Electromyogram in Cigarette Smoking Activity Recognition
Abstract
:1. Introduction
2. Wearable System and Dataset
2.1. MyoTM Armband
2.2. Dataset and Study Protocol
2.3. EMG Channel Selection
3. Data Processing and Classifier
Performance Measure
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CNN | Convolutional Neural Network |
EMG | Electromyogam |
IMU | Inertial Measurement Unit |
LOSO | Leave-One-Subject-Out |
LSTM | Long Short-Term Memory |
SFS | Sequential Feature Selection |
STFT | Short-Time Fourier Transform |
References
- WHO. WHO Global Report on Mortality Attributable to Tobacco; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- WHO. WHO Report on the Global Tobacco Epidemic, 2017: Monitoring Tobacco Use and Prevention Policies; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Goodchild, M.; Nargis, N.; d’Espaignet, E.T. Global economic cost of smoking-attributable diseases. Tob. Control. 2018, 27, 58–64. [Google Scholar] [CrossRef]
- Ghorai, K.; Akter, S.; Khatun, F.; Ray, P. mHealth for smoking cessation programs: A systematic review. J. Pers. Med. 2014, 4, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lockhart, J.W.; Pulickal, T.; Weiss, G.M. Applications of mobile activity recognition. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, PA, USA, 5–8 September 2012; pp. 1054–1058. [Google Scholar]
- Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep learning for sensor-based activity recognition: A survey. Pattern Recognit. Lett. 2019, 119, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Vinci, C.; Haslam, A.; Lam, C.Y.; Kumar, S.; Wetter, D.W. The use of ambulatory assessment in smoking cessation. Addict. Behav. 2018, 83, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Darden, M.; Gilleskie, D.B.; Strumpf, K. Smoking and mortality: New evidence from a long panel. Int. Econ. Rev. 2018, 59, 1571–1619. [Google Scholar] [CrossRef] [PubMed]
- Scholl, P.M.; Kücükyildiz, N.; Laerhoven, K.V. When do you light a fire? Capturing tobacco use with situated, wearable sensors. In Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, Zurich, Switzerland, 8–12 September 2013; ACM: New York, NY, USA, 2013; pp. 1295–1304. [Google Scholar]
- Dar, R. Effect of real-time monitoring and notification of smoking episodes on smoking reduction: A pilot study of a novel smoking cessation app. Nicotine Tob. Res. 2018, 20, 1515–1518. [Google Scholar] [CrossRef]
- Likness, M.A.; Wessel, R.M. Apparatus for Measuring Smoking Topography. U.S. Patent 6,814,083, 9 November 2004. [Google Scholar]
- Ramos-Garcia, R.I.; Tiffany, S.; Sazonov, E. Using respiratory signals for the recognition of human activities. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 173–176. [Google Scholar]
- Imtiaz, M.H.; Hossain, D.; Senyurek, V.Y.; Belsare, P.; Tiffany, S.; Sazonov, E. Wearable Egocentric Camera as a Monitoring Tool of Free-Living Cigarette Smoking: A Feasibility Study. Nicotine Tob. Res. 2019, 22, 1883–1890. [Google Scholar] [CrossRef]
- Belsare, P.; Senyurek, V.Y.; Imtiaz, M.H.; Tiffany, S.; Sazonov, E. Computation of Cigarette Smoke Exposure Metrics From Breathing. IEEE Trans. Biomed. Eng. 2020, 67, 2309–2316. [Google Scholar] [CrossRef]
- Lanatà, A.; Scilingo, E.P.; Nardini, E.; Loriga, G.; Paradiso, R.; De-Rossi, D. Comparative evaluation of susceptibility to motion artifact in different wearable systems for monitoring respiratory rate. IEEE Trans. Inf. Technol. Biomed. 2009, 14, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Senyurek, V.Y.; Imtiaz, M.H.; Belsare, P.; Tiffany, S.; Sazonov, E. A comparison of SVM and CNN-LSTM based approach for detecting smoke inhalations from respiratory signal. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 3262–3265. [Google Scholar]
- Skinner, A.L.; Stone, C.J.; Doughty, H.; Munafò, M.R. StopWatch: The preliminary evaluation of a smartwatch-based system for passive detection of cigarette smoking. Nicotine Tob. Res. 2019, 21, 257–261. [Google Scholar] [CrossRef] [Green Version]
- Scholl, P.M.; Van Laerhoven, K. A feasibility study of wrist-worn accelerometer based detection of smoking habits. In Proceedings of the 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, Palermo, Italy, 4–6 July 2012; pp. 886–891. [Google Scholar]
- Parate, A.; Chiu, M.C.; Chadowitz, C.; Ganesan, D.; Kalogerakis, E. Risq: Recognizing smoking gestures with inertial sensors on a wristband. In Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services, Bretton Woods, NH, USA, 16–19 June 2014; pp. 149–161. [Google Scholar]
- Senyurek, V.Y.; Imtiaz, M.H.; Belsare, P.; Tiffany, S.; Sazonov, E. Smoking detection based on regularity analysis of hand to mouth gestures. Biomed. Signal Process. Control. 2019, 51, 106–112. [Google Scholar] [CrossRef]
- Tang, Q.; Vidrine, D.J.; Crowder, E.; Intille, S.S. Automated detection of puffing and smoking with wrist accelerometers. In Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare, Bretton Woods, NH, USA, 16–19 June 2014; pp. 80–87. [Google Scholar]
- Shoaib, M.; Scholten, H.; Havinga, P.J.; Incel, O.D. A hierarchical lazy smoking detection algorithm using smartwatch sensors. In Proceedings of the 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), Munich, Germany, 14–16 September 2016; pp. 1–6. [Google Scholar]
- Raiff, B.R.; Karataş, Ç.; McClure, E.A.; Pompili, D.; Walls, T.A. Laboratory validation of inertial body sensors to detect cigarette smoking arm movements. Electronics 2014, 3, 87–110. [Google Scholar] [CrossRef] [PubMed]
- Saleheen, N.; Ali, A.A.; Hossain, S.M.; Sarker, H.; Chatterjee, S.; Marlin, B.; Ertin, E.; Al’Absi, M.; Kumar, S. puffMarker: A multi-sensor approach for pinpointing the timing of first lapse in smoking cessation. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11 September 2015; pp. 999–1010. [Google Scholar]
- Senyurek, V.; Imtiaz, M.; Belsare, P.; Tiffany, S.; Sazonov, E. Cigarette smoking detection with an inertial sensor and a smart lighter. Sensors 2019, 19, 570. [Google Scholar] [CrossRef] [Green Version]
- Gopura, R.; Kiguchi, K.; Horikawa, E. A study on human upper-limb muscles activities during daily upper-limb motions. Int. J. Bioelectromagn. 2010, 12, 54–61. [Google Scholar]
- Choi, C.; Kwon, S.; Park, W.; Lee, H.d.; Kim, J. Real-time pinch force estimation by surface electromyography using an artificial neural network. Med. Eng. Phys. 2010, 32, 429–436. [Google Scholar] [CrossRef]
- Luzhnica, G.; Simon, J.; Lex, E.; Pammer, V. A sliding window approach to natural hand gesture recognition using a custom data glove. In Proceedings of the 2016 IEEE Symposium on 3D User Interfaces (3DUI), Greenville, SC, USA, 19–20 March 2016; pp. 81–90. [Google Scholar]
- Kim, J.H.; Thang, N.D.; Kim, T.S. 3-d hand motion tracking and gesture recognition using a data glove. In Proceedings of the 2009 IEEE International Symposium on Industrial Electronics, Seoul, Korea, 5–8 July 2009; pp. 1013–1018. [Google Scholar]
- Moschetti, A.; Fiorini, L.; Esposito, D.; Dario, P.; Cavallo, F. Recognition of daily gestures with wearable inertial rings and bracelets. Sensors 2016, 16, 1341. [Google Scholar] [CrossRef] [Green Version]
- Chan, L.; Chen, Y.L.; Hsieh, C.H.; Liang, R.H.; Chen, B.Y. Cyclopsring: Enabling whole-hand and context-aware interactions through a fisheye ring. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, Charlotte, NC, USA, 8–11 November 2015; pp. 549–556. [Google Scholar]
- Baspinar, U.; Senyurek, V.Y.; Dogan, B.; Varol, H.S. A comparative study of denoising sEMG signals. Turk. J. Electr. Eng. Comput. Sci. 2015, 23, 931–944. [Google Scholar] [CrossRef]
- Baspinar, U.; Varol, H.S.; Senyurek, V.Y. Performance comparison of artificial neural network and Gaussian mixture model in classifying hand motions by using sEMG signals. Biocybern. Biomed. Eng. 2013, 33, 33–45. [Google Scholar] [CrossRef]
- McIntosh, J.; McNeill, C.; Fraser, M.; Kerber, F.; Löchtefeld, M.; Krüger, A. EMPress: Practical hand gesture classification with wrist-mounted EMG and pressure sensing. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 2332–2342. [Google Scholar]
- Imtiaz, M.H.; Ramos-Garcia, R.I.; Senyurek, V.Y.; Tiffany, S.; Sazonov, E. Development of a multisensory wearable system for monitoring cigarette smoking behavior in free-living conditions. Electronics 2017, 6, 104. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Q.; Zhou, H.; Cheng, J. The fisher-markov selector: Fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 1217–1233. [Google Scholar] [CrossRef]
- Zhou, P.; Lowery, M.M.; Englehart, K.B.; Huang, H.; Li, G.; Hargrove, L.; Dewald, J.P.; Kuiken, T.A. Decoding a new neural–machine interface for control of artificial limbs. J. Neurophysiol. 2007, 98, 2974–2982. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Zhou, P.; Li, G.; Kuiken, T.A. An analysis of EMG electrode configuration for targeted muscle reinnervation based neural machine interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Geng, Y.; Zhang, X.; Zhang, Y.T.; Li, G. A novel channel selection method for multiple motion classification using high-density electromyography. Biomed. Eng. Online 2014, 13, 102. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Nguyen, M.N.; San, P.P.; Li, X.; Krishnaswamy, S. Deep convolutional neural networks on multichannel time series for human activity recognition. In Proceedings of the IJCAI, Buenos Aires, Argentina, 25–31 July 2015; Volume 15, pp. 3995–4001. [Google Scholar]
- Zhu, L.; Kesseli, J.; Nykter, M.; Huttunen, H. Predicting Gene Expression Levels from Histone Modification Signals with Convolutional Recurrent Neural Networks. In EMBEC and NBC 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 555–558. [Google Scholar]
- Manawadu, U.E.; Kawano, T.; Murata, S.; Kamezaki, M.; Muramatsu, J.; Sugano, S. Multiclass classification of driver perceived workload using long short-term memory based recurrent neural network. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1–6. [Google Scholar]
- Tsinganos, P.; Cornelis, B.; Cornelis, J.; Jansen, B.; Skodras, A. Deep Learning in EMG-based Gesture Recognition. In Proceedings of the 5th International Conference on Physiological Computing Systems (PhyCS 2018); SCITEPRESS—Science and Technology Publications: Setúbal, Portugal, 2018; pp. 107–114. [Google Scholar]
- Atzori, M.; Cognolato, M.; Müller, H. Deep learning with convolutional neural networks applied to electromyography data: A resource for the classification of movements for prosthetic hands. Front. Neurorobot. 2016, 10, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, B.; Li, B.; Harland, A. Movement and gesture recognition using deep learning and wearable-sensor technology. In Proceedings of the 2018 International Conference on Artificial Intelligence and Pattern Recognition, Beijing, China, 18–20 August 2018; pp. 26–31. [Google Scholar]
- Du, Y.; Jin, W.; Wei, W.; Hu, Y.; Geng, W. Surface EMG-based inter-session gesture recognition enhanced by deep domain adaptation. Sensors 2017, 17, 458. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Wong, Y.; Du, Y.; Hu, Y.; Kankanhalli, M.; Geng, W. A multi-stream convolutional neural network for sEMG-based gesture recognition in muscle-computer interface. Pattern Recognit. Lett. 2019, 119, 131–138. [Google Scholar] [CrossRef]
- Geng, W.; Du, Y.; Jin, W.; Wei, W.; Hu, Y.; Li, J. Gesture recognition by instantaneous surface EMG images. Sci. Rep. 2016, 6, 36571. [Google Scholar] [CrossRef] [PubMed]
- Côté-Allard, U.; Fall, C.L.; Drouin, A.; Campeau-Lecours, A.; Gosselin, C.; Glette, K.; Laviolette, F.; Gosselin, B. Deep learning for electromyographic hand gesture signal classification using transfer learning. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 760–771. [Google Scholar] [CrossRef] [Green Version]
- Zhai, X.; Jelfs, B.; Chan, R.H.; Tin, C. Self-recalibrating surface EMG pattern recognition for neuroprosthesis control based on convolutional neural network. Front. Neurosci. 2017, 11, 379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronao, C.A.; Cho, S.B. Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst. Appl. 2016, 59, 235–244. [Google Scholar] [CrossRef]
- Karpathy, A.; Johnson, J.; Li, F.-F. Visualizing and understanding recurrent networks. arXiv 2015, arXiv:1506.02078. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
- Patel, M.; Varacallo, M. Anatomy, Shoulder and Upper Limb, Forearm Bones. 2019. Available online: https://www.ncbi.nlm.nih.gov/books/NBK545260/ (accessed on 9 September 2020).
- Laferriere, P.; Lemaire, E.D.; Chan, A.D. Surface electromyographic signals using dry electrodes. IEEE Trans. Instrum. Meas. 2011, 60, 3259–3268. [Google Scholar] [CrossRef]
- De Luca, C.J. The use of surface electromyography in biomechanics. J. Appl. Biomech. 1997, 13, 135–163. [Google Scholar] [CrossRef] [Green Version]
Study | Sensor Type | F1-Score | Validation | Dataset | Classifier | Sensor Location (Red) Measurement Area (Blue) |
---|---|---|---|---|---|---|
[19] | 9D-IMU | 0.85 | 10-fold | 15 subjects | RF | |
[21] | 3D-IMU | 0.79 | 5-fold | 6 subjects (11.8 h) | RF | |
[22] | 6D-IMU | 0.83–0.94 | LOSO | 11 subjects (45 h) | Hierarchical | |
[23] | 6D-IMU | 0.08–0.86 | - | 6 subjects (21 h) | SVM, Edge det. | |
[24] | RIP 6D-IMU | 0.91 | 10-fold | 6 subjects (40 h) | SVM | |
[25] | 6D-IMU Smart lighter | 0.85 | LOSO | 35 subjects (816 h) | SVM | |
this study | sEMG 6D-IMU | 0.84 | LOSO | 16 subjects (25 h) | CNN-LSTM |
Motion | Activated Muscles |
---|---|
Elbow flexion (EF) | Biceps brachii, Brachioradialis, Brachialis |
Elbow extension (EE) | Anconeus, Triceps brachii |
Forearm supination (FS) | Supinator, Biceps brachii (long head) |
Forearm pronation (FP) | Pronator quadratus, Pronator teres |
Wrist flexion (WF) | Flexor carpi radialis, Flexor carpi ulnaris, Palmaris longus |
Wrist extension (WE) | Extensor carpi radialis longus, Extensor carpi radialis brevis, Extensor carpi ulnaris |
Tip pinch | Extensor Digitorium, Abductor Pollicis Longus, Flexor Digitorum Profundus |
TPs | FPs | FNs | TNs | Rec | Prec | F1 | Acc | |
---|---|---|---|---|---|---|---|---|
sEMG (all 8 channels) | 4329 | 1312 | 1897 | 10,959 | 0.69 | 0.76 | 0.70 | 0.82 |
sEMG (selected channels: 6, 1, 7, 4, 5) | 4711 | 1294 | 1515 | 10,977 | 0.75 | 0.78 | 0.75 | 0.84 |
IMU | 4765 | 854 | 1351 | 11,292 | 0.79 | 0.85 | 0.81 | 0.87 |
IMU+sEMG (selected channels) | 5091 | 697 | 1135 | 11,574 | 0.82 | 0.88 | 0.84 | 0.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senyurek, V.; Imtiaz, M.; Belsare, P.; Tiffany, S.; Sazonov, E. Electromyogram in Cigarette Smoking Activity Recognition. Signals 2021, 2, 87-97. https://doi.org/10.3390/signals2010008
Senyurek V, Imtiaz M, Belsare P, Tiffany S, Sazonov E. Electromyogram in Cigarette Smoking Activity Recognition. Signals. 2021; 2(1):87-97. https://doi.org/10.3390/signals2010008
Chicago/Turabian StyleSenyurek, Volkan, Masudul Imtiaz, Prajakta Belsare, Stephen Tiffany, and Edward Sazonov. 2021. "Electromyogram in Cigarette Smoking Activity Recognition" Signals 2, no. 1: 87-97. https://doi.org/10.3390/signals2010008
APA StyleSenyurek, V., Imtiaz, M., Belsare, P., Tiffany, S., & Sazonov, E. (2021). Electromyogram in Cigarette Smoking Activity Recognition. Signals, 2(1), 87-97. https://doi.org/10.3390/signals2010008