Wireless Power Transfer Approaches for Medical Implants: A Review
Abstract
:1. Introduction
2. Different Approaches for a Wireless Power Transfer System
2.1. Inductive-Based Wireless Power Transfer
2.2. Microwave-Based Wireless Power Transfer
2.3. Ultrasonic-Based Wireless Power Transfer
2.4. Hybrid Wireless Power Transfer
3. Consideration for Design of Medical implants and Related Regulations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ben Amar, A.; Kouki, A.B.; Cao, H. Power Approaches for Implantable Medical Devices. Sensors 2015, 15, 28889–28914. [Google Scholar] [CrossRef] [PubMed]
- Taalla, R.V.; Arefin, S.; Kaynak, A.; Kouzani, A. A Review on Miniaturized Ultrasonic Wireless Power Transfer to Implantable Medical Devices. IEEE Access 2018, 7, 2092–2106. [Google Scholar] [CrossRef]
- Shadid, R.; Noghanian, S. A Literature Survey on Wireless Power Transfer for Biomedical Devices. Int. J. Antennas Propag. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mutashar, S.; Hannan, M.A.; Samad, S.A.; Hussain, A. Analysis and Optimization of Spiral Circular Inductive Coupling Link for Bio-Implanted Applications on Air and within Human Tissue. Sensors 2014, 14, 11522–11541. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Hao, H.; Wang, W.; Li, L. Simulative and experimental research on wireless power transmission technique in implantable medical device. IEEE Annu. Int. Conf. Eng. Med. Biol. Soc. 2009, 923–926. [Google Scholar] [CrossRef]
- Bocan, K.N.; Sejdić, E. Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review. Sensors 2016, 16, 393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, H.; Gad, P.; Zhong, H.; Edgerton, V.R.; Babakhani, A. A 430-MHz wirelessly powered implantable pulse generator with intensity/rate control and sub-1 µA quiescent current consumption. IEEE Trans. Biomed. Circuits Syst. 2018, 13, 180–190. [Google Scholar]
- Lyu, H.; Wang, J.; La, J.-H.; Chung, J.M.; Babakhani, A. An Energy-Efficient Wirelessly Powered Millimeter-Scale Neurostimulator Implant Based on Systematic Codesign of an Inductive Loop Antenna and a Custom Rectifier. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 1131–1143. [Google Scholar] [CrossRef]
- Khalifa, A.; Karimi, Y.; Wang, Q.; Garikapati, S.; Montlouis, W.; Stanacevic, M.; Thakor, N.; Etienne-Cummings, R. The Microbead: A Highly Miniaturized Wirelessly Powered Implantable Neural Stimulating System. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 521–531. [Google Scholar] [CrossRef]
- Mirbozorgi, S.A.; Yeon, P.; Ghovanloo, M. Robust Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 692–702. [Google Scholar] [CrossRef]
- Yang, C.-L.; Chang, C.-K.; Lee, S.-Y.; Chang, S.-J.; Chiou, L.-Y. Efficient Four-Coil Wireless Power Transfer for Deep Brain Stimulation. IEEE Trans. Microw. Theory Tech. 2017, 65, 2496–2507. [Google Scholar] [CrossRef]
- Larson, P.J.; Towe, B.C. Miniature ultrasonically powered wireless nerve cuff stimulator. In Proceedings of the 2011 5th International IEEE/EMBS Conference on Neural Engineering, Cancun, Mexico, 27 April–1 May 2011; pp. 265–268. [Google Scholar]
- Asif, S.M.; Iftikhar, A.; Hansen, J.W.; Khan, M.S.; Ewert, D.L.; Braaten, B.D. A Novel RF-Powered Wireless Pacing via a Rectenna-Based Pacemaker and a Wearable Transmit-Antenna Array. IEEE Access 2019, 7, 1139–1148. [Google Scholar] [CrossRef]
- Zargham, M.; Gulak, P.G. A 0.13 μm CMOS integrated wireless power receiver for biomedical applications. In Proceedings of the 2013 ESSCIRC (ESSCIRC), Bucharest, Romania, 16–20 September 2013; pp. 137–140. [Google Scholar]
- Keikhosravy, K.; Kamalinejad, P.; Mirabbasi, S.; Takahata, K.; Leung, V.C. An ultra-low-power monitoring system for inductively coupled biomedical implants. In Proceedings of the 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), Beijing, China, 19–23 May 2013. [Google Scholar]
- Mazzilli, F.; Dehollain, C. 184 μW ultrasonic on–off keying/amplitude-shift keying demodulator for downlink communication in deep implanted medical devices. Electron. Lett. 2016, 52, 502–504. [Google Scholar] [CrossRef]
- Charthad, J.; Weber, M.J.; Chang, T.C.; Arbabian, A. A mm-Sized Implantable Medical Device (IMD) with Ultrasonic Power Transfer and a Hybrid Bi-Directional Data Link. IEEE J. Solid State Circuits 2015, 50, 1741–1753. [Google Scholar] [CrossRef]
- Mazzilli, F.; Lafon, C.; Dehollain, C. A 10.5 cm Ultrasound Link for Deep Implanted Medical Devices. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 738–750. [Google Scholar] [CrossRef] [PubMed]
- Ahn, D.; Hong, S. Wireless Power Transmission with Self-Regulated Output Voltage for Biomedical Implant. IEEE Trans. Ind. Electron. 2013, 61, 2225–2235. [Google Scholar] [CrossRef]
- Kilinc, E.G.; Ghanad, M.A.; Maloberti, F.; Dehollain, C. Short range remote powering of implanted electronics for freely moving animals. In Proceedings of the 2013 IEEE 11th International New Circuits and Systems Conference (NEWCAS), Paris, France, 16–19 June 2013. [Google Scholar]
- Lyu, H.; Jian, Z.; Liu, X.; Sun, Y.; Babakhani, A. Towards the Implementation of a Wirelessly Powered Dielectric Sensor with Digitized Output for Implantable Applications. IEEE Sensors Lett. 2019, 3, 1–4. [Google Scholar] [CrossRef]
- Kilinc, E.G.; Dehollain, C.; Maloberti, F. A low-power PPM demodulator for remotely powered batteryless implantable devices. In Proceedings of the 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS), College Station, TX, USA, 3–6 August 2014. [Google Scholar]
- Zargham, M.; Gulak, P.G. Fully integrated on-chip coil in 0.13 µm CMOS for wireless power transfer through biological media. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 259–271. [Google Scholar] [CrossRef]
- Adeeb, M.A.; Islam, A.B.; Haider, M.R.; Tulip, F.S.; Ericson, M.N.; Islam, S.K. An Inductive Link-Based Wireless Power Transfer System for Biomedical Applications. Act. Passiv. Electron. Compon. 2012, 2012, 1–11. [Google Scholar] [CrossRef]
- Suzuki, S.-N.; Kimura, S.; Katane, T.; Saotome, H.; Saito, O.; Kobayashi, K. Power and Interactive Information Transmission to Implanted Medical Device Using Ultrasonic. Jpn. J. Appl. Phys. 2002, 41, 3600–3603. [Google Scholar] [CrossRef]
- Kawanabe, H.; Katane, T.; Saotome, H.; Saito, O.; Kobayashi, K. Power and Information Transmission to Implanted Medical Device Using Ultrasonic. Jpn. J. Appl. Phys. 2001, 40, 3865–3866. [Google Scholar] [CrossRef]
- Kilinc, E.G.; Moya, A.C.; Van Lintel, H.; Renaud, P.; Maloberti, F.; Wang, Q.; Dehollain, C.; Renaud, P. Remotely powered implantable heart monitoring system for freely moving animals. In Proceedings of the 5th IEEE International Workshop on Advances in Sensors and Interfaces IWASI, Bari, Italy, 13–14 June 2013. [Google Scholar]
- Simard, G.; Sawan, M.; Massicotte, D. High-Speed OQPSK and Efficient Power Transfer Through Inductive Link for Biomedical Implants. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Cirmirakis, D.; Schormans, M.; Perkins, T.A.; Donaldson, N.; Demosthenous, A. An Integrated Passive Phase-Shift Keying Modulator for Biomedical Implants with Power Telemetry Over a Single Inductive Link. IEEE Trans. Biomed. Circuits Syst. 2016, 11, 64–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiani, M.; Lee, B.; Yeon, P.; Ghovanloo, M. A Q-Modulation Technique for Efficient Inductive Power Transmission. IEEE J. Solid State Circuits 2015, 50, 2839–2848. [Google Scholar] [CrossRef]
- Lu, Z.; Sawan, M. An 8 Mbps data rate transmission by inductive link dedicated to implantable devices. In Proceedings of the 2008 IEEE International Symposium on Circuits and Systems, Seattle, WA, USA, 18–21 May 2008. [Google Scholar]
- Mandal, S.; Sarpeshkar, R. Power-ef cient impedance-modulation wireless data links for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 2008, 2, 301–315. [Google Scholar] [CrossRef]
- Brizi, D.; Fontana, N.; Barmada, S.; Monorchio, A. A Multi-Transmitter Configuration for High-Safety Wireless Power Transfer Applications. In Proceedings of the 2019 International Applied Computational Electromagnetics Society Symposium (ACES), Miami, FL, USA, 14–19 April 2019; pp. 1–2. [Google Scholar]
- Rahmani, H.; Babakhani, A. A Dual-Mode RF Power Harvesting System with an On-Chip Coil in 180-nm SOI CMOS for Millimeter-Sized Biomedical Implants. IEEE Trans. Microw. Theory Tech. 2019, 67, 414–428. [Google Scholar] [CrossRef]
- Sun, G.; Muneer, B.; Li, Y.; Zhu, Q. Ultracompact Implantable Design with Integrated Wireless Power Transfer and RF Transmission Capabilities. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 281–291. [Google Scholar] [CrossRef]
- Institute of Electrical and Electronics Engineers. IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz; IEEE: Piscataway, NJ, USA, 1999; ISBN 155937179X. [Google Scholar]
- Ibrahim, A.; Kiani, M. A Figure-of-Merit for Design and Optimization of Inductive Power Transmission Links for Millimeter-Sized Biomedical Implants. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 1100–1111. [Google Scholar] [CrossRef]
- Manoufali, M.; Bialkowski, K.; Mohammed, B.J.; Abbosh, A.M. Wireless Power Link Based on Inductive Coupling for Brain Implantable Medical Devices. IEEE Antennas Wirel. Propag. Lett. 2017, 17, 160–163. [Google Scholar] [CrossRef]
- Chen, P.; Yang, H.; Luo, R.; Zhao, B. A Tissue-Channel Transcutaneous Power Transfer Technique for Implantable Devices. IEEE Trans. Power Electron. 2018, 33, 9753–9761. [Google Scholar] [CrossRef]
- Ibrahim, A.; Kiani, M. Inductive power transmission to millimeter-sized biomedical implants using printed spiral coils. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016. [Google Scholar]
- Feng, P.; Yeon, P.; Cheng, Y.; Ghovanloo, M.; Constandinou, T.G. Chip-Scale Coils for Millimeter-Sized Bio-Implants. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 1088–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faerber, J.; Gregson, R.; Clutton, R.E.; Khan, S.R.; Cochran, S.; Desmulliez, M.P.Y.; Cummins, G.; Pavuluri, S.K.; Record, P.; Rodriguez, A.R.A.; et al. In Vivo Characterization of a Wireless Telemetry Module for a Capsule Endoscopy System Utilizing a Conformal Antenna. IEEE Trans. Biomed. Circuits Syst. 2017, 12, 95–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gougheri, H.S.; Kiani, M. Optimal frequency for powering millimeter-sized biomedical implants inside an inductively-powered homecage. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016. [Google Scholar]
- Silay, K.M.; Dehollain, C.; Declercq, M. A Closed-Loop Remote Powering Link for Wireless Cortical Implants. IEEE Sens. J. 2013, 13, 3226–3235. [Google Scholar] [CrossRef]
- Rosa, B.M.G.; Yang, G.Z. Active implantable sensor powered by ultrasounds with application in the monitoring of physiological parameters for soft tissues. In Proceedings of the 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), San Francisco, CA, USA, 14–17 June 2016. [Google Scholar]
- Maleki, T.; Cao, N.; Song, S.H.; Kao, C.; Ko, S.-C.A.; Ziaie, B. An Ultrasonically Powered Implantable Micro-Oxygen Generator (IMOG). IEEE Trans. Biomed. Eng. 2011, 58, 3104–3111. [Google Scholar] [CrossRef] [PubMed]
- Shadid, R.; Haerinia, M.; Noghanian, S. Study of Rotation and Bending Effects on a Flexible Hybrid Implanted Power Transfer and Wireless Antenna System. Sensors 2020, 20, 1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bocan, K.N.; Mickle, M.H.; Sejdić, E. Multi-Disciplinary Challenges in Tissue Modeling for Wireless Electromagnetic Powering: A Review. IEEE Sens. J. 2017, 17, 6498–6509. [Google Scholar] [CrossRef]
- Yang, C.-H.; Li, W.; Chen, R.K.-R. Determination of Tissue Thermal Conductivity as a Function of Thermal Dose and Its Application in Finite Element Modeling of Electrosurgical Vessel Sealing. IEEE Trans. Biomed. Eng. 2020, 67, 2862–2869. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.-J.; Lv, L.-J.; Ju, L.; Xie, X.; Liu, Y.-J.; Yang, H. Simulation of microwave propagation properties in human abdominal tissues on wireless capsule endoscopy by FDTD. Biomed. Signal Process. Control. 2019, 49, 388–395. [Google Scholar] [CrossRef]
- Fornes-Leal, A.; Cardona, N.; Frasson, M.; Castello-Palacios, S.; Nevarez, A.; Beltran, V.P.; Garcia-Pardo, C. Dielectric Characterization of In Vivo Abdominal and Thoracic Tissues in the 0.5–26.5 GHz Frequency Band for Wireless Body Area Networks. IEEE Access 2019, 7, 31854–31864. [Google Scholar] [CrossRef]
- Braun, J.; Tzschätzsch, H.; Körting, C.; De Schellenberger, A.A.; Jenderka, M.; Drießle, T.; Ledwig, M.; Sack, I. A compact 0.5 T MR elastography device and its application for studying viscoelasticity changes in biological tissues during progressive formalin fixation. Magn. Reson. Med. 2017, 79, 470–478. [Google Scholar] [CrossRef]
- Bocan, K.N.; Mickle, M.H.; Sejdić, E. Simulating, Modeling, and Sensing Variable Tissues for Wireless Implantable Medical Devices. IEEE Trans. Microw. Theory Tech. 2018, 66, 3547–3556. [Google Scholar] [CrossRef]
- Gun, L.; Ning, D.; Liang, Z. Effective Permittivity of Biological Tissue: Comparison of Theoretical Model and Experiment. Math. Probl. Eng. 2017, 2017, 1–7. [Google Scholar] [CrossRef]
- Balidemaj, E.; De Boer, P.; Van Lier, A.L.H.M.W.; Remis, R.F.; Stalpers, L.J.A.; Westerveld, G.H.; Nederveen, A.J.; Berg, C.A.T.V.D.; Crezee, J. In vivo electric conductivity of cervical cancer patients based on B+1 maps at 3T MRI. Phys. Med. Biol. 2016, 61, 1596–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahdouh, S.; Varsier, N.; Ochoa, M.A.N.; Wiart, J.; Peyman, A.; Bloch, I. Infants and young children modeling method for numerical dosimetry studies: Application to plane wave exposure. Phys. Med. Biol. 2016, 61, 1500–1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mobashsher, A.T.; Mahmoud, A.; Abbosh, A.M. Portable Wideband Microwave Imaging System for Intracranial Hemorrhage Detection Using Improved Back-projection Algorithm with Model of Effective Head Permittivity. Sci. Rep. 2016, 6, 20459. [Google Scholar] [CrossRef] [Green Version]
- Jilani, M.T.; Wen, W.P.; Cheong, L.Y.; Rehman, M.Z.U. A Microwave Ring-Resonator Sensor for Non-Invasive Assessment of Meat Aging. Sensors 2016, 16, 52. [Google Scholar] [CrossRef]
- Diao, Y.; Leung, S.-W.; Chan, K.H.; Sun, W.; Siu, Y.-M.; Kong, R. The effect of gaze angle on the evaluations of sar and temperature rise in human eye under plane-wave exposures from 0.9 to 10 ghz. Radiat. Prot. Dosim. 2015, 172, 393–400. [Google Scholar] [CrossRef]
- Abdelaziz, A.F.; Abbasi, Q.H.; Yang, K.; Qaraqe, K.; Hao, Y.; Alomainy, A. Terahertz signal propagation analysis inside the human skin. In Proceedings of the 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Abu Dhabi, UAE, 19–21 October 2015; pp. 15–19. [Google Scholar]
- Li, C.; Chen, Q.; Xie, Y.; Wu, T. Dosimetric study on eye’s exposure to wide band radio frequency electromagnetic fields: Variability by the ocular axial length. Bioelectromagnetics 2014, 35, 324–336. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, S.; He, B. Imaging electric properties of biological tissues by RF field mapping in MRI. IEEE Trans. Med. Imaging 2010, 29, 474–481. [Google Scholar] [CrossRef] [Green Version]
- Peyman, A.; Gabriel, C.; Grant, E.H.; Vermeeren, G.; Martens, L. Variation of the dielectric properties of tissues with age: The effect on the values of SAR in children when exposed to walkie–talkie devices. Phys. Med. Biol. 2009, 54, 227–241. [Google Scholar] [CrossRef]
- Keshvari, J.; Keshvari, R.; Lang, S. The effect of increase in dielectric values on specific absorption rate (SAR) in eye and head tissues following 900, 1800 and 2450 MHz radio frequency (RF) exposure. Phys. Med. Biol. 2006, 51, 1463–1477. [Google Scholar] [CrossRef] [PubMed]
- Ryckaert, J.; De Doncker, P.; Meys, R.; De Le Hoye, A.; Donnay, S. Channel model for wireless communication around human body. Electron. Lett. 2004, 40, 543. [Google Scholar] [CrossRef]
- Nagaoka, T.; Watanabe, S.; Sakurai, K.; Kunieda, E.; Watanabe, S.; Taki, M.; Yamanaka, Y. Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry. Phys. Med. Biol. 2003, 49, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Monebhurrun, V.; Dale, C.; Bolomey, J.-C.; Wiart, J. A numerical approach for the determination of the tissue equivalent liquid used during SAR assessments. IEEE Trans. Magn. 2002, 38, 745–748. [Google Scholar] [CrossRef]
- Sun, T.; Xie, X.; Wang, Z. Wireless Power Transfer for Medical Microsystems; Springer: New York, NY, USA, 2013; p. 183. [Google Scholar]
- Ali, H.; Ahmad, T.J.; Khan, S.A. Inductive link design for medical implants. In Proceedings of the 2009 IEEE Symposium on Industrial Electronics & Applications, Kuala Lumpur, Malaysia, 4–6 October 2009. [Google Scholar]
- Low, Z.N.; Chinga, R.A.; Tseng, R.; Lin, J. Design and Test of a High-Power High-Efficiency Loosely Coupled Planar Wireless Power Transfer System. IEEE Trans. Ind. Electron. 2008, 56, 1801–1812. [Google Scholar] [CrossRef]
- Xia, W.; Saito, K.; Takahashi, M.; Ito, K. Performances of an Implanted Cavity Slot Antenna Embedded in the Human Arm. IEEE Trans. Antennas Propag. 2009, 57, 894–899. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, C.; Jiang, Z.; Zhang, Y.; Liu, X.; Guo, H.; Yang, X. Near-Field Wireless Power Transfer to Deep-Tissue Implants for Biomedical Applications. IEEE Trans. Antennas Propag. 2019, 68, 1098–1106. [Google Scholar] [CrossRef]
- Zhao, B.; Kuo, N.-C.; Liu, B.; Li, Y.-A.; Iotti, L.; Niknejad, A.M. A Batteryless Padless Crystalless 116µ × 116 µm “Dielet” Near-Field Radio with On-Chip Coil Antenna. IEEE J. Solid State Circuits 2019, 55, 249–260. [Google Scholar] [CrossRef]
- Javan-Khoshkholgh, A.; Sassoon, J.C.; Farajidavar, A. A Wireless Rechargeable Implantable System for Monitoring and Pacing the Gut in Small Animals. In Proceedings of the 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), Nara, Japan, 17–19 October 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Ahmadi, M.M.; Ghandi, S. A Class-E Power Amplifier with Wideband FSK Modulation for Inductive Power and Data Transmission to Medical Implants. IEEE Sens. J. 2018, 18, 7242–7252. [Google Scholar] [CrossRef]
- Quadir, N.A.; Albasha, L.; Taghadosi, M.; Qaddoumi, N.; Hatahet, B. Low-Power Implanted Sensor for Orthodontic Bond Failure Diagnosis and Detection. IEEE Sens. J. 2018, 18, 3003–3009. [Google Scholar] [CrossRef]
- Li, L.; Liu, H.; Zhang, H.; Xue, W. Efficient Wireless Power Transfer System Integrating with Metasurface for Biological Applications. IEEE Trans. Ind. Electron. 2017, 65, 3230–3239. [Google Scholar] [CrossRef]
- Haerinia, M. Modeling and simulation of inductive-based wireless power transmission systems. In Book Energy Harvesting for Wireless Sensor Networks: Technology, Components and System Design, 1st ed.; Olfa, K., Ed.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2018; pp. 197–220. [Google Scholar]
- Cheng, Y.; Chen, G.; Xuan, D.; Qian, G.; Ghovanloo, M.; Wang, G. Analytical Modeling of Small, Solenoidal, and Implantable Coils with Ferrite Tube Core. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 237–239. [Google Scholar] [CrossRef]
- Knecht, O.; Bosshard, R.; Kolar, J.W. High-Efficiency Transcutaneous Energy Transfer for Implantable Mechanical Heart Support Systems. IEEE Trans. Power Electron. 2015, 30, 6221–6236. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Peng, F.; Li, Y.; Yang, T.; Wang, B.; Fang, D. A Wireless Magnetic Resonance Energy Transfer System for Micro Implantable Medical Sensors. Sensors 2012, 12, 10292–10308. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.S.; Yeh, A.J.; Neofytou, E.; Kim, S.; Tanabe, Y.; Patlolla, B.; Beygui, R.E.; Poon, A.S.Y. Wireless power transfer to deep-tissue microimplants. Proc. Natl. Acad. Sci. USA 2014, 111, 7974–7979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, M. Microwave Power Transmission Based on Retro-reflective Beamforming. In Wireless Power Transfer—Fundamentals and Technologies; Coca, E., Ed.; In Tech: London, UK, 2016. [Google Scholar]
- Zada, M.; Yoo, H. A Miniaturized Triple-Band Implantable Antenna System for Bio-Telemetry Applications. IEEE Trans. Antennas Propag. 2018, 66, 7378–7382. [Google Scholar] [CrossRef]
- Asif, S.M.; Iftikhar, A.; Braaten, B.D.; Ewert, D.L.; Maile, K. A Wide-Band Tissue Numerical Model for Deeply Implantable Antennas for RF-Powered Leadless Pacemakers. IEEE Access 2019, 7, 31031–31042. [Google Scholar] [CrossRef]
- Basir, A.; Yoo, H. Efficient Wireless Power Transfer System with a Miniaturized Quad-Band Implantable Antenna for Deep-Body Multitasking Implants. IEEE Trans. Microw. Theory Tech. 2020, 68, 1943–1953. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, H.; Liu, X.; Cao, Y.; Li, Z.; Tentzeris, M.M. Novel coated differentially fed dual-band fractal antenna for implantable medical devices. IET Microw. Antennas Propag. 2020, 14, 199–208. [Google Scholar] [CrossRef]
- Haerinia, M.; Noghanian, S. Analysis of misalignment effects on link budget of an implantable antenna. In Proceedings of the URSI EM Theory Symposium, EMTS 2019, San Diego, CA, USA, 27–31 May 2019. [Google Scholar]
- Aldaoud, A.; Redoute, J.-M.; Ganesan, K.; Rind, G.S.; John, S.E.; Ronayne, S.M.; Opie, N.L.; Garrett, D.J.; Prawer, S. A Stent-Based Power and Data Link for Sensing Intravascular Biological Indicators. IEEE Sens. Lett. 2018, 2, 1–4. [Google Scholar] [CrossRef]
- Li, K.R.; See, K.Y.; Koh, W.-J.; Zhang, J.-W. Design of 2.45 GHz microwave wireless power transfer system for battery charging applications. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL), Singapore, 19–22 November 2017; pp. 2417–2423. [Google Scholar]
- Ishizaki, T.; Nishikawa, K.; Ishizaki, T.; Nishikawa, K. Wireless power beam device using microwave power transfer. In Proceedings of the 2014 IEEE Wireless Power Transfer Conference, Jeju, Korea, 8–9 May 2014; pp. 36–39. [Google Scholar]
- Yan, X.; Zhu, Z.; Liu, G.-Q.; Zhao, X. Analysis of implantable ultrasonic coupling wireless power transmission system. Prog. Electromagn. Res. M 2019, 80, 203–214. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Q.; Youm, W.; Hwang, G. Biocompatible wireless power transferring based on ultrasonic resonance devices. Proc. Mtgs. Acoust. 2013, 19, 30030. [Google Scholar] [CrossRef] [Green Version]
- Kim, A.; Powell, C.R.; Ziaie, B. An Implantable Pressure Sensing System with Electromechanical Interrogation Scheme. IEEE Trans. Biomed. Eng. 2014, 61, 2209–2217. [Google Scholar] [CrossRef] [PubMed]
- Song, S.H.; Kim, A.; Ziaie, B. Omnidirectional Ultrasonic Powering for Millimeter-Scale Implantable Devices. IEEE Trans. Biomed. Eng. 2015, 62, 2717–2723. [Google Scholar] [CrossRef]
- Santagati, G.E.; Dave, N.; Melodia, T. Design and Performance Evaluation of an Implantable Ultrasonic Networking Platform for the Internet of Medical Things. IEEE/ACM Trans. Netw. 2020, 28, 29–42. [Google Scholar] [CrossRef]
- Chang, T.C.; Wang, M.L.; Charthad, J.; Weber, M.J.; Arbabian, A. A 30.5 mm3 fully packaged implantable device with duplex ultrasonic data and power links achieving 95 kb/s with <10−4 BER at 8.5 cm depth. In Proceedings of the 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 460–461. [Google Scholar]
- Meng, M.; Kiani, M. Design and Optimization of Ultrasonic Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants. IEEE Trans. Biomed. Circuits Syst. 2016, 11, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Vihvelin, H.; Leadbetter, J.R.; Bance, M.; Brown, J.A.; Adamson, R.B.A. Compensating for Tissue Changes in an Ultrasonic Power Link for Implanted Medical Devices. IEEE Trans. Biomed. Circuits Syst. 2015, 10, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Q.; Youm, W.; Hwang, G.; Moon, K.S. Wireless power transferring and charging for implantable medical devices based on ultrasonic resonance. In Proceedings of the 22nd International Congress on Sound and Vibration, Florence, Italy, 12–16 July 2015; pp. 1–7. [Google Scholar]
- Fang, B.; Feng, T.; Zhang, M.; Chakrabartty, S.; Biyi, F. Feasibility of B-mode diagnostic ultrasonic energy transfer and telemetry to a cm2 sized deep-tissue implant. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015. [Google Scholar]
- Leadbetter, J.; Brown, J.; Adamson, R. The design of ultrasonic lead magnesium niobate-lead titanate composite transducers for power and signal delivery to implanted hearing aids. J. Acoust. Soc. Am. 2013, 133, 3268. [Google Scholar] [CrossRef] [Green Version]
- Shigeta, Y.; Hori, Y.; Fujimori, K.; Tsuruta, K.; Nogi, S. Development of highly efficient transducer for wireless power transmission system by ultrasonic. In Proceedings of the 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, Kyoto, Japan, 12–13 May 2011. [Google Scholar]
- Shih, P.-J.; Shih, W.-P. Design, fabrication, and application of bio-implantable acoustic power transmission. J. Microelectromech. Syst. 2010, 19, 494–502. [Google Scholar] [CrossRef]
- Ozeri, S.; Shmilovitz, D. Ultrasonic transcutaneous energy transfer for powering implanted devices. Ultrasonics 2010, 50, 556–566. [Google Scholar] [CrossRef]
- Suzuki, S.-N.; Katane, T.; Saito, O. Fundamental study of an electric power transmission system for implanted medical devices using magnetic and ultrasonic energy. J. Artif. Organs 2003, 6, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.; Long, T.; Mai, R.; Dai, R.; He, Z.; Li, W. Analysis and design of hybrid inductive and capacitive wireless power transfer for high-power applications. IET Power Electron. 2018, 11, 2263–2270. [Google Scholar] [CrossRef]
- Barmada, S.; Tucci, M.; Raugi, M.; Dionigi, M.; Mezzanotte, P. Experimental validation of a hybrid Wireless Power Transfer-Power Line Communication system. In Proceedings of the 2016 International Symposium on Power Line Communications and its Applications (ISPLC), Bottrop, Germany, 20–23 March 2016; pp. 37–41. [Google Scholar] [CrossRef]
- Haerinia, M.; Noghanian, S. Design of Hybrid Wireless Power Transfer and Dual Ultrahigh-Frequency Antenna System. In Proceedings of the 2019 URSI International Symposium on Electromagnetic Theory (EMTS), San Diego, CA, USA, 27–31 May 2019. [Google Scholar]
- Meng, M.; Kiani, M. A Hybrid Inductive-Ultrasonic Link for Wireless Power Transmission to Millimeter-Sized Biomedical Implants. IEEE Trans. Circuits Syst. II Express Briefs 2016, 64, 1137–1141. [Google Scholar] [CrossRef]
- Haerinia, M.; Noghanian, S. A Printed Wearable Dual-Band Antenna for Wireless Power Transfer. Sensors 2019, 19, 1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haerinia, M.; Noghanian, S. Study of Bending Effects on a Dual-Band Implantable Antenna. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019. [Google Scholar]
- Aldaoud, A.; Redoute, J.-M.; Ganesan, K.; Rind, G.S.; John, S.E.; Ronayne, S.M.; Opie, N.L.; Garrett, D.J.; Prawer, S. Near-Field Wireless Power Transfer to Stent-Based Biomedical Implants. IEEE J. Electromagn. RF Microw. Med. Biol. 2018, 2, 193–200. [Google Scholar] [CrossRef]
- Shadid, R.; Haerinia, M.; Sayan, R.; Noghanian, S. Hybrid Inductive Power Transfer and Wireless Antenna System for Biomedical Implanted Devices. Prog. Electromagn. Res. C 2018, 88, 77–88. [Google Scholar]
- Sharma, A.; Kampianakis, E.; Reynolds, M.S. A Dual-Band HF and UHF Antenna System for Implanted Neural Recording and Stimulation Devices. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 493–496. [Google Scholar] [CrossRef]
- Sanni, A.; Vilches, A.; Toumazou, C. Inductive and Ultrasonic Multi-Tier Interface for Low-Power, Deeply Implantable Medical Devices. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 297–308. [Google Scholar] [CrossRef]
- Wireless Medical Technologies: Navigating Government Regulation in the New Medical Age. Available online: https://www.fr.com/files/Uploads/attachments/FinalRegulatoryWhitePaperWirelessMedicalTechnologies.pdf (accessed on 9 November 2020).
- Joung, Y.-H. Development of Implantable Medical Devices: From an Engineering Perspective. Int. Neurourol. J. 2013, 17, 98–106. [Google Scholar] [CrossRef]
- Badrouchi, F.; Aymond, A.; Haerinia, M.; Selvaraj, D.F.; Tavakolian, K.; Ranganathan, P.; Eswaran, S. Cybersecurity Vulnerabilities in Biomedical Devices: A Hierarchical Layered Framework. In Internet of Things Use Cases for the Healthcare Industry; Raj, P., Chatterjee, J., Kumar, A., Balamurugan, B., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
Reference | Year | Tissue | Frequencies | Models/Methods |
---|---|---|---|---|
[49] | 2020 | In vivo, ex vivo | - | FEM * |
[50] | 2019 | Muscle, fat, skin | 50 MHz, 300 MHz, 700 MHz, and 900 MHz | FDTD ** |
[51] | 2019 | Body | (0.5–26.5) GHz | Measured properties, Cole–Cole |
[52] | 2018 | Brain, liver | 200–1600 Hz | Measured properties |
[53] | 2018 | Muscle, fat, skin | 915 MHz and 2 GHz | Measured properties |
[54] | 2017 | Blood, liver, fat, brain | 10 kHz–10 MHz | Bottcher–Bordewijk model, measured properties |
[55] | 2016 | Muscle, bladder, cervix | 128 MHz | Measured properties, Cole–Cole |
[56] | 2016 | Body/14 tissues | 2.1 GHz, 2.6 GHz | FDTD |
[57] | 2016 | Head | (0.75–2.55) GHz | Phantom/ FEM |
[58] | 2016 | Muscle | 500 MHz–20 GHz | Fricke |
[59] | 2015 | Eye/6 tissues | (0.9–10) GHz | FDTD |
[60] | 2015 | Skin | (0.8–1.2) THz | FEM |
[61] | 2014 | Eye, head/14 tissues | (0.9–5.8) GHz | FDTD |
[62] | 2010 | Head | - | FEM |
[63] | 2009 | Head/16 tissues | 50 MHz–20 GHz | Measured properties, FDTD |
[64] | 2006 | Eye, head/15 tissues | 900 MHz, 1800 MHz, 2450 MHz | FDTD |
[65] | 2004 | Body | 400 MHz, 900 MHz, 2400 MHz | Visible human, FDTD |
[66] | 2004 | Body/51 tissues | 30 MHz–3 GHz | FDTD |
[67] | 2002 | Head/10 tissues | 900 MHz, 1800 MHz | Visible human, FDTD |
Reference | Year | Frequency | Output Power (mW) | Efficiency (%) | Active Range (mm) | Transmitter Dimension (mm) | Receiver Dimension (mm) |
---|---|---|---|---|---|---|---|
[72] | 2020 | 915 MHz | - | 1.93 | 40–50 | - | 30 × 30 |
[73] | 2020 | 5.8 GHz | 0.01 | 1.2 × | 1 | - | 0.116 × 0.116 |
[7] | 2019 | 430 MHz | 1000 | - | 45 | - | 4.5 × 3.6 |
[74] | 2019 | 13.56 MHz | 57–447 | 5.7–44.7 | 20–50 | 75 × 75 | 20 × 30 |
[34] | 2019 | 434 MHz | 31.62 | 0.68 | 10 | 20 × 20 | 1.6 × 1.6 |
[8] | 2018 | 198 MHz | 1000 | - | 140 | = 30.5 | = 4.9 |
[41] | 2018 | 60,300, 330 MHz | - | 2.12, 3.88, 1.68 | 12 | = 17.2, 24, 26 | = 4 |
[75] | 2018 | 2, 4 MHz | 126 | 25 | 6 | = 35 | = 20 |
[9] | 2018 | 1.3 GHz | 3981 | - | 5 | = 10 | = 0.2 |
[35] | 2018 | 39.86 MHz | 115 | 47.2 | - | = 63.9 | = 21.56 |
[76] | 2018 | 432.5 MHz | 1.05 | 13.9 | 10 | - | - |
[77] | 2018 | 430 MHz | - | - | 60 | 30 × 30 | 10 × 10 |
[78] | 2018 | 3 MHz | 772.8 | 38.79 | 5–15 | = 45.2 | = 36.4 |
[11] | 2017 | 13.56 MHz | 18 | 7.7, 11.7 | 10 | ≈ 30 | = 10 |
[40] | 2016 | 50 MHz | 0.0657 | 0.13 | 10 | = 21 | = 1 |
[19] | 2014 | 8.1 MHz | 29.8~93.3 | 47.6~65.4 | 12~20 | = 30 | = 20 |
[21] | 2019 | 12.85 MHz | - | 75.8 | - | 30.0 × 29.6 | 30.0 × 29.6 |
[79] | 2019 | 1–100 MHz | - | - | 15 | - | = 1.75 = 0.50 |
[42] | 2018 | 433 MHz | 0.1, 1, 4, 10 | 0.87 | 600 | - | = 10 |
[29] | 2017 | 13.56 MHz | ≤100 | - | 5–15 | = 25 | = 16 |
[10] | 2017 | 60 MHz | 1.3 | 2.4 | 16 | = 45 | = 1.2 |
[37] | 2016 | 20 MHz | 2.2 | 1.4 | 10 | = 20,28 | = 1 |
[43] | 2016 | 40 MHz | - | 2.56 | 70 | = 100 | = 18 |
[30] | 2015 | 2 MHz | 1450 | 27 | 80 | = 140 | = 65 |
[80] | 2015 | 800 kHz | 30 w | 95 | 20 | = 70 | = 34 |
[81] | 2012 | 742 kHz | - | 85 | 0–50 | = 38 | = 16.5 |
Reference | Year | Frequency | Output Power (mW) | Efficiency (%) | Active Range (mm) | Transmitter Dimensions (mm) | Receiver Dimensions (mm) |
---|---|---|---|---|---|---|---|
[86] | 2020 | 1.47 GHz | 6.7 | 0.67 | 50 | 6 × 6 | - |
[87] | 2020 | 0.403 GHz, 2.44 GHz | - | - | 30–350 | - | 9.5 × 9.5 |
[88] | 2019 | 1.64 GHz, 3.56 GHz | - | 32, 1.1 | - | 14 × 15 | 14 × 15 |
[13] | 2019 | 954 MHz | 10 | 65 | 110 | - | 10 × 12 |
[84] | 2018 | 0.915, 1.9, 2.45 GHz | 0.398 | - | 4.5 | - | 7 × 6 |
[38] | 2018 | 400 MHz | 19, 82 | - | 1, 3, 6, 12, 15 | = 18 | 1 × 1 |
[89] | 2018 | 280 MHz | 44 | - | 3 | 30 × 80 | - |
[90] | 2017 | 2.45 GHz | 2280, 600, 240, 96 | - | 1000–4000 | - | = 63.6 |
[91] | 2014 | 2.4 GHz | - | 15–78 | 10–100 | 63 × 39 × 50 | 63 × 39 × 50 |
Reference | Year | Frequency | Output Power (mW) | Efficiency (%) | Active Range (mm) | Transmitter Dimension (mm) | Receiver Dimension (mm) |
---|---|---|---|---|---|---|---|
[96] | 2020 | 700 kHz | - | - | 200 | - | = 10 |
[97] | 2017 | 1 MHz | 0.1 | - | 85 | = 0.55 | - |
[98] | 2017 | 1.8 MHz | - | 2.11 | 30 | = 10.8, 15.9 | = 1.1, 1.2 |
[16] | 2016 | 1 MHz | 0.184 | - | - | - | - |
[99] | 2016 | 1 MHz | - | 25 | 3–7 | = 8 | - |
[100] | 2015 | 280 kHz | 2.6 | 18 | 18 | = 20 | = 20 |
[101] | 2015 | 3.4 MHz | 0.001 | - | 100 | - | - |
[17] | 2015 | 30 MHz | 0.1 | - | <100 | - | = 0.7,1 |
[18] | 2014 | 1 MHz | 28 | 1.6 | 105 | 29.6 × 72 * | 1 × 5 ** |
[102] | 2013 | 1.07 MHz | - | 45 | - | - | - |
[103] | 2011 | 1.2 MHz | 100 | 50 | - | = 44 | - |
[46] | 2011 | 2.3 MHz | 0.3 | - | 30–400 | = 8 | - |
[12] | 2011 | 1 MHz | 23 | - | 120 | - | = 8 |
[104] | 2010 | 35 kHz | 1.23 | - | 70 | - | = 7 |
[105] | 2010 | 673 kHz | 1000 | 27 | 40 | - | - |
[106] | 2003 | 100 kHz | 5400 | 36 | 40 | - | - |
[25] | 2002 | 1 MHz | 2100 | 20 | 40 | - | - |
[26] | 2001 | 1 MHz | - | 20 | 30 | - | - |
Reference | Year | Frequency | Output Power (mW) | Efficiency (%) | Active Range (mm) | Transmitter Dimension (mm) | Receiver Dimension (mm) | Methods |
---|---|---|---|---|---|---|---|---|
[109] | 2019 | 510 MHz, 2.48 GHz, 4.66 GHz | 0.0004 | 3.7, 2.2, 1 | 20–60 | = 39.75 | = 20 | Inductive and Microwave |
[113] | 2018 | 4 MHz | 500, 53, 53 | 1.9, 2.6, 0.98 | >30,15,30 | - | = 40,83,83 | Inductive and Capacitive |
[114] | 2020 | 13.56 MHz, 415 MHz, 905 MHz, 1300 MHz | - | 10, 0.5, 4.6, 6.5 | 15–110 | = 79.6 | = 31.5 | Inductive and Microwave |
[115] | 2017 | 13.56 MHz/910 MHz | - | 17 | 16 | = 83.2 | = 24.2 | Inductive and Microwave |
[110] | 2017 | 1.1 MHz | - | 0.16 | 60 | = 100 | = 15 | Inductive and Ultrasonic |
[116] | 2012 | 200 kHz | 8 | 1 | 70 | = 39 | = 33 | Inductive and Ultrasonic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haerinia, M.; Shadid, R. Wireless Power Transfer Approaches for Medical Implants: A Review. Signals 2020, 1, 209-229. https://doi.org/10.3390/signals1020012
Haerinia M, Shadid R. Wireless Power Transfer Approaches for Medical Implants: A Review. Signals. 2020; 1(2):209-229. https://doi.org/10.3390/signals1020012
Chicago/Turabian StyleHaerinia, Mohammad, and Reem Shadid. 2020. "Wireless Power Transfer Approaches for Medical Implants: A Review" Signals 1, no. 2: 209-229. https://doi.org/10.3390/signals1020012
APA StyleHaerinia, M., & Shadid, R. (2020). Wireless Power Transfer Approaches for Medical Implants: A Review. Signals, 1(2), 209-229. https://doi.org/10.3390/signals1020012