# Resonant Metasurfaces with a Tangential Impedance

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. Resonator-Based Metasurfaces

#### 2.1. Monopole Resonators

#### 2.1.1. Scattered Sound Field

#### 2.1.2. Reflection Coefficient

#### 2.1.3. Equivalent Impedance

#### 2.2. Dipole Resonators

#### 2.2.1. Scattered Sound Field

#### 2.2.2. Reflection Coefficient

#### 2.2.3. Equivalent Impedance

## 3. Membrane-type Metasurfaces

#### 3.1. Membrane in the Baffle

#### 3.2. First Eigenmode

#### 3.3. Second Eigenmode

## 4. Tangential Impedance

#### 4.1. Definition

#### 4.2. Reflection Coefficient of a Plane Surface

#### 4.3. Diffuse Absorption Coefficient

## 5. Conclusions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Bobrovnitskii, Y.I.; Tomilina, T.M. Sound absorption and metamaterials: A review. Acoust. Phys.
**2018**, 64, 519–526. [Google Scholar] [CrossRef] - Ma, F.; Wang, C.; Liu, C.; Wu, J.H. Structural designs, principles, and applications of thin-walled membrane and plate-type acoustic/elastic metamaterials. J. Appl. Phys.
**2021**, 129, 231103. [Google Scholar] [CrossRef] - Li, J.; Wen, X.; Sheng, P. Acoustic metamaterials. J. Appl. Phys.
**2021**, 129, 171103. [Google Scholar] [CrossRef] - Du, Y.; Wu, W.; Chen, W.; Lin, Y.; Ghi, Q. Control the structure to optimize the performance of sound absorption of acoustic metamaterial: A review. AIP Adv.
**2021**, 11, 060701. [Google Scholar] [CrossRef] - Jordan, L.J. The application of Helmholtz resonators to sound-absorbing structures. J. Acoust. Soc. Am.
**1947**, 19, 972–981. [Google Scholar] [CrossRef] - Boutin, C.; Roussillon, P. Wave propagation in presence of oscillators on the free surface. J. Eng. Sci.
**2006**, 44, 180–204. [Google Scholar] [CrossRef] [Green Version] - Schwan, L.; Umnova, O.; Boutin, C. Sound absorption and reflection from a resonant metasurface: Homogenisation model with experimental validation. Wave Motion
**2017**, 72, 154–172. [Google Scholar] [CrossRef] [Green Version] - Bobrovnitskii, Y.I.; Morozov, K.D.; Tomilina, T.M. A periodic surface structure with extreme acoustic properties. Acoust. Phys.
**2010**, 56, 127–131. [Google Scholar] [CrossRef] - Yang, Z.; Mei, J.; Yang, M.; Chan, N.H.; Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett.
**2008**, 101, 204301. [Google Scholar] [CrossRef] - Chen, T.; Huang, G.; Zhou, X.; Hu, G.; Sun, C.-T. Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Membrane model. J. Acoust. Soc. Am.
**2014**, 136, 969–979. [Google Scholar] [CrossRef] - Leblanc, A.; Lavie, A. Three-dimensional-printed membrane-type acoustic metamaterial for low frequency sound attenuation. J. Acoust. Soc. Am.
**2017**, 141, EL538–EL542. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Langfeldt, F.; Gleine, W.; von Estorf, O. A membrane-type acoustic metamaterial with adjustable acoustic properties. J. Sound Vib.
**2016**, 373, 1–18. [Google Scholar] [CrossRef] - Langfeldt, F.; Riecken, J.; Gleine, W.; von Estorf, O. An efficient analytical model for baffled, multi-celled membrane-type acoustic metamaterial panels. J. Sound Vib.
**2018**, 417, 359–375. [Google Scholar] [CrossRef] - Dogra, S.; Gupta, A. Design, manufacturing, and acoustical analysis of a Helmholtz resonator-based metamaterial plate. Acoustics
**2021**, 3, 630–641. [Google Scholar] [CrossRef] - Wang, H.; Mao, Q. Development and investigation of fully ventilated deep subwavelength absorbers. Symmetry
**2021**, 13, 1835. [Google Scholar] [CrossRef] - Kanev, N.G.; Mironov, M.A. Active resonators for sound control in narrow pipes. Acoust. Phys.
**2008**, 54, 437–443. [Google Scholar] [CrossRef] - Lissek, H.; Boulandet, R.; Fleury, R. Electroacoustic absorbers: Bridging the gap between shunt loudspeakers and active sound absorption. J. Acoust. Soc. Am.
**2011**, 129, 2968–2978. [Google Scholar] [CrossRef] [Green Version] - Kanev, N.G.; Mironov, M.A. Dipole resonance scatterer of sound. Acoust. Phys.
**2003**, 49, 312–315. [Google Scholar] [CrossRef] - Kanev, N.G.; Mironov, M.A. Dipole resonance muffler at the exit of a narrow pipe. Acoust. Phys.
**2006**, 52, 278–282. [Google Scholar] [CrossRef] - Lapin, A.D. Monopole-dipole type resonator in a narrow pipe. Acoust. Phys.
**2003**, 49, 731–732. [Google Scholar] [CrossRef] - Kanev, N.G.; Mironov, M.A. A Monopole–dipole resonance absorber in a narrow waveguide. Acoust. Phys.
**2005**, 51, 89–94. [Google Scholar] [CrossRef] - Lapin, A.D. Sound absorption by monopole-dipole resonators in a multimode waveguide. Acoust. Phys.
**2005**, 51, 362–364. [Google Scholar] [CrossRef] - Lapin, A.D.; Mironov, M.A. Sound absorption by a planar array of monopole-dipole scatterers. Acoust. Phys.
**2006**, 52, 425–428. [Google Scholar] [CrossRef] - Mironov, M. The dipole resonator and dipole waveguide insulator in dense liquid medium. Acoustics
**2022**, 4, 469–478. [Google Scholar] [CrossRef] - Zheng, H.; Zhang, C.; Wang, Y.; Sladek, J.; Sladek, V. A meshfree local RBF collocation method for anti-plane transverse elastic wave propagation analysis in 2D phononic crystals. Comp. Phys.
**2016**, 305, 997–1014. [Google Scholar] [CrossRef] - Ammari, H.; Imeri, K.C. A mathematical and numerical framework for gradient meta-surfaces built upon periodically repeating arrays of Helmholtz resonators. Wave Motion
**2020**, 97, 102614. [Google Scholar] [CrossRef] - Zhang, F.; Liu, X.; Kapitanova, P.; Song, M. Uniform near magnetic field generated by metasurface-based resonator for wireless power transfer. Phot. Nanostruct.
**2022**, 52, 101056. [Google Scholar] [CrossRef] - Skudrzyk, E. The Foundations of Acoustics; Springer: Wien, NY, USA, 1971. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Theory of Elasticity, 2nd ed.; Pergamon Press: Oxford, UK; London, UK; Edinburgh, UK; New York, NY, USA; Toronto, ONT, Canada; Sydney, Australia; Paris, France; Braunschweig, Germany, 1970. [Google Scholar]
- Streng, J.H. Sound radiation from circular stretched membranes in free space. J. Audio Eng. Soc.
**1989**, 37, 107–118. [Google Scholar] - Bobrovnitskii, Y.I. Hysteretic damping and causality. Acoust. Phys.
**2013**, 59, 253–256. [Google Scholar] [CrossRef]

**Figure 6.**The reflection coefficients of the surfaces with normal (

**a**) and tangential (

**b**) impedances.

**Figure 7.**The diffuse absorption coefficients of the surfaces with normal (1) and tangential (2) impedances.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kanev, N.
Resonant Metasurfaces with a Tangential Impedance. *Acoustics* **2022**, *4*, 903-914.
https://doi.org/10.3390/acoustics4040055

**AMA Style**

Kanev N.
Resonant Metasurfaces with a Tangential Impedance. *Acoustics*. 2022; 4(4):903-914.
https://doi.org/10.3390/acoustics4040055

**Chicago/Turabian Style**

Kanev, Nikolay.
2022. "Resonant Metasurfaces with a Tangential Impedance" *Acoustics* 4, no. 4: 903-914.
https://doi.org/10.3390/acoustics4040055