Study of Tire–Pavement Noise Acoustic Performance in Resilient Road Pavement Made of Strain-Hardening Cementitious Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mixture Design
2.2. Specimen Preparation
2.3. Test
3. Results
3.1. Mechanical Properties
3.2. Microtexture and Macrotexture
3.3. Texture Depth Based on Profilometer Measurement and Shape Factor
3.4. Sound Level
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fischer, G.; Li, V.C. Deformation Behavior of Fiber-Reinforced Polymer Reinforced Engineered Cementitious Composite (ECC) Flexural Members under Reversed Cyclic Loading Conditions. ACI Struct. J. 2003, 100, 25–35. [Google Scholar]
- Qian, S.; Li, V. Durable pavement with ECC. In Proceedings of the 1st International Conference on Microstructure Related Durability of Cementitious Composites, Nanjing, China, 13–15 October 2008. [Google Scholar]
- Junxia, L.; Jishen, Q.; Shan He Yang, E.-H. Micromechanics-Based Design of Strain Hardening Cementitious Composites (SHCC). In RILEM Book Series, Proceedings of the Strain-Hardening Cement-Based Composites, Dresden, Germany, 18–20 September 2017; Springer: Dordrecht, The Netherlands, 2018; Volume 15. [Google Scholar] [CrossRef]
- Rokugo, K.; Kunieda, M.; Lim, S.C. Patching Repair with ECC on Cracked Concrete Surface; University of British Columbia: Vancouver, BC, Canada, 2005. [Google Scholar]
- Rokugo, K. Applications of SHCC in Japan—Tools and tips for promoting its use. In Proceedings of the Strain-Hardening Cement-Based Composites, Dresden, Germany, 18–20 September 2017; Springer: Dordrecht, The Netherlands, 2018. [Google Scholar]
- Lepech, M.D.; Li, V.C. Application of ECC for bridge deck link slabs. Mater. Struct. 2009, 42, 1185–1195. [Google Scholar] [CrossRef]
- Li, V.C.; Kanda, T. Engineered Cementitious Composites for Structural Applications. ASCE J. Mater. Civ. Eng. 1998, 10, 66–69. [Google Scholar] [CrossRef] [Green Version]
- Bawono, A.A.; NguyenDinh, N.; Lechner, B. Evaluation of highway pavement skid resistance performance made of engineered cementitious composite (ECC). In Bearing Capacity of Roads, Railways and Airfields; CRC Press: Athens, Greece, 2017. [Google Scholar]
- Zhang, H.; Keoleian, G.; Lepech, M. An integrated life cycle assessment and life cycle analysis model for pavement overlay systems. In Life-Cycle Civil Engineering; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Müller, S.; Mechtcherine, V. Use of Strain-Hardening Cement-Based Composites (SHCC) in Real Scale Applications. In RILEM Book Series, Proceedings of theStrain-Hardening Cement-Based Composites, Dresden, Germany, 18–20 September 2017; Mechtcherine, V., Slowik, V., Kabele, P., Eds.; Springer: Dordrecht, The Netherlands, 2018; Volume 15. [Google Scholar] [CrossRef]
- Bawono, A.A.; Lechner, B.; Yang, E.-H. Bright and slip-proof engineered cementitious composites with visible light activated photo-catalysis property for pavement in tunnels. Cem. Concr. Compos. 2020, 104, 103387. [Google Scholar] [CrossRef]
- Bawono, A.A. State of the Art: Functional Performance of Pavement. In Engineered Cementitious Composites for Electrified Roadway in Megacities; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Apparicio, P.; Gelb, J. Cyclists’ Exposure to Road Traffic Noise: A Comparison of Three North American and European Cities. Acoustics 2020, 2, 73–86. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, R.O.; Bernhard, R.; Sandberg, U.; Mun, E.P. The Little Book of Quieter Pavements; Federal Highway Administration FHWA: Austin, TX, USA, 2007. [Google Scholar]
- Schmidt, M.; Scheffler, B.; Piotrowski, S. Multi-Functional Noise Reducing Pavements Made of UHPC—Materials. In Proceedings of the 11th International Conference on Concrete Block Pavement, Dresden, Germany, 8–11 September 2015. [Google Scholar]
- Bhanap, I. An analysis of roadway noise at residential estates in close proximity to expressways in Singapore. Noise Health 2013, 15, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Lian, G.C. Noise Pollution in Singapore: When Buzz Becomes Noise. 2010. Available online: http://wildsingaporenews.blogspot.sg/2010/11/noise-pollution-in-singaporewhen-buzz.html#.WBMRYC196Uk (accessed on 5 August 2019).
- National Environment Agency of Singapore. In Technical Guideline for Land Traffic Noise Impact Assessment; National Environment Agency of Singapore: Singapore, 2016.
- Gibbs David, C.; Randell, I.; Robert, B.; James, B.; Douglas, C.; Christopher, C.; Kenneth, F.; Thomas, H., Jr.; Kevin, M.; David, N. Quiet Pavement Systems in Europe; Federal Highway Administration: Richmond, VA, USA, 2005. [Google Scholar]
- Bendtsen, H.; Lu, Q.; Kohler, E. Temperature Influence on Road Traffic Noise Californian OBSI Measurement Study; University of California Pavement Research Center: Davis, CA, USA, 2010. [Google Scholar] [CrossRef]
- Lodico, D.; Donavan, P. Quieter Pavement: Acoustic Measurement and Performance. In Proceedings of the Transportation Research Board 97th Annual Meeting, Washington, DC, USA, 7–11 January 2018. [Google Scholar]
- Tubey, L.; Hosking, J. Synthetic Aggregates of High Resistance to Polishing—Corundum Rich Aggregates; Road Research Laboratory: Crowthorne, UK, 1972. [Google Scholar]
- Werner, R.; Peck, M. Kreisverkehrsflächen in Beton: Erfahrungen in der Schweiz, Deutschland und Österreich. In Aktuelles zum Thema Betonstrassen Update 3/10: Swiss. 2010. Available online: https://www.zement.at/downloads/update3_10.pdf (accessed on 23 April 2019).
- ASTM C78/78M; Committee. Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International: West Conshohocken, PA, USA, 2018. [CrossRef]
- Qian, S.; Li, V.C. Simplified Inverse Method for Determining the Tensile Strain Capacity of Strain Hardening Cementitious Composites. J. Adv. Concr. Technol. 2007, 5, 235–246. [Google Scholar] [CrossRef] [Green Version]
- ASTM E303-93; ASTM Standard Test Method for Measuring Surface Frictional Properties Using the British Pendulum Tester. ASTM International: West Conshohocken, PA, USA, 1993.
- Auerbach, M.; Berengier, M. Prediction and propagation of rolling noise. In Proceedings of the Transport Research Arena 2008, Ljubljana, Slovenia, 21–25 April 2008. [Google Scholar]
- Beckenbauer, T. Effect of Pavement on Tyre/Pavement Noise; 11/12 June 2008; Bundesministerium fuür Verkehr, Bau- und Wohnungswesen. Informationstage, Geräuschmindernde Fahrbahnbeläge in der Praxis—Lärmaktionsplanung: Munich, Germany, 2002. [Google Scholar]
- Müller-BBM. SPERoN—Rolling Noise Prediction Model. Available online: https://www.muellerbbm.com/environment/traffic-environment/speron/ (accessed on 5 July 2019).
- Beckenbauer, T.; Kuijpers, A. Prediction of pass-by levels depending on road surface parameters by means of a hybrid model. In Proceedings of the 2001 International Congress and Exhibition on Noise Control Engineering, Hague, The Netherlands, 27–30 August 2001. [Google Scholar]
- Beckenbauer, T.; Klein, P.; Hamet, J.; Kropp, W. Tyre/road noise prediction: A comparison between the SPERoN and HyRoNE models—Part 1. J. Acoust. Soc. Am. 2008, 123, 3388. [Google Scholar] [CrossRef]
- Alves, S.; Maennel, M. Application of Speron to the development of low noise road surfaces. In Proceedings of the EuroRegio2016, Porto, Portugal, 13–15 June 2016. [Google Scholar]
- Bawono, A.A. State of the Art: Engineered Cementitious Composites Precast Ultra-Thin Whitetopping (ECC-PUTW). In Engineered Cementitious Composites for Electrified Roadway in Megacities; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Hall, J.; Smith, K.; Titus-Glover, L.; Wambold, J.; Yager, T.; Rado, Z. Guide for Pavement Friction; NCHRP 108; Transportation Research Board: Washington, DC, USA, 2009. [Google Scholar]
- Henry, J.J. Evaluation of Pavement Friction Characteristics. In A Synthesis of Highway Practice; NCHRP Synthesis 291; Transportation Research Board: Washington, DC, USA, 2000. [Google Scholar]
- Haider, M.; Wehr, R.; Conter, M.; Kriegisch, M.; Gasparoni, S. Texture and noise characteristics of exposed aggregate concrete road surfaces. In Proceedings of the 12th International Symposium on Concrete Roads, Prague, Czech Republic, 23–26 September 2014. [Google Scholar]
- Bawono, A.A.; Lechner, B.; Yang, E.-H. Skid resistance and surface water drainage performance of engineered cementitious composites for pavement applications. Cem. Concr. Compos. 2019, 104, 103387. [Google Scholar] [CrossRef]
- Li, J.; Yang, E.-H. Macroscopic and microstructural properties of engineered cementitious composites incorporating recycled concrete fines. Cem. Concr. Compos. 2017, 78, 33–42. Available online: https://hdl.handle.net/10220/42497 (accessed on 7 November 2022). [CrossRef]
- Ueda, N.; Kawamoto, A. Influence of Coarse Aggregate on the Mechanical Behavior of Strain Hardening Cementitious Composites.). In RILEM Book Series, Proceedings of theStrain-Hardening Cement-Based Composites, Dresden, Germany, 18–20 September 2017; Mechtcherine, V., Slowik, V., Kabele, P., Eds.; Springer: Dordrecht, The Netherlands, 2018; Volume 15. [Google Scholar] [CrossRef]
- Bawono, A.A. The Functional Performance of Engineered Cementitious Composites Material for Electrified Roadway Application in Singapore. Ph.D. Thesis, Technische Universität München, Singapore, 2020. [Google Scholar]
- TRRL. Instructions for Using the Portable Skid Resistance Tester; Road Research Laboratory: Crowthorne, UK, 1960. [Google Scholar]
- UK Highway Agency. Design Manual for Roads and Bridges: Skid Resistance; UK Highway Agency: Guildford, UK, 2004. [Google Scholar]
- Land Transport Authority. Code of Practice for Works on Public Streets, 6th ed.; Land Transport Authority: Singapore, 2008. [Google Scholar]
- Land Transport Authority. Materials and Workmanship Specification for Civil and Structural Works; Land Transport Authority: Singapore, 2010. [Google Scholar]
- Keulen, V.; Li, W.; Ceylan, M.; Molenaar, H.; Van, A.; Ven, M. SIROTOL: Statistical model of tyre-road noise for thin layer surfacing. Noise Control Eng. J. 2017, 65, 22–32. [Google Scholar]
Texture | Cement | Fly Ash | Sand | Corundum | Water | PVA | HRWR |
---|---|---|---|---|---|---|---|
SHCC | 559 | 671 | 447 | 0 | 327 | 26 | 2.3 |
SHCC-Cor | 559 | 671 | 447 | 89 | 327 | 26 | 2.3 |
Texture | Land Area (mm) | Groove (mm) | Height (mm) | Illustration |
---|---|---|---|---|
SHCC-Cor-Gro | 25.0 ± 0.5 | 3.2 ± 0.2 | 3.2 ± 0.3 |
Texture | First Cracking Strength (MPa) | Flexural Strength (MPa) | Tensile Strain Capacity (%) |
---|---|---|---|
SHCC | 3.4 ± 0.4 | 11.1 ± 0.6 | 2.1 ± 1.0 |
SHCC-Cor | 5.9 ± 0.2 | 11.3 ± 2.2 | 1.0 ± 0.3 |
Texture | Microtexture (BPN) | Macrotexture (mm) |
---|---|---|
SHCC | 54 | 0.10 ± 0.03 |
SHCC-Cor | 72 | 0.21 ± 0.20 |
SHCC-Cor-Gro | 72 | 0.61 ± 0.22 |
Texture | Shape Factor (G) – in % |
---|---|
SHCC | 69.8 ± 0.19 |
SHCC-Cor | 55.4 ± 0.17 |
SHCC-Cor-Gro | 59.1 ± 0.20 |
Texture | 315 | 400 | 500 | 630 | 800 | 1000 | 1250 | 1600 | 2000 | Total |
---|---|---|---|---|---|---|---|---|---|---|
SHCC | 27.9 | 27.9 | 41.4 | 49.2 | 44.0 | 44.8 | 32.0 | 29.2 | 22.4 | 51.9 |
SHCC-Cor | 45.9 | 40.1 | 52.3 | 59.8 | 63.3 | 61.4 | 47.9 | 44.9 | 37.9 | 66.8 |
SHCC-Cor-Gro | 30.4 | 28.9 | 40.8 | 47.9 | 44.9 | 45.5 | 32 | 29.1 | 21.4 | 51.6 |
Texture | 315 | 400 | 500 | 630 | 800 | 1000 | 1250 | 1600 | 2000 | Total |
---|---|---|---|---|---|---|---|---|---|---|
SHCC | 35.6 | 38.7 | 39.5 | 42.6 | 48.2 | 53.5 | 54.1 | 52.0 | 52.2 | 59.6 |
SHCC-Cor | 38.8 | 40.9 | 44.1 | 47.1 | 54.3 | 56.6 | 56.4 | 53.0 | 52.5 | 62.1 |
SHCC-Cor-Gro | 36.0 | 38.8 | 39.2 | 42.0 | 48.5 | 53.6 | 54.1 | 52.0 | 52.1 | 59.6 |
Texture | 315 | 400 | 500 | 630 | 800 | 1000 | 1250 | 1600 | 2000 | Total |
---|---|---|---|---|---|---|---|---|---|---|
SHCC | 39.9 | 44.4 | 55.4 | 50.8 | 56.0 | 56.2 | 56.0 | 19.2 | 12.4 | 62.3 |
SHCC-Cor | 39.9 | 44.4 | 55.4 | 50.8 | 56.0 | 56.2 | 56.0 | 34.9 | 27.9 | 62.4 |
SHCC-Cor-Gro | 39.9 | 44.4 | 55.4 | 50.8 | 56.0 | 56.2 | 56.0 | 19.1 | 11.4 | 62.3 |
Texture | 315 | 400 | 500 | 630 | 800 | 1000 | 1250 | 1600 | 2000 | Total |
---|---|---|---|---|---|---|---|---|---|---|
SHCC | 37.9 | 44.7 | 42.9 | 42.1 | 38.8 | 38.6 | 37.6 | 35.3 | 35.6 | 50.0 |
SHCC-Cor | 37.9 | 44.7 | 42.9 | 42.1 | 38.8 | 38.6 | 37.6 | 35.3 | 35.6 | 50.0 |
SHCC-Cor-Gro | 37.9 | 44.7 | 42.9 | 42.1 | 38.8 | 38.6 | 37.6 | 35.3 | 35.6 | 50.0 |
Texture | 315 | 400 | 500 | 630 | 800 | 1000 | 1250 | 1600 | 2000 | Total |
---|---|---|---|---|---|---|---|---|---|---|
SHCC | 43.0 | 48.1 | 55.9 | 53.8 | 56.9 | 58.3 | 58.2 | 52.1 | 52.3 | 64.6 |
SHCC-Cor | 48.0 | 49.0 | 57.5 | 60.6 | 64.5 | 63.6 | 59.5 | 53.7 | 52.7 | 69.2 |
SHCC-Cor-Gro | 43.2 | 48.2 | 55.9 | 53.3 | 57.0 | 58.4 | 58.2 | 52.1 | 52.2 | 64.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bawono, A.A.; NguyenDinh, N.; Thangaraj, J.; Ertsey-Bayer, M.; Simon, C.; Lechner, B.; Freudenstein, S.; Yang, E.-H. Study of Tire–Pavement Noise Acoustic Performance in Resilient Road Pavement Made of Strain-Hardening Cementitious Composites. Acoustics 2023, 5, 57-71. https://doi.org/10.3390/acoustics5010004
Bawono AA, NguyenDinh N, Thangaraj J, Ertsey-Bayer M, Simon C, Lechner B, Freudenstein S, Yang E-H. Study of Tire–Pavement Noise Acoustic Performance in Resilient Road Pavement Made of Strain-Hardening Cementitious Composites. Acoustics. 2023; 5(1):57-71. https://doi.org/10.3390/acoustics5010004
Chicago/Turabian StyleBawono, Ali Aryo, Nen NguyenDinh, Janaki Thangaraj, Maximilian Ertsey-Bayer, Christoph Simon, Bernhard Lechner, Stephan Freudenstein, and En-Hua Yang. 2023. "Study of Tire–Pavement Noise Acoustic Performance in Resilient Road Pavement Made of Strain-Hardening Cementitious Composites" Acoustics 5, no. 1: 57-71. https://doi.org/10.3390/acoustics5010004
APA StyleBawono, A. A., NguyenDinh, N., Thangaraj, J., Ertsey-Bayer, M., Simon, C., Lechner, B., Freudenstein, S., & Yang, E. -H. (2023). Study of Tire–Pavement Noise Acoustic Performance in Resilient Road Pavement Made of Strain-Hardening Cementitious Composites. Acoustics, 5(1), 57-71. https://doi.org/10.3390/acoustics5010004