Experimental Methodology to Characterize the Noise Paths in a Horizontal-Axis Washing Machine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Washing Machine
2.2. Power Measurements
2.3. Radiation Factor
2.4. Vibration Measurements
3. Results
3.1. Experimental Measurements
3.2. Noise Paths
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jackson, G.; Leventhall, H.T. Household appliance noise. Appl. Acoust. 1975, 8, 101–118. [Google Scholar] [CrossRef]
- UNE-EN 60704-2-4:2013; Electrodomésticos Y Análogos. Código De Ensayo Para La Determinación Del Ruido Acústico Aéreo. Parte 2—4: Requisitos Particulares Para Lavadoras Y Centrifugadoras. AENOR: Madrid, Spain, 2013.
- Lin, C.Y.; Tsai, P.J.; Lin, K.Y.; Chen, C.Y.; Chung, L.H.; Wu, J.L.; Guo, Y.L. Will daytime occupational noise exposures induce nighttime sleep disturbance? Sleep Med. 2018, 50, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Jeong, U.-C.; Kim, J.-S.; Jeong, J.-E.; Yang, I.-H.; Oh, J.-E. Development of a Sound Quality Index for the Wash Cycle Process of Front-Loading Washing Machines Considering the Impacts of Individual Noise Sources. Appl. Acoust. 2015, 87, 183–189. [Google Scholar] [CrossRef]
- Kumar, S.; Wing, W.S.; Lee, H.P. Psychoacoustic Analysis of Vacuum Cleaner Noise. Acoustics 2021, 3, 545–558. [Google Scholar] [CrossRef]
- González, A.E. Overview of Noise Control Techniques and Methods. In Noise Control; Caniato, M., Bettarello, F., Eds.; IntechOpen: Rijeka, Croatia, 2022. [Google Scholar]
- Fatima, S.; Mohanty, A.R. Noise control of home appliances—The green way. Noise Vib. World Wide 2012, 43, 26–34. [Google Scholar] [CrossRef]
- Barpanda, D.; Tudor, J. Solutions-Based Approach for Reducing Noise in Washing Machines. Sound Vib. 2009, 43, 6–10. [Google Scholar]
- Van Karsen, C.; Gwaltney, G.; Blough, J. Applying Transfer Path Analysis to Large Home Appliances. Proc. SPIE-Int. Soc. Opt. Eng. 2000, 32, 157. [Google Scholar]
- Wang, S.; Nerse, C.; Kim, H.W.T. Vibro-Acoustic Noise Analysis of a Washing Machine. Sens. Instrum. 2017, 5, 47–53. [Google Scholar]
- Chiariotti, P.; Martarelli, M.; Tomasini, E.P.; Beniwal, R. Noise source localization on washing machines by conformal array technique and near field acoustic holography. In Structural Dynamics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series; Proulx, T., Ed.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Koizumi, T.; Tsujiuchi, N.; Matsumoto, S.; Hirasawa, Y. Noise Prediction of a Washing Machine Considering Panel Vibration. In Proceedings of the Society for Experimental Mechanics Series, Orlando, FL, USA, 4–7 February 2008. [Google Scholar]
- Kozupa, M.; Ploetner, C.; Swiatkowski, M. Acoustic Radiation Efficiency Parameter in Assessment of Transformer Noise. Proc. Euronoise 2018, 43, 573–578. [Google Scholar]
- Bučinskas, V.; Mirzaei, S.; Kirchner, K. Some Aspects of Bearing Noise Generation. Solid State Phenom. 2010, 164, 278–284. [Google Scholar] [CrossRef]
- Chen, G.; Zhen, H.; Qatu, M. Noise Modeling of Synchronous Belts. Noise Vib. Worldw. 2013, 44, 14–27. [Google Scholar] [CrossRef]
- Bazhenova, L.A. Noise Sources of Aerodynamic Origin in Air Blowers. Acoust. Phys. 2018, 64, 356–364. [Google Scholar] [CrossRef]
- Lee, H.; Chung, S.-U.; Hwang, S. Noise Source Identification of a BLDC Motor. J. Mech. Sci. Technol. 2008, 22, 708–713. [Google Scholar] [CrossRef]
- Long, M. 9-Sound Transmission Loss. In Architectural Acoustics, 2nd ed.; Long, M., Ed.; Academic Press: Boston, MA, USA, 2014; pp. 345–382. [Google Scholar]
- ISO 9614-2:1996; Acoustics—Determination of Sound Power Levels of Noise Sources Using Sound Intensity—Part 2: Measurement by Scanning. ISO: Geneva, Switzerland, 1996.
- ISO/TS 7849-2:2009; Acoustics—Determination of Airborne Sound Power Levels Emitted by Machinery Using Vibration Measurement—Part 1: Survey Method Using a Fixed Radiation Factor. ISO: Geneva, Switzerland, 2009.
- Pereira, I.; Maeder, M.; Merz, S. Numerical Prediction of the Transmission Loss of Leaks in Trimmed Panels. Acoust. Aust. 2010, 38, 140–144. [Google Scholar]
Plate | c [m/s] | m [kg/m] | E [N/m] | h [m] | [Hz] | |
---|---|---|---|---|---|---|
Front | 340 | 7.02 | 0.3 | 0.0009 | 12,047 | |
Right/center | 340 | 6.24 | 0.3 | 0.0008 | 13,553 | |
Back | 340 | 7.80 | 0.3 | 0.001 | 10,843 |
Face | [dBA] | [dBA] | [dBA] |
---|---|---|---|
Front | 66.1 | 64.0 | 61.9 |
Right | 64.9 | 61.2 | 62.5 |
Back | 66.4 | 60.6 | 65.1 |
center | 65.2 | 61.8 | 62.6 |
Top | 58.2 | 54.4 | 55.9 |
Total | 72.0 | 68.3 | 69.4 |
Face | [dBA] |
---|---|
Front | 58.3 |
Right | 56.4 |
Back | 56.3 |
center | 55.7 |
Total | 62.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albero, C.; Sánchez-Tabuenca, B. Experimental Methodology to Characterize the Noise Paths in a Horizontal-Axis Washing Machine. Acoustics 2023, 5, 476-489. https://doi.org/10.3390/acoustics5020028
Albero C, Sánchez-Tabuenca B. Experimental Methodology to Characterize the Noise Paths in a Horizontal-Axis Washing Machine. Acoustics. 2023; 5(2):476-489. https://doi.org/10.3390/acoustics5020028
Chicago/Turabian StyleAlbero, Cristian, and Beatriz Sánchez-Tabuenca. 2023. "Experimental Methodology to Characterize the Noise Paths in a Horizontal-Axis Washing Machine" Acoustics 5, no. 2: 476-489. https://doi.org/10.3390/acoustics5020028
APA StyleAlbero, C., & Sánchez-Tabuenca, B. (2023). Experimental Methodology to Characterize the Noise Paths in a Horizontal-Axis Washing Machine. Acoustics, 5(2), 476-489. https://doi.org/10.3390/acoustics5020028