Edge Offloading in Smart Grid
Abstract
:1. Introduction
2. Basic Concepts
2.1. Edge Computing
2.2. Fog Computing
2.3. Smart Grid
3. Architectures Overview
3.1. Smart-Grid Architectures
3.2. Edge-Offloading Architectures
4. Offloading Criteria in Smart Grid
4.1. Network Performance
4.2. Data and Edge AI
4.3. Computational Requirements
4.4. Application-Specific Factors
4.5. Energy Consumption
5. Decision-Making Techniques
5.1. Metaheuristic Optimization
5.2. Reinforcement Learning
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aranda, J.A.S.; Costa, R.D.S.; de Vargas, V.W.; da Silva Pereira, P.R.; Barbosa, J.L.V.; Vianna, M.P. Context-aware Edge Computing and Internet of Things in Smart Grids: A systematic mapping study. Comput. Electr. Eng. 2022, 99, 107826. [Google Scholar] [CrossRef]
- Feng, C.; Wang, Y.; Chen, Q.; Ding, Y.; Strbac, G.; Kang, C. Smart grid encounters edge computing: Opportunities and applications. Adv. Appl. Energy 2021, 1, 100006. [Google Scholar] [CrossRef]
- Molokomme, D.N.; Onumanyi, A.J.; Abu-Mahfouz, A.M. Edge Intelligence in Smart Grids: A Survey on Architectures, Offloading Models, Cyber Security Measures, and Challenges. J. Sens. Actuator Netw. 2022, 11, 47. [Google Scholar] [CrossRef]
- Slama, S.B. Prosumer in smart grids based on intelligent edge computing: A review on Artificial Intelligence Scheduling Techniques. Ain Shams Eng. J. 2022, 13, 101504. [Google Scholar] [CrossRef]
- Li, J.; Gu, C.; Xiang, Y.; Li, F. Edge-cloud Computing Systems for Smart Grid: State-of-the-art, Architecture, and Applications. J. Mod. Power Syst. Clean Energy 2022, 10, 805–817. [Google Scholar] [CrossRef]
- Cárdenas, R.; Arroba, P.; Risco-Martín, J.L.; Moya, J. Modeling and simulation of smart grid-aware edge computing federations. Clust. Comput. 2023, 26, 719–743. [Google Scholar] [CrossRef]
- Bajaj, K.; Jain, S.; Singh, R. Context-Aware Offloading for IoT Application using Fog-Cloud Computing. Int. J. Electr. Electron. Res. 2023, 11, 69–83. [Google Scholar] [CrossRef]
- Singh, R.; Gill, S.S. Edge AI: A survey. Internet Things Cyber-Phys. Syst. 2023, 3, 71–92. [Google Scholar] [CrossRef]
- Pop, C.; Antal, M.; Cioara, T.; Anghel, I.; Salomie, I.; Bertoncini, M. A Fog Computing Enabled Virtual Power Plant Model for Delivery of Frequency Restoration Reserve Services. Sensors 2019, 19, 4688. [Google Scholar] [CrossRef]
- Antal, M.; Mihailescu, V.; Cioara, T.; Anghel, I. Blockchain-Based Distributed Federated Learning in Smart Grid. Mathematics 2022, 10, 4499. [Google Scholar] [CrossRef]
- Firouzi, R.; Rahmani, R.; Kanter, T. Federated Learning for Distributed Reasoning on Edge Computing. Procedia Comput. Sci. 2021, 184, 419–427. [Google Scholar] [CrossRef]
- Terroso-Saenz, F.; González-Vidal, A.; Ramallo-González, A.P.; Skarmeta, A.F. An open IoT platform for the management and analysis of energy data. Future Gener. Comput. Syst. 2019, 92, 1066–1079. [Google Scholar]
- Khan, W.Z.; Ahmed, E.; Hakak, S.; Yaqoob, I.; Ahmed, A. Edge computing: A survey. Future Gener. Comput. Syst. 2019, 97, 219–235. [Google Scholar] [CrossRef]
- Svorobej, S.; Endo, P.T.; Bendechache, M.; Papadopoulos, C.F.; Giannoutakis, K.M.; Gravvanis, G.A.; Tzovaras, D.; Byrne, J.; Lynn, T. Simulating fog and edge computing scenarios: An overview and research challenges. Future Internet 2019, 11, 55. [Google Scholar] [CrossRef]
- Zeng, X.; Bao, S. Big Data in Smart Grid and Edge Computing of the IoT. In Key Technologies of Internet of Things and Smart Grid. Advanced and Intelligent Manufacturing in China; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Syed, A.S.; Sierra-Sosa, D.; Kumar, A.; Elmaghraby, A. IoT in Smart Cities: A Survey of Technologies, Practices and Challenges. Smart Cities 2021, 4, 429–475. [Google Scholar] [CrossRef]
- Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An Overview on Edge Computing Research. IEEE Access 2020, 8, 85714–85728. [Google Scholar] [CrossRef]
- Yu, W.; Liang, F.; He, X.; Hatcher, W.; Lu, C.; Lin, J.; Yang, X. A Survey on the Edge Computing for the Internet of Things. IEEE Access 2018, 6, 6900–6919. [Google Scholar] [CrossRef]
- Kovacevic, I.; Harjula, E.; Glisic, S.; Lorenzo, B.; Ylianttila, M. Cloud and Edge Computation Offloading for Latency Limited Services. IEEE Access 2021, 9, 55764–55776. [Google Scholar] [CrossRef]
- Ai, Y.; Peng, M.; Zhang, K. Edge computing technologies for Internet of Things: A primer. Digit. Commun. Netw. 2018, 4, 77–86. [Google Scholar] [CrossRef]
- Alwarafy, A.; Al-Thelaya, K.A.; Abdallah, M.; Schneider, J.; Hamdi, M. A Survey on Security and Privacy Issues in Edge-Computing-Assisted Internet of Things. IEEE Internet Things J. 2021, 8, 4004–4022. [Google Scholar] [CrossRef]
- Yousefpour, A.; Fung, C.; Nguyen, T.; Kadiyala, K.; Jalali, F.; Niakanlahiji, A.; Kong, J.; Jue, J.P. All one needs to know about fog computing and related edge computing paradigms: A complete survey. J. Syst. Archit. 2019, 98, 289–330. [Google Scholar] [CrossRef]
- Dolui, K.; Datta, S.K. Comparison of edge computing implementations: Fog computing, cloudlet and mobile edge computing. In Proceedings of the 2017 Global Internet of Things Summit (GIoTS), Geneva, Switzerland, 15 January 2017; pp. 1–6. [Google Scholar]
- Mouradian, C.; Naboulsi, D.; Yangui, S.; Glitho, R.H.; Morrow, M.J.; Polakos, P.A. A Comprehensive Survey on Fog Computing: State-of-the-Art and Research Challenges. IEEE Commun. Surv. Tutor. 2018, 20, 416–464. [Google Scholar] [CrossRef]
- Bebortta, S.; Tripathy, S.S.; Modibbo, U.M.; Ali, I. An optimal fog-cloud offloading framework for big data optimization in heterogeneous IoT networks. Decis. Anal. J. 2023, 8, 100295. [Google Scholar] [CrossRef]
- Habibi, P.; Farhoudi, M.; Kazemian, S.; Khorsandi, S.; Leon-Garcia, A. Fog Computing: A Comprehensive Architectural Survey. IEEE Access 2020, 8, 69105–69133. [Google Scholar] [CrossRef]
- Strielkowski, W.; Civín, L.; Tarkhanova, E.; Tvaronavičienė, M.; Petrenko, Y. Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review. Energies 2021, 14, 8240. [Google Scholar] [CrossRef]
- Alavikia, Z.; Shabro, M. A comprehensive layered approach for implementing internet of things-enabled smart grid: A survey. Digit. Commun. Netw. 2022, 8, 388. [Google Scholar] [CrossRef]
- Cioara, T.; Pop, C.; Zanc, R.; Anghel, I.; Antal, M.; Salomie, I. Smart Grid Management using Blockchain: Future Scenarios and Challenges. In Proceedings of the 2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet), Bucharest, Romania, 11–12 December 2020; pp. 1–5. [Google Scholar]
- Luthra, S.; Kumar, S.; Kharb, R.; Ansari, M.F.; Shimmi, S.L. Adoption of smart grid technologies: An analysis of interactions among barriers. Renew. Sustain. Energy Rev. 2014, 33, 554–565. [Google Scholar] [CrossRef]
- Daki, H.; El Hannani, A.; Aqqal, A. Big Data management in smart grid: Concepts, requirements and implementation. J. Big Data 2017, 4, 13. [Google Scholar] [CrossRef]
- Pop, C.; Cioara, T.; Antal, M.; Anghel, I.; Salomie, I.; Bertoncini, M. Blockchain Based Decentralized Management of Demand Response Programs in Smart Energy Grids. Sensors 2018, 18, 162. [Google Scholar] [CrossRef]
- Badidi, E. Edge AI and Blockchain for Smart Sustainable Cities: Promise and Potential. Sustainability 2022, 14, 7609. [Google Scholar] [CrossRef]
- Uslar, M.; Rohjans, S.; Neureiter, C.; Pröstl, F.; Velasquez, J.; Steinbrink, C.; Efthymiou, V.; Migliavacca, G.; Horsmanheimo, S.; Brunner, H.; et al. Applying the Smart Grid Architecture Model for Designing and Validating System-of-Systems in the Power and Energy Domain: A European Perspective. Energies 2019, 12, 258. [Google Scholar] [CrossRef]
- Gopstein, A.; Nguyen, C.; O’Fallon, C.; Hastings, N.; Wollman, D. NIST Framework and Roadmap of Smart Grid Interoperability Standards, Release 4.0; U.S. Department of Commerce: Washington, DC, USA, 2021. [Google Scholar]
- Smart Grid Coordination Group. Smart Grid Reference Architecture; Technical Report; CEN-CENELEC-ETSI: Brussels, Belgium, 2012. [Google Scholar]
- Menci, S.P.; Valarezo, O. Decoding design characteristics of local flexibility markets for congestion management with a multi-layered taxonomy. Appl. Energy 2024, 357, 122203. [Google Scholar] [CrossRef]
- García, M.A.; García, A.I.M.; Chassiakos, S.K.; Ageli, O. SGAM-Based Analysis for the Capacity Optimization of Smart Grids Utilizing e-Mobility: The Use Case of Booking a Charge Session. Energies 2023, 16, 2489. [Google Scholar] [CrossRef]
- Panda, D.K.; Das, S. Smart grid architecture model for control, optimization and data analytics of future power networks with more renewable energy. J. Clean. Prod. 2021, 301, 126877. [Google Scholar] [CrossRef]
- Aderibole, A.; Aljarwan, A.; Rehman, M.H.; Zeineldin, H.H.; Mezher, T.; Salah, K.; Damiani, E.; Svetinovic, D. Blockchain Technology for Smart Grids: Decentralized NIST Conceptual Model. IEEE Access 2020, 8, 43177–43190. [Google Scholar] [CrossRef]
- Mehmood, M.Y.; Oad, A.; Abrar, M.; Munir, H.M.; Hasan, S.F.; Muqeet HA, U.; Golilarz, N.A. Edge computing for IoT-enabled smart grid. Secur. Commun. Netw. 2021, 2021, 5524025. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, H.; Zhou, W.; Man, M. Application and Research of IoT Architecture for End-Net-Cloud Edge Computing. Electronics 2023, 12, 1. [Google Scholar] [CrossRef]
- Lin, L.; Liao, X.; Jin, H.; Li, P. Computation Offloading Toward Edge Computing. Proc. IEEE 2019, 107, 1584–1607. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, D.; Wang, F.; Lv, Z.; Nowak, R. A polymorphic heterogeneous security architecture for edge-enabled smart grids. Sustain. Cities Soc. 2021, 67, 102661. [Google Scholar] [CrossRef]
- Kaur, K.; Garg, S.; Kaddoum, G.; Ahmed, S.H.; Atiquzzaman, M. KEIDS: Kubernetes-Based Energy and Interference Driven Scheduler for Industrial IoT in Edge-Cloud Ecosystem. IEEE Internet Things J. 2020, 7, 4228–4237. [Google Scholar] [CrossRef]
- Nguyen, Q.-M.; Phan, L.-A.; Kim, T. Load-Balancing of Kubernetes-Based Edge Computing Infrastructure Using Resource Adaptive Proxy. Sensors 2022, 22, 2869. [Google Scholar] [CrossRef]
- Pallewatta, S.; Kostakos, V.; Buyya, R. Placement of Microservices-based IoT Applications in Fog Computing: A Taxonomy and Future Directions. ACM Comput. Surv. 2023, 55, 321. [Google Scholar] [CrossRef]
- Firouzi, F.; Farahani, B.; Marinšek, A. The convergence and interplay of edge, fog, and cloud in the AI-driven Internet of Things (IoT). Inf. Syst. 2022, 107, 101840. [Google Scholar] [CrossRef]
- Dupont, C.; Giaffreda, R.; Capra, L. Edge Computing in IoT Context: Horizontal and Vertical Linux Container Migration. In Proceedings of the 2017 Global Internet of Things Summit (GIoTS), Geneva, Switzerland, 6–9 June 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Taherizadeh, S.; Stankovski, V.; Grobelnik, M. A Capillary Computing Architecture for Dynamic Internet of Things: Orchestration of Microservices from Edge Devices to Fog and Cloud Providers. Sensors 2018, 18, 2938. [Google Scholar] [CrossRef]
- Böhm, S.; Wirtz, G. Towards orchestration of cloud-edge architectures with Kubernetes. EAI EdgeIoT 2021. In Proceedings of the 2nd EAI International Conference on Intelligent Edge Processing in the IoT Era, Online, 24–26 November 2021. [Google Scholar]
- Pérez de Prado, R.; García-Galán, S.; Muñoz-Expósito, J.E.; Marchewka, A.; Ruiz-Reyes, N. Smart Containers Schedulers for Microservices Provision in Cloud-Fog-IoT Networks. Sensors 2020, 20, 1714. [Google Scholar] [CrossRef]
- Aslanpour, M.S.; Toosi, A.N.; Cicconetti, C.; Javadi, B.; Sbarski, P.; Taibi, D.; Assuncao, M.; Gill, S.S.; Gaire, R.; Dustdar, S. Serverless Edge Computing: Vision and Challenges. In Proceedings of the 2021 Australasian Computer Science Week Multiconference (ACSW ‘21), Dunedin, New Zealand, 1–5 February 2021; pp. 1–10. [Google Scholar]
- De Sena, A.S.; Ullah, M.; Nardelli, P.H.J. Edge Computing in Smart Grids. In Handbook of Smart Energy Systems; Fathi, M., Zio, E., Pardalos, P.M., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Wang, W.; Yao, J.; Zheng, W.; Shao, W. Offloading Strategies for Mobile Edge Computing Based on Multi-Attribute Preferences in Smart Grids. In Proceedings of the 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 4–6 March 2022; pp. 1020–1024. [Google Scholar]
- Taami, T.; Krug, S.; O’Nils, M. Experimental Characterization of Latency in Distributed IoT Systems with Cloud Fog Offloading. In Proceedings of the 2019 15th IEEE International Workshop on Factory Communication Systems, Sundsvall, Sweden, 27–29 May 2019. [Google Scholar] [CrossRef]
- Wu, H.; Knottenbelt, W.; Wolter, K. Analysis of the Energy-Response Time Tradeoff for Mobile Cloud Offloading Using Combined Metrics. In Proceedings of the 2015 27th International Teletraffic Congress, Ghent, Belgium, 8–10 September 2015. [Google Scholar] [CrossRef]
- Mhatre, J.; Lee, A.; Nguyen, T.N. Toward an Optimal Latency-Energy Dynamic Offloading Scheme for Collaborative Cloud Networks. IEEE Access 2023, 11, 53091–53102. [Google Scholar] [CrossRef]
- Anastasopoulos, M.P.; Tzanakaki, A.; Simeonidou, D. Energy-aware offloading in mobile cloud systems with delay considerations. In Proceedings of the 2014 IEEE Globecom Workshops (GC Workshops), Austin, TX, USA, 8–12 December 2014; pp. 42–47. [Google Scholar]
- Jyothi, T. Energy Optimization using Cloud Offloading Algorithm. Int. J. Sci. Eng. Appl. 2017, 6, 493–497. [Google Scholar]
- Wu, H.; Wolter, K. Analysis of the Energy-Performance Tradeoff for Delayed Mobile Offloading. Endorsed Trans. Energy Web 2016, 3, 250. [Google Scholar] [CrossRef]
- Huaming, W.; Sun, Y.; Wolter, K. Energy-Efficient Decision Making for Mobile Cloud Offloading. IEEE Trans. Cloud Comput. 2020, 8, 570. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Z.; He, X.; Cai, X.; Miao, X.; Ma, Q. Trine: Cloud-Edge-Device Cooperated Real-Time Video Analysis for Household Applications. IEEE Trans. Mob. Comput. 2023, 22, 4973–4985. [Google Scholar] [CrossRef]
- Hong, S.-T.; Kim, H. QoE-Aware Computation Offloading Scheduling to Capture Energy-Latency Tradeoff in Mobile Clouds. In Proceedings of the 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking, London, UK, 27–30 June 2016. [Google Scholar] [CrossRef]
- Gessert, F.; Wingerath, W.; Ritter, N. Latency in Cloud-Based Applications. In Fast and Scalable Cloud Data Management; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Akram, J.; Tahir, A.; Munawar, H.S.; Akram, A.; Kouzani, A.Z.; Mahmud, M.A.P. Cloud- and Fog-Integrated Smart Grid Model for Efficient Resource Utilisation. Sensors 2021, 21, 7846. [Google Scholar] [CrossRef] [PubMed]
- Jie, L.; Bodhi, P.; Hart, T.; Jin, Y.; Woo, S.L.; Raghunathan, V.; Ramos, H.S.; Wang, Q. CO-GPS: Energy Efficient GPS Sensing with Cloud Offloading. IEEE Trans. Mob. Comput. 2016, 15, 1348. [Google Scholar] [CrossRef]
- Rahmani, A.M.; Mohammadi, M.; Mohammed, A.H.; Karim, S.H.T.; Majeed, M.K.; Masdari, M. Towards Data and Computation Offloading in Mobile Cloud Computing: Taxonomy, Overview, and Future Directions. Wirel. Pers. Commun. 2021, 119, 147. [Google Scholar] [CrossRef]
- Boukerche, A.; Guan, S.; De Grande, R.E. Sustainable Offloading in Mobile Cloud Computing: Algorithmic Design and Implementation. ACM Comput. Surv. 2019, 52, 11. [Google Scholar] [CrossRef]
- Shiraz, M.; Gani, A.; Shamim, A.; Khan, S.; Ahmad, R. Energy Efficient Computational Offloading Framework for Mobile Cloud Computing. J. Grid Comput. 2015, 13, 1–18. [Google Scholar] [CrossRef]
- Namazkar, S.; Sabaei, M. Smart cloud-assisted computation offloading system: A dynamic approach for energy optimization. In Proceedings of the 2017 7th International Conference on Computer and Knowledge Engineering, Shanghai, China, 26 October 2017. [Google Scholar] [CrossRef]
- Junior, W.; Oliveira, E.; Santos, A.; Dias, K.L. A context-sensitive offloading system using machine-learning classification algorithms for mobile cloud environment. Future Gener. Comput. Syst. 2019, 90, 503. [Google Scholar] [CrossRef]
- Adem, K.E. Energy-Aware Adaptive Computational Offloading for Pervasive Community-Based Cloud Computing. Ph.D. Thesis, RMIT University, Melbourne, Australia, 2016. [Google Scholar]
- Thanapal, P.; Durai, M.A.S. Energy saving offloading scheme for mobile cloud computing using CloudSim. Int. J. Adv. Intell. Paradig. 2018, 1, 45. [Google Scholar] [CrossRef]
- Rodrigues, T.K.; Liu, J.; Kato, N. Offloading Decision for Mobile Multi-Access Edge Computing in a Multi-Tiered 6G Network. IEEE Trans. Emerg. Top. Comput. 2022, 10, 1414–1427. [Google Scholar] [CrossRef]
- Nandi, K.; Pranjal Reaj, M.; Sarker, S.; Razzaque, M.A.; Rashid, M.; Roy, P. Task Offloading to Edge Cloud Balancing Utility and Cost for Energy Harvesting Internet of Things. J. Netw. Comput. Appl. 2023, 221, 103766. [Google Scholar] [CrossRef]
- Khanna, A.; Kero, A.; Kumar, D. Mobile cloud computing architecture for computation offloading. In Proceedings of the 2016 2nd International Conference on Next Generation Computing Technologies, Dehradun, India, 14–16 October 2016. [Google Scholar] [CrossRef]
- Ola, M.; Al-Tuhafi, E.; Al-Hemiary, H. Adaptive Thresholds for Task Offloading in IoT-Edge-Cloud Networks. In Proceedings of the 2023 International Conference On Cyber Management and Engineering, Bangkok, Thailand, 26–27 January 2023. [Google Scholar] [CrossRef]
- Yadav, P.; Vidyarthi, D.P. An efficient fuzzy-based task offloading in edge-fog-cloud architecture. Concurr. Comput. Pract. Exp. 2023, 35, e7843. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, B.; Yuan, H.; Rui-Qing, W.; Yiming, K.; Haoran, D.L. Edge node computing offloading decision method in cloud network collaboration environment. In Proceedings of the 7th International Symposium on Advances in Electrical, Electronics, and Computer Engineering, Xishuangbanna, China, 18–20 March 2022. [Google Scholar] [CrossRef]
- Chaari, R.; Cheikhrouhou, O.; Koubâa, A.; Youssef, H.; Hmam, H. Towards a Distributed Computation Offloading Architecture for Cloud Robotics. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 434–441. [Google Scholar] [CrossRef]
- Jadad, H.; Touzene, A.; Day, K.; Alzeidir, N. A cloud-side decision offloading scheme for mobile cloud computing. Int. J. Mach. Learn. Comput. 2018, 8, 367. [Google Scholar] [CrossRef]
- Nandhini, U.; TamilSelvan, L. Computational Analytics of Client Awareness for Mobile Application Offloading with Cloud Migration. Ksii Trans. Internet Inf. Syst. 2014, 8, 11. [Google Scholar]
- Othman, M.; Madani, S.A.; Khan, S.U. A Survey of Mobile Cloud Computing Application Models. IEEE Commun. Surv. Tutor. 2014, 16, 393. [Google Scholar] [CrossRef]
- Andrikopoulos, V.; Binz, T.; Leymann, F.; Strauch, S. How to adapt applications for the Cloud environment Challenges and solutions in migrating applications to the Cloud. Computing 2013, 95, 493. [Google Scholar] [CrossRef]
- Roy, D.G.; De, D.; Mukherjee, A.; Buyya, R. Application-aware cloudlet selection for computation offloading in a multi-cloudlet environment. J. Supercomput. 2017, 73, 1672. [Google Scholar] [CrossRef]
- Hao, W.; Yen, I.L.; Thuraisingham, B. Dynamic Service and Data Migration in the Clouds. In Proceedings of the 2009 33rd Annual IEEE International Computer Software and Applications Conference, Seattle, WA, USA, 20–24 July 2009. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, J.; Xie, Y.; Jiang, J.; Yang, X.; Li, Z. Dynamic Task Offloading in Power Grid Internet of Things: A Fast-Convergent Federated Learning Approach. In Proceedings of the 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS), Chengdu, China, 23–26 April 2021; pp. 933–937. [Google Scholar]
- Mukherjee, D.; Nandy, S.; Mohan, S.; Al-Otaibi, Y.D.; Alnumay, W.S. Sustainable task scheduling strategy in cloudlets. Sustain. Comput. Inform. Syst. 2021, 30, 100513. [Google Scholar] [CrossRef]
- Krishankumar, R.; Ravichandran, K.S.; Aggarwal, M.; Pamucar, D. An improved entropy function for the intuitionistic fuzzy sets with application to cloud vendor selection. Decis. Anal. J. 2023, 7, 100262. [Google Scholar] [CrossRef]
- Bera, S.; Misra, S.; Rodrigues, J.J. Cloud Computing Applications for Smart Grid: A Survey. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 1477. [Google Scholar] [CrossRef]
- Sharma, R.; Bala, A.; Singh, A. Virtual Machine Migration for Green Cloud Computing. In Proceedings of the 2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE), Ballari, India, 23–24 April 2022; pp. 1–7. [Google Scholar]
- Akherfi, K.; Gerndt, M.; Harroud, H. Mobile cloud computing for computation offloading: Issues and challenges. Appl. Comput. Inform. 2018, 14, 1–16. [Google Scholar] [CrossRef]
- Wu, H.; Huang, D.; Bouzefrane, S. Making offloading decisions resistant to network unavailability for mobile cloud collaboration. In Proceedings of the 9th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing, Austin, TX, USA, 20–23 October 2013. [Google Scholar] [CrossRef]
- Afrasiabi, S.N.; Ebrahimzadeh, A.; Mouradian, C.; Malektaji, S.; Glitho, R.H. Reinforcement Learning-Based Optimization Framework for Application Component Migration in NFV Cloud-Fog Environments. IEEE Trans. Netw. Serv. Manag. 2023, 20, 1866. [Google Scholar] [CrossRef]
- Armstrong, D.; Kavanagh, R.; Djemame, K. Towards an interoperable energy-efficient Cloud computing architecture—Practice & experience. In Proceedings of the 2015 IEEE International Conference on Communication Workshop, London, UK, 8–12 June 2015. [Google Scholar] [CrossRef]
- Nan, Y.; Li, W.; Bao, W.; Delicato, F.C.; Pires, P.F.; Dou, Y.; Zomaya, A.Y. Adaptive Energy-Aware Computation Offloading for Cloud of Things Systems. IEEE Access 2017, 5, 23947. [Google Scholar] [CrossRef]
- Aldmour, R.; Yousef, S.; Yaghi, M.; Tapasaswi, S.; Pattanaik, K.K.; Cole, M. New cloud offloading algorithm for better energy consumption and process time. Int. J. Syst. Assur. Eng. Manag. 2017, 8, 730. [Google Scholar] [CrossRef]
- Procaccianti, G.; Lago, P.; Bevini, S. A systematic literature review on energy efficiency in cloud software architectures. Sustain. Comput. Inform. Syst. 2014, 7, 2–10. [Google Scholar] [CrossRef]
- Michał, P.; Karpowicz, E.; Niewiadomska-Szynkiewicz, P.; Arabas, A.S. Energy and Power Efficiency in Cloud; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Zhang, K.; Mao, Y.; Leng, S.; Zhao, W.; Li, L.; Peng, X.; Pan, L.; Maharajan, S.; Zhang, Y. Energy-Efficient Offloading for Mobile Edge Computing in 5G Heterogeneous Networks. IEEE Access 2016, 4, 5896. [Google Scholar] [CrossRef]
- Lefèvre, L.; Orgerie, A.C. Designing and evaluating an energy-efficient Cloud. J. Supercomput. 2010, 51, 352–373. [Google Scholar] [CrossRef]
- Katal, A.; Dahiya, S.; Choudhury, T. Energy efficiency in cloud computing data centers: A survey on software technologies. Clust. Comput. 2023, 26, 1845–1875. [Google Scholar] [CrossRef]
- Han, K.; Cai, X.; Zhang, X.; Wang, C. Research on Energy Efficiency Evaluation in the Cloud; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar] [CrossRef]
- Alharbi, H.A.; Elgorashi, T.E.H.; Elmirghani, J.M.H. Energy Efficient Cloud-Fog Architecture. arXiv 2020, arXiv:2001.06328. [Google Scholar]
- Kulkarni, A.; Paul, A.; Dholakia, H.; Hossain, G. When not to Offload? Analyzing Offload Feasibility in Mobile Cloud Computing. In Proceedings of the Fifth Conference on Mobile and Secure Services, Miami Beach, FL, USA, 2–3 March 2019. [Google Scholar] [CrossRef]
- Rahem, A.A.R.T.; Ismail, M.; Najm, I.A. Effect of the Architecture and Topology of Cloud Computing on Power Saving. Appl. Mech. Mater. 2015, 785, 661–670. [Google Scholar] [CrossRef]
- Materwala, H.; Ismail, L.; Shubair, R.M.; Buyya, R. Energy-SLA-aware genetic algorithm for edge–cloud integrated computation offloading in vehicular networks. Future Gener. Comput. Syst. 2022, 135, 205–222. [Google Scholar] [CrossRef]
- Rahamathunnisa, U.; Sudhakar, K.; Murugan, T.K.; Thivaharan, S.; Rajkumar, M.; Boopathi, S. Cloud Computing Principles for Optimizing Robot Task Offloading Processes. AI-Enabled Soc. Robot. Hum. Care Serv. 2023, 12, 188–211. [Google Scholar]
- Shahidinejad, A.; Ghobaei-Arani, M. A metaheuristic-based computation offloading in edge-cloud environment. J. Ambient. Intell. Humaniz. Comput. 2021, 13, 2785–2794. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, S. Resource Allocation and Task Offloading Strategy Base on Hybrid Simulated Annealing-Binary Particle Swarm Optimization in Cloud-Edge Collaborative System. In Proceedings of the 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference, Chongqing, China, 16–18 December 2022. [Google Scholar] [CrossRef]
- Usha Kirana, S.P.; D’Mello, D.A. Energy-efficient enhanced Particle Swarm Optimization for virtual machine consolidation in cloud environment. Int. J. Inf. Technol. 2021, 13, 2153–2161. [Google Scholar] [CrossRef]
- Kirana, U.; Pushpavathi, S.; D’Mello, D. A Recursive Ant Colony Optimization Algorithm for Energy Consumption in Cloud Computing. Trends Sci. 2022, 19, 4502. [Google Scholar] [CrossRef]
- Danial, C.W.; Aly, I.; Saroit, I.M.; Shaimaa, M.; Mohamed, M. Energy Efficient Ant Colony Cloud Offloading Algorithm (EACO). In Proceedings of the 9th International Conference on Software and Information Engineering, Nagoya, Japan, 11–13 September 2020. [Google Scholar] [CrossRef]
- Tabrizchi, H.; Kuchaki, R.M. Energy Refining Balance with Ant Colony System for Cloud Placement Machines. J. Grid Comput. 2021, 19, 1–17. [Google Scholar] [CrossRef]
- Samoilenko, S. Whale Optimization-Based Task Offloading Technique in Integrated Cloud-Fog Environment; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Anoop, V.R.P.; Bipin, P. Exploitation Whale Optimization-Based Optimal Offloading Approach and Topology Optimization in a Mobile Ad Hoc Cloud Environment. J. Ambient. Intell. Humaniz. Comput. 2021, 13, 1053–1072. [Google Scholar] [CrossRef]
- Bi, J.; Yuan, H.; Duanmu, S.; Zhou, M.; Abusorrah, A. Energy-Optimized Partial Computation Offloading in Mobile-Edge Computing with Genetic Simulated-Annealing-Based Particle Swarm Optimization. IEEE Internet Things J. 2021, 8, 3774–3785. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, Z.; Wu, Y.; Dong, M.; Leung, V.C.M. Energy Efficient Joint Computation Offloading and Service Caching for Mobile Edge Computing: A Deep Reinforcement Learning Approach. IEEE Trans. Green Commun. Netw. 2023, 7, 950–961. [Google Scholar] [CrossRef]
- Ding, W.; Dai, Z.; Jiang, Q.; Gu, C. A Meta Reinforcement Learning-Based Task Offloading Strategy for IoT Devices in an Edge Cloud Computing Environment. Appl. Sci. 2023, 13, 5412. [Google Scholar] [CrossRef]
- Tang, T.; Li, C.; Liu, F. Collaborative Cloud-Edge-End Task Offloading with Task Dependency Based on Deep Reinforcement Learning. Comput. Commun. 2023, 209, 78–90. [Google Scholar] [CrossRef]
- Ou, X.; Jiang, S.; Zhang, X. Cloud-Edge Collaborative Computation Offloading: A Deep Reinforcement Learning Approach. In Proceedings of the 2022 International Conference on Networks, Communications and Information Technology, Beijing, China, 17–19 June 2022. [Google Scholar] [CrossRef]
- Xu, J.; Chen, L.; Ren, S. Online Learning for Offloading and Autoscaling in Energy Harvesting Mobile Edge Computing. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 361–373. [Google Scholar] [CrossRef]
- Khayyat, M.; Elgendy, I.A.; Muthanna, A.; Alshahrani, A.; Alharbi, S.A.; Koucheryavy, A. Advanced Deep Learning-Based Computational Offloading for Multilevel Vehicular Edge-Cloud Computing Networks. IEEE Access 2020, 8, 137052–137062. [Google Scholar] [CrossRef]
- Gong, Y.; Lv, C.; Cao, S.; Yan, L.; Wang, H. Deep Learning-Based Computation Offloading with Energy and Performance Optimization. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 69. [Google Scholar] [CrossRef]
- Sellami, B.; Hakiri, A.; Yahia, S.B. Deep Reinforcement Learning for Energy-Aware Task Offloading in Joint SDN-Blockchain 5G Massive IoT Edge Network. Future Gener. Comput. Syst. 2022, 137, 363–379. [Google Scholar] [CrossRef]
- Fang, C.; Meng, X.; Hu, Z.; Xu, F.; Zeng, D.; Dong, M.; Ni, W. AI-Driven Energy-Efficient Content Task Offloading in Cloud-Edge-End Cooperation Networks. IEEE Open J. Comput. Soc. 2022, 3, 162–171. [Google Scholar] [CrossRef]
Structure | Standardization | Interoperability | Cybersecurity | Flexibility | Level of Details | Complexity | |
---|---|---|---|---|---|---|---|
SGAM | (+) Comprehensive, based on layers | (+) Promotes international standards | (+) Interfaces for components and layers | (+) Dedicated layer | (−) Rigid | (+) Comprehensive | (−) High for newcomers |
NIST | (+) Modular, based on components | (−) Standardization challenges | (−) Limited | (+) Core components | (+) Flexible and adaptable | (−) Lack of details | (+/−) Additional guidance |
Smart-Grid Architecture | Grid Automation | Grid Resilience | Protocols | Scalability | Fault Tolerance | Real-Time Monitoring | Security Measures |
---|---|---|---|---|---|---|---|
Cloud–edge [41] | Yes | Yes | MQTT, IEC 61850 | High | Yes | Yes | Advanced Encryption |
Three-Tier [2] | Yes | Yes | OPC UA, DNP3 | Moderate | Yes | No | SSL/TLS |
Edge-based with AI [3] | Yes | Yes | CoAP, IEC 60870 | High | Yes | Yes | Blockchain |
Category | Architecture | Application Orchestration | Technology | Serverless Computing | Dynamic Offloading | Multi-Layer Coordination | Cost-Efficient Scaling | Optimization Algorithms |
---|---|---|---|---|---|---|---|---|
Edge–Cloud Integration | KEIDS [45] | Yes | Docker, Kubernetes | No | Yes | Yes | Yes | Yes |
Multi-access Edge Computing [19] | Yes | Docker, Kubernetes | No | Yes | Yes | Yes | No | |
RAP [46] | Yes | Docker, Kubernetes | No | Yes | Yes | Yes | Yes | |
Edge–Fog–Cloud Integration | Hierarchical Edge–Fog–Cloud [48] | Yes | Docker, Kubernetes | Yes | Yes | Yes | Yes | Yes |
IoT Offloading [49] | Yes | Docker, Kubernetes | No | Yes | Yes | Yes | No | |
Edge–Fog–Cloud for IoT [50] | Yes | Docker, Kubernetes | Yes | Yes | Yes | Yes | Yes | |
Fog Computing with Microservices [47] | Yes | Docker, Kubernetes, KubeEdge | No | Yes | Yes | Yes | No | |
Edge Orchestration | Autonomic Controller [51] | Yes | Docker, Kubernetes | Yes | Yes | Yes | Yes | No |
Intelligent Container Schedulers [52] | Yes | Docker, Kubernetes | Yes | Yes | Yes | Yes | Yes | |
Serverless Integration | Serverless Edge Computing [53] | Yes | AWS Lambda, Azure Functions | Yes | Yes | Yes | Yes | No |
Feature | Federated Learning | Edge AI | Trade-Offs Between |
---|---|---|---|
Model training | Decentralized | Centralized and offloaded | Privacy and AI model management |
Communication | Data | Local models updates | Amount of data and AI model complexity in large-scale deployments |
AI model management | Many versions of the model | A single version of the model | |
Model convergence | Challenging due to non-IID data | More efficient due to data integration | Heterogeneity of data distributions and overhead for centralized model training |
Latency | Real-time features | Training time lag due to data movement | Robustness to device failures and consideration of computational limitations on the edge |
Bandwidth | Lower during training; higher after awards | Higher during training; lower after offloading | Federated AI model update synchronization and AI process offloading overhead |
Decision Variable | Aspects | Approaches | Impact on Cloud Offloading |
---|---|---|---|
Network performance | Latency, Bandwidth, Response Time | FC in IoT architecture [7], MP-DDPG algorithm [58], Communication strategies and delayed offloading [57], multi-objective service provisioning [59], DPH algorithm [60], Lyapunov optimization [62], User-centric QoE [64] | Efficient offloading decisions are based on minimizing computation, transmission delay, and energy consumption. Optimizing network and computation infrastructure while maximizing battery lifetime [59]. |
Location and Data Characteristics | Location, Data volume, velocity, variety | Context-based offloading [70], CSOS with ML [72], Energy-aware protocols [73], Adaptive offloading [74], EMCO, MobiCOP-IoT, Autonomic Management [70], Contextual information utilization [71], Green computing [74] | Context-specific optimization by considering the context of data, reducing energy consumption, and achieving accurate offloading decisions [74]. |
Computational Requirements | CPU, Memory, HDD, Devices, Processing Capabilities | Processing node selection [75], models based on task nature [77], C-RAN architecture, adaptive algorithms, edge devices offloading [78], control mechanisms [79], offloading architecture [80], computation offloading in cloud robotics [81] | Influencing feasibility and efficiency of offloading tasks, dynamic adjustment, and trade-offs between local execution and cloud offloading [80]. |
Application-specific Factors | Application Type, Migration Overhead | Decision support system [83], cloud resources for different app types [84], Suitable cloudlet selection [85], Challenges in migration [86], Overhead and adaptation needs [87] | Significant impact based on computational, storage, and bandwidth requirements. Overhead considerations for application migration and service selection [87]. |
Energy Consumption | Power Consumption, Energy Efficiency | EECOF [70], Dual-energy sources in fog computing [97], Measuring file size and execution time [98], Energy-efficient architectures [99], MEC energy-efficient computation offloading [101], Energy-efficient framework [102], Power management [107] | Crucial role in determining the offloading strategy based on distributed frameworks, file size, execution time, and efficient architectures [48]. Power savings through various approaches and technologies [107]. |
Type | Algorithm | Approach | Optimization Target | Performance Metrics | Efficiency Improvement |
---|---|---|---|---|---|
Metaheuristics | Genetic Algorithms [108] | Offloading from vehicles to servers | Energy consumption, SLA compliance | Energy savings, low violation rate | Minimize energy consumption, meet SLAs |
Genetic Algorithm (IGA) [109] | Cloud–edge–terminal collaboration offloading | Task consumption, delay constraints | Superior performance and task completion within constraints | Minimize overall task consumption, meet delay constraints | |
NSGA-II [110] | Task-offloading in edge/cloud networks | Task-offloading decisions | Faster convergence, cost-effective solution, energy reduction | Cost-effective task-offloading, reduce energy consumption | |
SA-BPSO [111] | Task-offloading, resource allocation, power allocation | Total user overhead | Effective reduction in total user overhead, ensure QoS | Optimize task-offloading, resource allocation, and power allocation | |
E-PSO [112] | Energy-efficient VM consolidation in cloud | Energy consumption | Reduction of 22% in energy consumption | Minimize energy consumption | |
Recursive ACO (RACO) [113] | Cloud computing energy reduction | Energy consumption, SLA violations | Reduction of EC by 40–42% compared to traditional ACO | Minimize EC and SLA violations | |
Efficient ACO (EACO) [114] | Cloud offloading with completion time constraints | Energy consumption, completion time | Average energy reduction of 24–59%, limited increase in completion time | Reduce energy consumption, limit completion time increase | |
ACO for VM Allocation [115] | VM allocation for energy optimization | Energy consumption | Average reduction of 24–59% in energy consumption compared to previous work | Minimize energy consumption | |
Whale Optimization [116] | Task-offloading in a cloud–fog environment | QoS metrics (delay, energy consumption) | Improved QoS metrics, mimics social behavior of humpback whales | Improve QoS metrics, make runtime offloading decisions | |
Exploitation WOA (EWOA) [117] | Offloading in mobile ad hoc cloud environment | Energy consumption, response time | Minimized energy consumption and response time | Minimize energy consumption, optimal offloading process | |
GSP [118] | Joint optimization in mobile edge computing | Total energy consumed by devices and servers | Joint optimization, considering factors like offloading ratio, CPU speeds | Minimize total energy consumption | |
Model-Free | DDPG [119] | Collaborative MEC system with multi-users | Long-term energy consumption | Reduction in long-term energy consumption, optimization offloading, caching, resource allocation | Minimize long-term energy consumption, optimize resource allocation |
Meta-Reinforcement Learning [120] | Adaptive task-offloading strategy | Task processing delay, device energy consumption | Reduction in task processing delay outperforms existing methods | Adapt to edge environment, reduce task processing delay | |
TPDRTO [121] | Offloading computations considering task dependencies | Average energy consumption, time delay | Efficiently lowering energy consumption and minimizing time delays for IoT devices | Optimize computation offloading, reduce energy consumption | |
DQN [122] | Joint optimization in cloud–edge computation offloading | Average delay, average energy consumption, revenue | Comprehensive optimality on key indicators outperforms baselines | Joint optimization of delay, energy consumption, and revenue | |
Post-Decision State (PDS) Learning [123] | Offline value iteration and reinforcement learning | Long-term system cost | Improved edge-computing performance, address energy harvesting challenges | Incorporate renewable energy, optimize offloading and autoscaling | |
Hybrid | Distributed Deep Learning [124] | Near-optimal computational offloading decisions | Overall energy consumption | Fast convergence, significant reduction in overall energy consumption | Find near-optimal offloading decisions, reduce overall energy consumption |
Deep Learning-based Offloading [125] | Optimal offloading scheme based on energy and performance | Energy consumption, performance constraints | Outperforms current approaches in meeting both energy and performance constraints | Compute optimal offloading scheme based on energy and performance | |
Blockchain and DRL [126] | Energy-aware task scheduling and offloading | Consumable energy, QoS | 50% better energy efficiency, improved QoS | Enable energy-aware task scheduling, improve reliability | |
DRL Algorithm [127] | Power minimization in cloud–edge–terminal collaboration | Power consumption | Superior power efficiency, quick convergence to a stable state | Minimize power consumption, optimize task-offloading |
Strengths | Weaknesses | Opportunities | Threats |
---|---|---|---|
Overall resource efficiency optimization | Configuration, integration, and deployment issues with smart grid | Technological trends in distributed energy, IoT, and AI | Security and privacy |
Closer to real-time data-processing | High initial design and deployment costs | AI-based optimization of offloading strategies | Bandwidth and edge device resource limitations |
Grid resilience and energy security improvements | Energy application’s stringent requirements and constraints | Increasing the IoT devices adoption | Network stability/uncertainty |
Low-latency decentralized energy services integration | Complex coordination and orchestration processes | Cost-effective hardware solutions | Data interoperability and non-IID data distribution |
Integration of renewable on the far edge of the grid | Suitability for hierarchical architectures | Customized solutions considering edge–fog–cloud distribution | Lack of validation in grid pilots |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arcas, G.I.; Cioara, T.; Anghel, I.; Lazea, D.; Hangan, A. Edge Offloading in Smart Grid. Smart Cities 2024, 7, 680-711. https://doi.org/10.3390/smartcities7010028
Arcas GI, Cioara T, Anghel I, Lazea D, Hangan A. Edge Offloading in Smart Grid. Smart Cities. 2024; 7(1):680-711. https://doi.org/10.3390/smartcities7010028
Chicago/Turabian StyleArcas, Gabriel Ioan, Tudor Cioara, Ionut Anghel, Dragos Lazea, and Anca Hangan. 2024. "Edge Offloading in Smart Grid" Smart Cities 7, no. 1: 680-711. https://doi.org/10.3390/smartcities7010028
APA StyleArcas, G. I., Cioara, T., Anghel, I., Lazea, D., & Hangan, A. (2024). Edge Offloading in Smart Grid. Smart Cities, 7(1), 680-711. https://doi.org/10.3390/smartcities7010028