Dependencies of Underwater Noise from Offshore Wind Farms on Distance, Wind Speed, and Turbine Power
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. The Impact of Distance, Wind Speed, and Turbine Power
3.2. The Impact of Turbines with Different Drive Modes
3.3. The Impact of Different Foundation Types
3.4. The Impact of Noise on Fish
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Energy Agency. World Energy Outlook; International Energy Agency: Paris, France, 2024; Volume 2024. [Google Scholar]
- Li, H.Y.; Zheng, Y.M.; Ji, Y.L.; Yu, M.; Shen, Y.T.; Zhang, S.R.; Liu, Y.Y.; Wang, H.Y.; Chen, Z.W.; Dai, X.D. Analysis of the World Energy Outlook in 2050. Nat. Gas Oil 2025, 43, 129–135. [Google Scholar]
- Lopez, G.; Pourjamal, Y.; Breyer, C. Paving the way towards a sustainable future or lagging behind? An ex-post analysis of the International Energy Agency’s World Energy Outlook. Renew. Sustain. Energy Rev. 2025, 212, 115371. [Google Scholar] [CrossRef]
- Kolpakov, A.Y.; Zinchenko, Y.V.; Galinger, A. Prospects for the Implementation of the World Energy Transition Scenarios. Stud. Russ. Econ. Dev. 2023, 34, 820–829. [Google Scholar] [CrossRef]
- Yolcan, O.O. World energy outlook and state of renewable energy: 10-Year evaluation. Innov. Green Dev. 2023, 2, 100070. [Google Scholar] [CrossRef]
- McCoy, A.; Musial, W.; Hammond, R.; Mulas Hernando, D.; Duffy, P.; Beiter, P.; Pérez, P.; Baranowski, R.; Reber, G.; Spitsen, P. Offshore Wind Market Report: 2024 Edition; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2024; pp. 1–83. [Google Scholar]
- Dettmer, L. Global Offshore Wind Report 2024: Industry Trends and Outlook; World Forum Offshore Wind (WFO): Singapore, 2025. [Google Scholar]
- Mooney, T.A.; Andersson, M.H.; Stanley, J. Acoustic impacts of offshore wind energy on fishery resources. Oceanography 2020, 33, 82–95. [Google Scholar] [CrossRef]
- Gill, A.B.; Degraer, S.; Lipsky, A.; Mavraki, N.; Methratta, E.; Brabant, R. Setting the context for offshore wind development effects on fish and fisheries. Oceanography 2020, 33, 118–127. [Google Scholar] [CrossRef]
- Gill, A.B. Offshore renewable energy: Ecological implications of generating electricity in the coastal zone. J. Appl. Ecol. 2005, 42, 605–615. [Google Scholar] [CrossRef]
- Wilson, J.C.; Elliott, M.; Cutts, N.D.; Mander, L.; Mendão, V.; Perez-Dominguez, R.; Phelps, A. Coastal and offshore wind energy generation: Is it environmentally benign? Energies 2010, 3, 1383–1422. [Google Scholar] [CrossRef]
- Fang, Y.-Y.; Sung, P.-J.; Hu, W.-C.; Chen, C.-F. Underwater noise simulation of impact pile driving for offshore wind farm in Taiwan. J. Theor. Comput. Acoust. 2020, 28, 1950009. [Google Scholar] [CrossRef]
- Siddagangaiah, S.; Chen, C.F.; Hu, W.C.; Pieretti, N. Impact of pile-driving and offshore windfarm operational noise on fish chorusing. Remote Sens. Ecol. Conserv. 2022, 8, 119–134. [Google Scholar] [CrossRef]
- Han, D.-G.; Choi, J.W. Measurements and spatial distribution simulation of impact pile driving underwater noise generated during the construction of offshore wind power plant off the southwest coast of Korea. Front. Mar. Sci. 2022, 8, 654991. [Google Scholar] [CrossRef]
- Jakob, T. Behavioral reactions of harbor porpoises to impact pile driving noise are predicted by the auditory frequency weighted sound pressure level. J. Acoust. Soc. Am. 2025, 157, 1368–1377. [Google Scholar] [CrossRef]
- Cobo, P.; Kormann, J.; Ranz Guerra, C. Underwater noise impact of offshore wind farms during construction and operation phases. ICSV 2007, 14, 1–6. [Google Scholar]
- Tougaard, J.; Carstensen, J.; Teilmann, J.; Bech, N.I. Effects of the Nysted Offshore wind farm on harbour porpoises. NERI Tech. Rep. 2005, 7, 1–49. [Google Scholar]
- Bergström, L.; Kautsky, L.; Malm, T.; Rosenberg, R.; Wahlberg, M.; Capetillo, N.Å.; Wilhelmsson, D. Effects of offshore wind farms on marine wildlife—A generalized impact assessment. Environ. Res. Lett. 2014, 9, 034012. [Google Scholar] [CrossRef]
- Wang, J.; Zou, X.; Yu, W.; Zhang, D.; Wang, T. Effects of established offshore wind farms on energy flow of coastal ecosystems: A case study of the Rudong offshore wind farms in China. Ocean. Coast. Manag. 2019, 171, 111–118. [Google Scholar] [CrossRef]
- Su, W.; Wu, N.; Zhang, L.; Chen, M. A review of research on the effect of offshore wind power project on marine organisms. Mar. Sci. Bull 2020, 39, 291–299. [Google Scholar]
- Zhang, H.; Wu, J.C.; He, P. Primary research on the impacts of marine environment ecology from the offshore wind farm operation—A case study of the experimental offshore wind farm in Fuqing Xinghua Bay. J. Fish. Res. 2020, 42, 223–233. [Google Scholar]
- Yuan, Z.; Ma, L.; Wang, J.K. Study on the impact of offshore wind turbine noise on marine organisms. Ocean. Dev. Manag. 2014, 31, 62–66. [Google Scholar]
- Thomsen, F.; Gill, A.; Kosecka, M.; Andersson, M.; Andre, M.; Degraer, S.; Folegot, T.; Gabriel, J.; Judd, A.; Neumann, T. MaRVEN-Environmental impacts of noise, vibrations and electromagnetic emissions from marine renewable energy. In Final Study Report; European Commission, Direcorate General for Research and Innovation: Brussels, Belgium, 2015; Volume 27738, pp. 1–73. [Google Scholar]
- Siddagangaiah, S.; Chen, C.-F.; Hu, W.-C.; Akamatsu, T.; Pieretti, N. Assessing the influence of offshore wind turbine noise on seasonal fish chorusing. ICES J. Mar. Sci. 2025, 82, fsae061. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, H.; Chen, J.; Song, J.; Xu, K.; Lin, J.; Zhang, S. Potential effects of underwater noise from wind turbines on the marbled rockfish (Sebasticus marmoratus). J. Appl. Ichthyol. 2021, 37, 514–522. [Google Scholar] [CrossRef]
- Hoffmann, E.; Astrup, J.; Larsen, F.; Munch-Petersen, S.; Støttrup, J. Effects of Marine Windfarms on the Distribution of Fish, Shellfish and Marine Mammals in the Horns Rev Area; DFU-rapport; No. 117-02; Danmarks Fiskeriundersøgelser: Charlottenlund, Denmark, 2002; 45p. [Google Scholar]
- Vella, G.; Rushforth, I.; Mason, E.; Hough, A.; England, R.; Styles, P.; Holt, T.; Thorne, P. Assessment of the Effects of Noise and Vibration from Offshore Wind Farms on Marine Wildlife; Appendix D; ETDEWEB: Oak Ridge, TN, USA, 2001. [Google Scholar]
- Thomsen, F.; Lüdemann, K.; Kafemann, R.; Piper, W. Effects of Offshore Wind Farm Noise on Marine Mammals and Fish; Biola; COWRIE Ltd.: Hamburg, Germany, 2006; Volume 62, pp. 1–62. [Google Scholar]
- Kikuchi, R. Risk formulation for the sonic effects of offshore wind farms on fish in the EU region. Mar. Pollut. Bull. 2010, 60, 172–177. [Google Scholar] [CrossRef]
- Madsen, P.T.; Wahlberg, M.; Tougaard, J.; Lucke, K.; Tyack, P. Wind turbine underwater noise and marine mammals: Implications of current knowledge and data needs. Mar. Ecol. Prog. Ser. 2006, 309, 279–295. [Google Scholar] [CrossRef]
- Gill, A.; Bartlett, M.; Thomsen, F. Potential interactions between diadromous fishes of UK conservation importance and the electromagnetic fields and subsea noise from marine renewable energy developments. J. Fish Biol. 2012, 81, 664–695. [Google Scholar] [CrossRef]
- Tougaard, J.; Henriksen, O.D.; Miller, L.A. Underwater noise from three types of offshore wind turbines: Estimation of impact zones for harbor porpoises and harbor seals. J. Acoust. Soc. Am. 2009, 125, 3766–3773. [Google Scholar] [CrossRef]
- Betke, K.; Schultz-von Glahn, M.; Matuschek, R. Underwater noise emissions from offshore wind turbines. In Proceedings of the Proc CFA/DAGA, Strasbourg, France, 22–25 March 2004; pp. 22–25. [Google Scholar]
- Lindell, H. Utgrunden Off-Shore Wind Farm-Measurements of Underwater Noise; Ingemansson Technology AB: Goeteborg, Sweden, 2003; pp. 1–30. [Google Scholar]
- Zhang, W.; Yang, H.; Ding, J.; Ji, X.L. The applicability research of offshore wind farm underwater noise propagation model. Mar. Sci. 2017, 41, 78–86. [Google Scholar]
- Nedwell, J.; Howell, D. A review of offshore windfarm related underwater noise sources. Cowrie Rep. 2004, 544, 1–57. [Google Scholar]
- Tougaard, J.; Hermannsen, L.; Madsen, P.T. How loud is the underwater noise from operating offshore wind turbines? J. Acoust. Soc. Am. 2020, 148, 2885–2893. [Google Scholar] [CrossRef]
- Zaayer, M. Comparison of monopile, tripod, suction bucket and gravity base design for a 6 mw turbine. In Proceedings of the OWEMES 2003, Naples, Italy, 10–12 April 2003; pp. 255–269. [Google Scholar]
- Shi, W.; Park, H.c.; Chung, C.w.; Kim, Y.c. Comparison of Dynamic Response of Monopile, Tripod and Jacket Foundation System for a 5-MW Wind Turbine. Proc. Int. Offshore Polar Eng. Conf. 2011, 21, 263–269. [Google Scholar]
- Huang, W.P.; Liu, J.J.; Zhao, Z.H. The state of the art of study on offshore wind turbine structures and its development. Ocean. Eng. 2009, 27, 130–134. [Google Scholar]
- Chen, Z.-Z.; Tarp-Johansen, N.J.; Jensen, J.J. Mechanical characteristics of some deepwater floater designs for offshore wind turbines. Wind Eng. 2006, 30, 417–430. [Google Scholar] [CrossRef]
- Westerberg, H. Impact studies of sea-based windpower in Sweden. Tech. Eingriffe Mar. Leb. BFN-Skripten 2000, 29, 136–146. [Google Scholar]
- AmbA, S.D.; Degn, U. Offshore Wind Turbines–VVM. In Underwater Noise Measurements, Analysis, and Predictions; Oedegaard & Danneskiold-Samsoe A/S, Report n 00.792 rev. l; SEAS Distribution: Haslev, Danmark, 2000. [Google Scholar]
- Fristedt, T.; Morén, P.; Söderberg, P. Acoustic and Electromagnetic Noise Induced by Windmills—Implications for Underwater Surveillance Systems: Pilot Study; FOI: Stockholm, Sweden, 2001. [Google Scholar]
- Diederichs, A.; Hennig, V.; Nehls, G. Investigations of the Bird Collision Risk and the Responses of Harbour Porpoises in the Offshore Wind Farms Horns Rev, North Sea, and Nysted, Baltic Sea, in Denmark; Technical Report; BioConsult SH: Husum, Germany, 2008. [Google Scholar]
- Elmer, K.; Betke, K.; Neumann, T. Standard Procedure for Determining and Evaluating the Pollution of the Marine Environment due to the Noise Emissions of Offshore Wind Energy Plants. In Offshore Wind Energy: Research on Environmental Impacts; Abschlussbericht zum BMU-Forschungsvorhaben 0329947; Springer: Berlin/Heidelberg, Germany, 2007; p. 329947. [Google Scholar]
- Koschinski, S.; Culik, B.M.; Henriksen, O.D.; Tregenza, N.; Ellis, G.; Jansen, C.; Kathe, G. Behavioural reactions of free-ranging porpoises and seals to the noise of a simulated 2 MW windpower generator. Mar. Ecol. Prog. Ser. 2003, 265, 263–273. [Google Scholar] [CrossRef]
- Nedwell, J.; Parvin, S.; Edwards, B.; Workman, R.; Brooker, A.; Kynoch, J.; Nedwell, J.; Parvin, S.; Edwards, B.; Workman, R. Measurement and Interpretation of Underwater Noise During Construction and Operation of Offshore Windfarms in UK Waters; Cowrie Ltd.: London, UK, 2007. [Google Scholar]
- Andersson, M.H.; Sigray, P.; Persson, L.K. Ljud Från Vindkraftverk i Havet och Dess Påverkan på Fisk; Naturvårdsverket: Stockholm, Sweden, 2011. [Google Scholar]
- Zhang, B.; Zhang, X.; Guo, H.; Fang, N.; Song, J. Characteristics of underwater noise from Shanghai Donghai Bridge OWF. J. Shanghai Ocean Univ. 2016, 25, 599–606. [Google Scholar]
- Niu, F.Q.; Yang, Y.M.; Xu, X.M.; Zhou, Z.M.; Huang, Y.K. Measurements and analysis of underwater noise from the operation of offshore wind farms. J. Vib. Shock. 2016, 35, 215–220. [Google Scholar]
- Cheesman, S. Measurements of operational wind turbine noise in UK waters. In The Effects of Noise on Aquatic Life II; Springer: Berlin/Heidelberg, Germany, 2016; Volume 875, pp. 153–160. [Google Scholar]
- Yoon, Y.G.; Han, D.-G.; Choi, J.W. Measurements of underwater operational noise caused by offshore wind turbine off the southwest coast of Korea. Front. Mar. Sci. 2023, 10, 1153843. [Google Scholar] [CrossRef]
- Norro, A.; Botteldooren, D.; Dekoninck, L.; Haelters, J.; Rumes, B.; Van Renterghem, T.; Degraer, S. Qualifying and quantifying offshore wind farm-generated noise. In Environmental Impacts of the Offshore Windfarms in the Belgian Part of the North Sea: Learning from the Past to Optimize Future Monitoring Programmes; Royal Belgian Institute of Natural Sciences: Brussels, Belgium, 2013; pp. 62–69. [Google Scholar]
- Pangerc, T.; Theobald, P.D.; Wang, L.S.; Robinson, S.P.; Lepper, P.A. Measurement and characterisation of radiated underwater sound from a 3.6 MW monopile wind turbine. J. Acoust. Soc. Am. 2016, 140, 2913–2922. [Google Scholar] [CrossRef]
- Bellmann, M.A.; Müller, T.; Scheiblich, K.; Betke, K. Experience Report on Operational Noise: Cross-Project Evaluation and Assessment of Underwater Noise Measurements from the Operational Phase of Offshore Wind Farms (Version 2) (itap report no. 3926); Itap GmbH: Oldenburg, Germany, 2024. [Google Scholar]
- Van Radecke, H.; Benesch, M. Measurements of Operational Sound of Offshore Wind Turbines to Determine the Sound Transmission in Terms of the Sound Transfer Function Between Tower and Water at Turbines in the Test Offshore Field; Final Study Report, Funding Reference No. 0327687; Fachhochschule Flensburg Germany: Flensburg, Germany, 2012. [Google Scholar]
- Betke, K. Underwater construction and operational noise at alpha ventus. In Ecological Research at the Offshore Windfarm Alpha Ventus: Challenges, Results and Perspectives; Springer: Berlin/Heidelberg, Germany, 2014; pp. 171–180. [Google Scholar]
- Huo, X.; Zhang, P.; Feng, Z. Study of underwater sound propagation and attenuation characteristics at the Yangjiang offshore wind farma. Ecol. Inform. 2024, 84, 102919. [Google Scholar] [CrossRef]
- Elliott, J.; Khan, A.; Lin, Y.; Mason, T.; Miller, J.; Newhall, A.; Potty, G.; Vigness-Raposa, K. Field Observations During Wind Turbine Operations at the Block Island Wind Farm, Rhode Island; Final Report to the US Department of the Interior, Bureau of Ocean Energy Management, Office of Renewable Energy Programs, OCS Study BOEM; Bureau of Ocean Energy Management: Englewood, CO, USA, 2019; Volume 28, p. 281. [Google Scholar]
- Holme, C.T.; Simurda, M.; Gerlach, S.; Bellmann, M.A. Relation Between Underwater Noise and Operating Offshore Wind Turbines. In The Effects of Noise on Aquatic Life: Principles and Practical Considerations; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–13. [Google Scholar]
- Ladich, F.; Fay, R.R. Auditory evoked potential audiometry in fish. Rev. Fish Biol. Fish. 2013, 23, 317–364. [Google Scholar] [CrossRef]
- Puig-Pons, V.; Soliveres, E.; Pérez-Arjona, I.; Espinosa, V.; Poveda-Martínez, P.; Ramis-Soriano, J.; Ordoñez-Cebrián, P.; Moszyński, M.; de la Gándara, F.; Bou-Cabo, M. Monitoring of caged bluefin tuna reactions to ship and offshore wind farm operational noises. Sensors 2021, 21, 6998. [Google Scholar] [CrossRef]
- Nabe-Nielsen, J.; Sibly, R.M.; Tougaard, J.; Teilmann, J.; Sveegaard, S. Effects of noise and by-catch on a Danish harbour porpoise population. Ecol. Model. 2014, 272, 242–251. [Google Scholar] [CrossRef]
- Ali, M.; Jain, S.; Ramachandran, R. Effect of Temperature and Salinity on Sound Speed in the Central Arabian Sea. Open Ocean. Eng. J. 2011, 4, 71–76. [Google Scholar]
- Xie, J.H.; Zhang, H.G.; Cao, D.J. Low-grazing angle reflection and shear-wave resonance on elastic sedimentary layers. Acta Phys. Sin. 2025, 74, 1–28. [Google Scholar] [CrossRef]
- Han, Y.H.; Jiang, G.J.; Li, C.F. Analysis of underwater acoustic propagation under the terrain of “seabed mountain”. Tech. Acoust. 2018, 37, 545–548. [Google Scholar]
- Naqash, T.M.; Alam, M.M. A State-of-the-Art Review of Wind Turbine Blades: Principles, Flow-Induced Vibrations, Failure, Maintenance, and Vibration Suppression Techniques. Energies 2025, 18, 3319. [Google Scholar] [CrossRef]
- Liu, W. Comparative Review of Pitch Control Strategies for Wind Turbine. Int. Core J. Eng. 2025, 11, 186–193. [Google Scholar]
- Abbott, R.; Reyff, J.; Marty, G. Progress Report: Monitoring the Effects of Conventional Pile Driving on Three Species of Fish; Strategic Environmental Consulting, Inc.: Sutton, MA, USA, 2004. [Google Scholar]
- Stöber, U.; Thomsen, F. How could operational underwater sound from future offshore wind turbines impact marine life? J. Acoust. Soc. Am. 2021, 149, 1791–1795. [Google Scholar] [CrossRef] [PubMed]
- Prasad, D.D.; Ahmed, M.R.; Lee, Y.-H. Flow and performance characteristics of a direct drive turbine for wave power generation. Ocean. Eng. 2014, 81, 39–49. [Google Scholar] [CrossRef]
- Gu, H.Y.; Wang, H.W.; Zhou, J.X.; Fei, X.; Wen, J.M.; Fang, Z. System dynamic reliability of wind turbine gearbox under random wind load. J. Vib. Shock. 2025, 44, 238–250. [Google Scholar]
- Fei, W.J.; Tan, J.J.; Zhu, C.C.; Li, H.; Ye, W.; Sun, Z.D. Influence of planetary gear sliding bearing on vibration characteristics of wind turbine drivetrain. Acta Energiae Solaris Sin. 2025, 46, 645–658. [Google Scholar]
- Marmo, B. Modelling of noise effects of operational offshore wind turbines including noise transmission through various foundation types. Scott. Mar. Freshw. Sci. 2013, 4, 100. [Google Scholar]
- Khosravi, A.; Yeong, T.; Parvez, A.; Jaganathana, J.; Lau, T.; Elleithy, W. A Comparative Study Between Three-Legged and Tripod Substructures in Design of Offshore Wind Turbines in the Transition Water Depth. Int. J. Eng. Technol. 2018, 7, 23–33. [Google Scholar] [CrossRef]
- Westgate, Z.J.; DeJong, J.T. Geotechnical Considerations for Offshore Wind Turbines; Technical Report; 2005. Available online: https://teams.microsoft.com/l/message/19:97bcde21-a522-4456-89fa-aad7dbbca9d1_b2c016ce-e41e-44be-93a2-8bc2111a9839@unq.gbl.spaces/1762251023341?context=%7B%22contextType%22%3A%22chat%22%7D (accessed on 5 August 2025).
- Wu, X.; Hu, Y.; Li, Y.; Yang, J.; Duan, L.; Wang, T.; Adcock, T.; Jiang, Z.; Gao, Z.; Lin, Z. Foundations of offshore wind turbines: A review. Renew. Sustain. Energy Rev. 2019, 104, 379–393. [Google Scholar] [CrossRef]
- Herbert-Read, J.E.; Kremer, L.; Bruintjes, R.; Radford, A.N.; Ioannou, C.C. Anthropogenic noise pollution from pile-driving disrupts the structure and dynamics of fish shoals. Proc. R. Soc. B Biol. Sci. 2017, 284, 20171627. [Google Scholar] [CrossRef]
- Neo, Y.; Hubert, J.; Bolle, L.; Winter, H.V.; Ten Cate, C.; Slabbekoorn, H. Sound exposure changes European seabass behaviour in a large outdoor floating pen: Effects of temporal structure and a ramp-up procedure. Environ. Pollut. 2016, 214, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Wahlberg, M.; Westerberg, H. Hearing in fish and their reactions to sounds from offshore wind farms. Mar. Ecol. Prog. Ser. 2005, 288, 295–309. [Google Scholar] [CrossRef]
- Simpson, S.D.; Radford, A.N.; Holles, S.; Ferarri, M.C.; Chivers, D.P.; McCormick, M.I.; Meekan, M.G. Small-boat noise impacts natural settlement behavior of coral reef fish larvae. In The Effects of Noise on Aquatic Life II; Springer: Berlin/Heidelberg, Germany, 2016; Volume 875, pp. 1041–1048. [Google Scholar]
- Ogurek, S.D.-L.; Halliday, W.D.; Woods, M.B.; Brown, N.; Balshine, S.; Juanes, F. Boat noise impedes vocalizations of wild plainfin midshipman fish. Mar. Pollut. Bull. 2024, 203, 116412. [Google Scholar] [CrossRef]
- Nichols, T.A.; Anderson, T.W.; Širović, A. Intermittent noise induces physiological stress in a coastal marine fish. PLoS ONE 2015, 10, e0139157. [Google Scholar] [CrossRef]
- Spiga, I.; Aldred, N.; Caldwell, G.S. Anthropogenic noise compromises the anti-predator behaviour of the European seabass, Dicentrarchus labrax (L.). Mar. Pollut. Bull. 2017, 122, 297–305. [Google Scholar] [CrossRef]
- Neenan, S.T.; Piper, R.; White, P.R.; Kemp, P.; Leighton, T.G.; Shaw, P.J. Does masking matter? Shipping noise and fish vocalizations. In The Effects of Noise on Aquatic Life II; Springer: Berlin/Heidelberg, Germany, 2016; Volume 875, pp. 747–753. [Google Scholar]
- Vallejo, G.C.; Grellier, K.; Nelson, E.J.; McGregor, R.M.; Canning, S.J.; Caryl, F.M.; McLean, N. Responses of two marine top predators to an offshore wind farm. Ecol. Evol. 2017, 7, 8698–8708. [Google Scholar] [CrossRef]
- Brandt, M.J.; Diederichs, A.; Betke, K.; Nehls, G. Responses of harbour porpoises to pile driving at the Horns Rev II offshore wind farm in the Danish North Sea. Mar. Ecol. Prog. Ser. 2011, 421, 205–216. [Google Scholar] [CrossRef]
- Lindeboom, H.J.; Kouwenhoven, H.; Bergman, M.; Bouma, S.; Brasseur, S.; Daan, R.; Fijn, R.; De Haan, D.; Dirksen, S.; Van Hal, R. Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; a compilation. Environ. Res. Lett. 2011, 6, 035101. [Google Scholar] [CrossRef]
- Kim, B.; Jin, G.; Byeon, Y.; Park, S.Y.; Song, H.; Lee, C.; Lee, J.; Noh, J.; Khim, J.S. Monitoring of the physiological responses of marine fishes to construction and operation noise from offshore wind farms. Mar. Pollut. Bull. 2025, 218, 118139. [Google Scholar] [CrossRef]
- Zhang, X.G.; Zhang, S.W.; Tang, X.M.; Zhang, S.Y. Auditory threshold of the juvenile Siganus guttatus. J. Fish. Sci. China 2023, 30, 813–820. [Google Scholar]
- Westerberg, H. Fiskeriundersökningar vid havsbaserat vindkraftverk 1990–1993. Fisk Utredningskont Jön Rapp 1994, 5, 1–44. [Google Scholar]
- Winter, H.; Aarts, G.; van Keeken, O. Residence Time and Behaviour of Sole and Cod in the Offshore Wind Farm Egmond Aan Zee (OWEZ); IMARES: Wageningen, The Netherlands, 2010; p. 50. [Google Scholar]
- Jiang, S.; Hou, J. Review on underwater noise of offshore wind turbine during operation. In Proceedings of the 2015 International Conference on Advances in Das-MEI (ICADME 2015), Shenzhen, China, 19–20 September 2015; Volume 21, pp. 155–161. [Google Scholar]
- Pine, M.K.; Jeffs, A.G.; Radford, C.A. Turbine sound may influence the metamorphosis behaviour of estuarine crab megalopae. PLoS ONE 2012, 7, e51790. [Google Scholar] [CrossRef]
- Bicknell, A.W.; Gierhart, S.; Witt, M.J. Site and species dependent effects of offshore wind farms on fish populations. Mar. Environ. Res. 2025, 205, 106977. [Google Scholar] [CrossRef]
- Degraer, S.; Carey, D.A.; Coolen, J.W.; Hutchison, Z.L.; Kerckhof, F.; Rumes, B.; Vanaverbeke, J. Offshore wind farm artificial reefs affect ecosystem structure and functioning. Oceanography 2020, 33, 48–57. [Google Scholar] [CrossRef]
- Stenberg, C.; Støttrup, J.; van Deurs, M.; Berg, C.W.; Dinesen, G.E.; Mosegaard, H.; Grome, T.; Leonhard, S. Long-term effects of an offshore wind farm in the North Sea on fish communities. Mar. Ecol. Prog. Ser. 2015, 528, 257–265. [Google Scholar] [CrossRef]
- Glarou, M.; Zrust, M.; Svendsen, J.C. Using artificial-reef knowledge to enhance the ecological function of offshore wind turbine foundations: Implications for fish abundance and diversity. J. Mar. Sci. Eng. 2020, 8, 332. [Google Scholar] [CrossRef]
- Thatcher, H.; Stamp, T.; Wilcockson, D.; Moore, P.J. Residency and habitat use of European lobster (Homarus gammarus) within an offshore wind farm. ICES J. Mar. Sci. 2023, 80, 1410–1421. [Google Scholar] [CrossRef]






| Windfarm | Depth (m) | Turbine Power (MW) | Distance (m) | Wind Speed (m/s) | SPL (dB) | Dominant Frequency (Hz) | Foundation | References |
|---|---|---|---|---|---|---|---|---|
| Svante | 0.22 | 100 | 6–12 | 102–113 | 16 | Tripile | Westerberg [42] | |
| Vindeby | 2.5–4 | 0.45 | 14 | 13 | 119–126 | 25 | Gravity-based | Tougaard et al. [32], Degn [43] |
| Bockstigen | 4–10 | 0.55 | 20–200 | 92–119 | 92–111 | 160–312 | Monopile | Tougaard et al. [32], Fristed et al. [44], Degn [43] |
| Utgrunden | 18 | 1.5 | 83–463 | 3.5–17 | 103–126 | 63–200 | Monopile | Lindell et al. [34], Betke et al. [33] |
| Middelgruden | 5 | 2 | 20–40 | 6–13 | 103–114 | 25–125 | Monopile | Tougaard et al. [32] |
| Horns Reef | 13 | 2 | 87–100 | 5.9–15.6 | 104–118.5 | 150–176 | Monopile | Diederichs et al. [45], Elmer et al. [46] |
| Model study | 2.5 | 2 | 14 | 13 | 131 | 25 | Gravity-based | Degn [43] |
| Model study | 4 | 2 | 20 | 8 | 113–118 | 25–160 | Monopile | Koschinski et al. [47] |
| Scroby Sands | 5 | 2 | 15 | 10 | 130 | Monopile | Nedwell et al. [48] | |
| Nysted | 4 | 2.3 | 100–175 | 5–10 | 92–110 | 135–315 | Gravity-based | Diederichs et al. [45], Elmer et al. [46] |
| Paludans Flak | 2.3 | 100 | 9–21 | 116–123 | 134 | Monopile | Elmer et al. [46] | |
| Lillgrund | 2.3 | 160–1000 | 12 | 86–102 | 127 | Gravity-based | Andersson et al. [49] | |
| East Sea Bridge | 3–13.4 | 3 | 15–54 | 1.5 | 78–114 | 25–366 | Jacket | Zhang et al. [50], Zhang et al. [25], Niu et al. [51] |
| Northwind | 25 | 3 | 40–150 | 6.4 | 135 | 50 | Monopile | Thomsen et al. [23] |
| Barrow | 22 | 3 | 30 | 8.9 | 105 | 80 | Monopile | Cheesman et al. [52] |
| Southwest coast of Korea | 12 | 3 | 70 | 6.3–11 | 94.6–100 | 35–198 | Jacket | Yoon et al. [53] |
| Dalian Zhuanghe Phase 1–5 | 7 | 3 | 25–150 | 4–4.4 | 109.5–123.3 | 20–63 | Suction bucket | Ge et al. 2024. [unpublished] |
| Belwind | 3 | 50 | 8 | 110 | 100 | Monopile | Norro et al. [54] | |
| Shanghai East Sea Bridge | 10 | 3.6 | 15–20 | 3.5–4.5 | 92–101 | 11–139 | Jacket | Zhang et al. [50] |
| Sheringham Shoal | 14 | 3.6 | 50 | 5–10 | 123–126 | 162 | Monopile | Pangerc et al. [55] |
| Gunfleet Sands Lynn and Inner Dowsing | 3.6 | 28–42 | 6.8 | 110–114 | 25–125 | Monopile | Cheesman et al. [52] | |
| North Seaz one 1 O | 21 | 3.6 | 100 | 11 | 123.7 | 160 | Monopile | Bellmann et al. [56] |
| North Sea zone 1 NO | 18 | 3.6 | 100 | 11 | 102 | 50 | Monopile | Bellmann et al. [56] |
| North Sea zone 2 NO | 30 | 3.6 | 100 | 11 | 117 | 160 | Monopile | Bellmann et al. [56] |
| Baltic Sea | 35 | 3.6 | 100 | 11 | 120 | 160 | Suction bucket | Bellmann et al. [56] |
| North Seazone 1 SW | 20 | 3.6 | 100 | 11 | 124 | 160 | Monopile | Bellmann et al. [56] |
| Yancheng Binhai North | 12 | 4 | 20 | 10 | 110 | 100 | Monopile | Zhang et al. [35] |
| Formosa 1 wind farm | 15–20 | 4 | 10 | 10 | 133.3–137 | 32–160 | Monopile | Shashidhar et al. [24] |
| North Sea zone 1 NW | 25 | 4 | 100 | 11 | 117–121 | 160 | Monopile | Bellmann et al. [56] |
| East Sea Bridge | 10–14.1 | 5 | 15–50 | 2–12 | 90–117.5 | 50–125 | Jacket | Zhang et al. [50], Niu et al. [51] |
| Alpha Ventus | 30 | 5 | 92–100 | 12–14 | 110–118 | 90 | Tripile | Van Radecke et al. [57], Betke et al. [58] |
| North Sea zone 2 NW | 39 | 5 | 100 | 11 | 125 | 160 | Tripile | Bellmann et al. [56] |
| Three Gorges Yangjiang Shapa | 23–39 | 5.5 | 100–1000 | 4.4–11 | 87–125 | 44–160 | Jacket | Huo et al. [59] |
| C-Power | 25 | 6.15 | 40–150 | 8.3 | 122–137 | 50 | Jacket | Thomsen et al. [23] |
| North Sea zone 1 NW | 28 | 6.2 | 100 | 11 | 109 | 160 | Monopile | Bellmann et al. [56] |
| North Sea zone 1 O | 24 | 6.2 | 100 | 11 | 115 | 160 | Jacket | Bellmann et al. [56] |
| North Sea zone 1 NW | 28 | 6.3 | 100 | 11 | 110 | 80 | Monopile | Bellmann et al. [56] |
| North Sea zone 1 NW | 28 | 8 | 100 | 11 | 113 | 40 | Suction bucket | Bellmann et al. [56] |
| Windfarm | Turbine Power (MW) | Distance (m) | Wind Speed (m/s) | SPL (dB) | Dominant Frequency (Hz) | Reference |
|---|---|---|---|---|---|---|
| North Sea zone 2 SO | 4 | 100 | 11 | 111 | 160 | Bellmann et al. [56] |
| Block Island | 6 | 50 | 4 | 113.1 | 14 | Elliott et al. [60] |
| Block Island | 6 | 50 | 6 | 114 | 14 | |
| Block Island | 6 | 50 | 8 | 115.1 | 14 | |
| Block Island | 6 | 50 | 10 | 116.7 | 14 | |
| Block Island | 6 | 50 | 12 | 119.5 | 14 | |
| Block Island | 6 | 50 | 15 | 120.6 | 14 | |
| Baltic Sea | 6 | 100 | 11 | 108 | 25 | Bellmann et al. [56] |
| North Sea zone 1 NW | 6 | 100 | 11 | 110 | 25 | |
| North Sea zone 1 NW | 6 | 100 | 11 | 110 | 80 | |
| North Sea zone 2 W | 6 | 100 | 11 | 109 | 80 | |
| Gode wind 1 | 6.3 | 70 | 12 | 117.4 | Holme et al. [61] | |
| Gode wind 2 | 6.3 | 75 | 12 | 116.6 | ||
| Gode wind 3 | 6.3 | 150 | 12 | 115 | ||
| North Sea zone 2 NW | 7 | 100 | 11 | 116.0 | Bellmann et al. [56] | |
| North Sea zone 2 NW | 7 | 100 | 11 | 120.0 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, Q.; Yao, H.; Qian, S.; Zhang, X.; Guo, H. Dependencies of Underwater Noise from Offshore Wind Farms on Distance, Wind Speed, and Turbine Power. Acoustics 2025, 7, 71. https://doi.org/10.3390/acoustics7040071
Ge Q, Yao H, Qian S, Zhang X, Guo H. Dependencies of Underwater Noise from Offshore Wind Farms on Distance, Wind Speed, and Turbine Power. Acoustics. 2025; 7(4):71. https://doi.org/10.3390/acoustics7040071
Chicago/Turabian StyleGe, Qitong, Haoran Yao, Sihao Qian, Xuguang Zhang, and Hongyi Guo. 2025. "Dependencies of Underwater Noise from Offshore Wind Farms on Distance, Wind Speed, and Turbine Power" Acoustics 7, no. 4: 71. https://doi.org/10.3390/acoustics7040071
APA StyleGe, Q., Yao, H., Qian, S., Zhang, X., & Guo, H. (2025). Dependencies of Underwater Noise from Offshore Wind Farms on Distance, Wind Speed, and Turbine Power. Acoustics, 7(4), 71. https://doi.org/10.3390/acoustics7040071

