J.; Sui, X.; Peng, Y. Flood risk management in planning and construction of city: The Guangzhou experience. Proc. IAHS 2024, 386, 277–283. [Google Scholar] [CrossRef]
- She, Y.; Shen, L.; Jiao, L.; Zuo, J.; Tam, V.W.Y.; Yan, H. Constraints to achieve infrastructure sustainability for mountainous townships in China. Habitat Int. 2018, 73, 65–78. [Google Scholar] [CrossRef]
- Syed Abdul Rahman, S.A.F.; Abdul Maulud, K.N.; Ujang, U.; Wan Mohd Jaafar, W.S.; Shaharuddin, S.; Ab Rahman, A.A. The digital landscape of smart cities and digital twins: A systematic literature review of digital terrain and 3D city models in enhancing decision-making. Sage Open 2024, 14, 21582440231220768. [Google Scholar] [CrossRef]
- Elagiry, M.; Kraus, F.; Scharf, B.; Costa, A.; Delotto, R. Nature 4 Cities: Nature-Based Solutions and Climate Resilient Urban Simulation with Greenpass® Tool and On Site Validation. A Case Study in Segrate/Milano/IT. In Proceedings of the 16th IBPSA International Conference and Exhibition, Rome, Italy, 2–4 September 2019. [Google Scholar] [CrossRef]
- Das, S.; Choudhury, M.R.; Chatterjee, B.; Das, P.; Bagri, S.; Paul, D.; Bera, M.; Dutta, S. Unraveling the Urban Climate Crisis: Exploring the Nexus of Urbanization, Climate Change, and Their Impacts on the Environment and Human Well-Being–A Global Perspective. AIMS Public Health 2024, 11, 963–1001. [Google Scholar] [CrossRef]
- Dhar, T.K.; Khirfan, L. Climate Change Adaptation in the Urban Planning and Design Research: Missing Links and Research Agenda. J. Environ. Plan. Manag. 2016, 60, 602–627. [Google Scholar] [CrossRef]
- Creutzig, F.; Baiocchi, G.; Bierkandt, R.; Pichler, P.-P.; Seto, K.C. Global Typology of Urban Energy Use and Potentials for an Urbanization Mitigation Wedge. Proc. Natl. Acad. Sci. USA 2015, 112, 6283–6288. [Google Scholar] [CrossRef]
- Leal Filho, W.; Abeldaño Zuñiga, R.A.; Sierra, J.; Dinis, M.A.P.; Corazza, L.; Nagy, G.J.; Aina, Y.A. An Assessment of Priorities in Handling Climate Change Impacts on Infrastructures. Sci. Rep. 2024, 14, 14147. [Google Scholar] [CrossRef]
- Gürçam, S. Paving the Way for Climate Resilience through Sustainable Urbanization: A Comparative Study. Lectio Socialis 2024, 8, 17–34. [Google Scholar] [CrossRef]
- Shan, J.; Yu, M.; Lee, C.-Y. An Empirical Investigation of the Seaport’s Economic Impact: Evidence from Major Ports in China. Transp. Res. Part E Logist. Transp. Rev. 2014, 69, 41–53. [Google Scholar] [CrossRef]
- Marzouki, A.; Nefzi, M.; Mellouli, S.; Hajji, A.; Rekik, M. Transforming City Initiative into a Smart City Initiative. In Proceedings of the 17th International Digital Government Research Conference on Digital Government Research, Shanghai, China, 8–10 June 2016; pp. 536–537. [Google Scholar] [CrossRef]
- Huang-Lachmann, J.-T. Systematic Review of Smart Cities and Climate Change Adaptation. SAMPJ 2019, 10, 745–772. [Google Scholar] [CrossRef]
- Geraldo Bastías, P.; Brand, J.E. Causal Inference. Sociology 2020. [Google Scholar] [CrossRef]
- City Population. Available online: https://www.citypopulation.de/ (accessed on 25 February 2025).
- Climate Data. Available online: https://en.climate-data.org (accessed on 1 April 2025).
- Topographic-map. Available online: https://topographic-map.com (accessed on 1 April 2025).
- Jaeger, A.; Banks, D. Cluster analysis: A modern statistical review. Wiley Interdiscip. Rev. Comput. Stat. 2023, 15, e1597. [Google Scholar] [CrossRef]
- Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urdabayev, M.; Digel, I.; Kireyeva, A. Application of Quantitative Methods to Identify Analogous Cities: A Search for Relevant Experiences in the Development of Smart Cities for Implementation in Kazakhstan. Smart Cities 2025, 8, 92. https://doi.org/10.3390/smartcities8030092
Urdabayev M, Digel I, Kireyeva A. Application of Quantitative Methods to Identify Analogous Cities: A Search for Relevant Experiences in the Development of Smart Cities for Implementation in Kazakhstan. Smart Cities. 2025; 8(3):92. https://doi.org/10.3390/smartcities8030092
Chicago/Turabian StyleUrdabayev, Marat, Ivan Digel, and Anel Kireyeva. 2025. "Application of Quantitative Methods to Identify Analogous Cities: A Search for Relevant Experiences in the Development of Smart Cities for Implementation in Kazakhstan" Smart Cities 8, no. 3: 92. https://doi.org/10.3390/smartcities8030092
APA StyleUrdabayev, M., Digel, I., & Kireyeva, A. (2025). Application of Quantitative Methods to Identify Analogous Cities: A Search for Relevant Experiences in the Development of Smart Cities for Implementation in Kazakhstan. Smart Cities, 8(3), 92. https://doi.org/10.3390/smartcities8030092