Acoustic Rocket Signatures Collected by Smartphones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Alignment
3. Results
3.1. Space Launch System B1
3.2. Falcon Heavy
3.3. Delta IV Heavy
3.4. Vulcan Centaur
3.5. Falcon 9
3.6. Atlas V
3.7. Small-Lift Launch Vehicles
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwardt, M.; Pilger, C.; Gaebler, P.; Hupe, P.; Ceranna, L. Natural and Anthropogenic Sources of Seismic, Hydroacoustic, and Infrasonic Waves: Waveforms and Spectral Characteristics (and Their Applicability for Sensor Calibration). Surv. Geophys. 2022, 43, 1265–1361. [Google Scholar] [CrossRef]
- Lamb, O.D.; Lees, J.M.; Bowman, D.C. Detecting Lightning Infrasound Using a High-Altitude Balloon. Geophys. Res. Lett. 2018, 45, 7176–7183. [Google Scholar] [CrossRef]
- Pilger, C.; Gaebler, P.; Hupe, P.; Kalia, A.C.; Schneider, F.M.; Steinberg, A.; Sudhaus, H.; Ceranna, L. Yield Estimation of the 2020 Beirut Explosion Using Open Access Waveform and Remote Sensing Data. Sci. Rep. 2021, 11, 14144. [Google Scholar] [CrossRef] [PubMed]
- Pilger, C.; Hupe, P.; Gaebler, P.; Ceranna, L. 1001 Rocket Launches for Space Missions and Their Infrasonic Signature. Geophys. Res. Lett. 2021, 48, e2020GL092262. [Google Scholar] [CrossRef]
- Hupe, P.; Ceranna, L.; Le Pichon, A.; Matoza, R.S.; Mialle, P. International Monitoring System Infrasound Data Products for Atmospheric Studies and Civilian Applications. Earth Syst. Sci. Data 2022, 14, 4201–4230. [Google Scholar] [CrossRef]
- Donn, W.L.; Posmentier, E.; Fehr, U.; Balachandran, N.K. Infrasound at Long Range from Saturn V, 1967. Science 1968, 162, 1116–1120. [Google Scholar] [CrossRef] [PubMed]
- Kaschak, G.; Donn, W.L.; Fehr, U. Long-Range Infrasound from Rockets. J. Acoust. Soc. Am. 1970, 48, 12–20. [Google Scholar] [CrossRef]
- Evers, L.G.; Assink, J.D.; Smets, P.S.M. Infrasound from the 2009 and 2017 DPRK Rocket Launches. Geophys. J. Int. 2018, 213, 1785–1791. [Google Scholar] [CrossRef]
- Pilger, C.; Hupe, P. The Infrasonic Signature of Three Exceptional Rocket Launches. Proc. Meet. Acoust. 2024, 52, 040006. [Google Scholar] [CrossRef]
- Cotten, D.; Donn, W.L. Sound from Apollo Rockets in Space. Science 1971, 12, 565–567. [Google Scholar] [CrossRef] [PubMed]
- Cotten, D.E.; Donn, W.L.; Oppenheim, A. On the Generation and Propagation of Shock Waves from Apollo Rockets at Orbital Altitudes. Geophys. J. R. Astron. Soc. 1971, 26, 149–159. [Google Scholar] [CrossRef]
- Blom, P.; Marcillo, O.; Arrowsmith, S. Analysis and Modeling of Infrasound from a Four-Stage Rocket Launch. J. Acoust. Soc. Am. 2016, 139, 3134–3138. [Google Scholar] [CrossRef]
- Tenney, S.M.; Noble, J.M.; Whitaker, R.W.; ReVelle, D.O. Acoustic/Infrasonic Rocket Engine Signatures. In Unattended Ground Sensor Technologies and Applications V, Proceedings of the AeroSense 2003, Orlando, Florida, USA, 18 September 2003; Carapezza, E.M., Ed.; SPIE: Bellingham, WA, USA, 2003; Volume 5090, pp. 30–41. [Google Scholar]
- Balachandran, N.K.; Donn, W.L. Characteristics of Infrasonic Signals from Rockets. Geophys. J. R. Astron. Soc. 1971, 26, 135–148. [Google Scholar] [CrossRef]
- Mclaughlin, K.L.; Brown, D.J.; Australia, G. Infrasound Detection of Rocket Launches. In Proceedings of the 22nd Annual DoD/DOE Seismic Research Symposium, New Orleans, LA, USA, 15 September 2000. [Google Scholar]
- Olson, J. Infrasound Rocket Signatures. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, HI, USA, 11–14 September 2012; pp. 638–645. [Google Scholar]
- Smith, K.; Solomon, M.; Bryan, K.J.; Smith, A.O.; Peter, A.M. Near-Field Infrasound Classification of Rocket Launch Signatures. In Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIX, Proceedings of the SPIE Defense + Security, Orlando, FL, USA, 23 May 2018; Guicheteau, J.A., Fountain, A.W., Howle, C.R., Eds.; SPIE: Bellingham, WA, USA, 2018; Volume 10629, p. 106291F. [Google Scholar]
- Popenhagen, S.K. Aggregated Smartphone Timeseries of Rocket-Generated Acoustics (ASTRA). Available online: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/ZKIS2K (accessed on 21 November 2024).
- Takazawa, S.K.; Popenhagen, S.K.; Ocampo Giraldo, L.A.; Hix, J.D.; Thompson, S.J.; Chichester, D.L.; Zeiler, C.P.; Garcés, M.A. Explosion Detection Using Smartphones: Ensemble Learning with the Smartphone High-Explosive Audio Recordings Dataset and the ESC-50 Dataset. Sensors 2024, 24, 6688. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Martin-Short, R.; Allen, R.M. Toward Global Earthquake Early Warning with the Myshake Smartphone Seismic Network, Part 1: Simulation Platform and Detection Algorithm. Seismol. Res. Lett. 2020, 91, 2206–2217. [Google Scholar] [CrossRef]
- Slad, G.; Merchant, B.J. Evaluation of Low Cost Infrasound Sensor Packages; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA; Livermore, CA, USA, 2021.
- Asmar, K.; Garces, M.; Williams, B. A Method for Estimating the Amplitude Response of Smartphone Built-in Microphone Sensors below 4 KHz. J. Acoust. Soc. Am. 2019, 146, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Takazawa, S.K.; Popenhagen, S.K.; Ocampo Giraldo, L.A.; Cardenas, E.S.; Hix, J.D.; Thompson, S.J.; Chichester, D.L.; Garcés, M.A. A Comparison of Smartphone and Infrasound Microphone Data from a Fuel Air Explosive and a High Explosive. J. Acoust. Soc. Am. 2024, 156, 1509–1523. [Google Scholar] [CrossRef]
- Brown, R.; Evans, L. Acoustics and the Smartphone. In Proceedings of the Acoustics, Gold Coast, Australia, 2 November 2011; Volume 106. [Google Scholar]
- Popenhagen, S.K.; Bowman, D.C.; Zeiler, C.; Garcés, M.A. Acoustic Waves From a Distant Explosion Recorded on a Continuously Ascending Balloon in the Middle Stratosphere. Geophys. Res. Lett. 2023, 50, e2023GL104031. [Google Scholar] [CrossRef]
- RedVox SDK. Available online: https://pypi.org/project/redvox/ (accessed on 21 November 2024).
- Garcés, M.A.; Bowman, D.; Zeiler, C.; Christe, A.; Yoshiyama, T.; Williams, B.; Colet, M.; Takazawa, S.; Popenhagen, S. Skyfall: Signal Fusion from a Smartphone Falling from the Stratosphere. Signals 2022, 3, 209–234. [Google Scholar] [CrossRef]
- Python. Available online: https://docs.python.org/release/3.9.1/ (accessed on 21 November 2024).
- RedVox-Pandas Framework. Available online: https://pypi.org/project/redvox-pandas/ (accessed on 21 November 2024).
- Quantized Information Entropy, Nth Octave. Available online: https://pypi.org/project/quantum-inferno/ (accessed on 21 November 2024).
- The Pandas Development Team Pandas-Dev/Pandas: Pandas. Available online: https://zenodo.org/records/13819579 (accessed on 21 November 2024).
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; van der Walt, S., Millman, J., Eds.; SciPy: Austin, TX, USA, 2010; pp. 56–61. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array Programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service (2023): ERA5 Hourly Data on Single Levels from 1940 to Present. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels (accessed on 26 November 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popenhagen, S.K.; Garcés, M.A. Acoustic Rocket Signatures Collected by Smartphones. Signals 2025, 6, 5. https://doi.org/10.3390/signals6010005
Popenhagen SK, Garcés MA. Acoustic Rocket Signatures Collected by Smartphones. Signals. 2025; 6(1):5. https://doi.org/10.3390/signals6010005
Chicago/Turabian StylePopenhagen, Sarah K., and Milton A. Garcés. 2025. "Acoustic Rocket Signatures Collected by Smartphones" Signals 6, no. 1: 5. https://doi.org/10.3390/signals6010005
APA StylePopenhagen, S. K., & Garcés, M. A. (2025). Acoustic Rocket Signatures Collected by Smartphones. Signals, 6(1), 5. https://doi.org/10.3390/signals6010005