Investigation of Alberich Coating to Optimise Acoustic Stealth of Submarines
Abstract
:1. Introduction
2. Computation Methodology
2.1. Computer Model Setup
2.2. Computational Methodology
2.2.1. Cylindrical Cavity Diameter
2.2.2. Anechoic Layer
2.2.3. Steel Backplate
2.2.4. Cavity Length
2.2.5. Spherical Cavity
2.2.6. Optimised Model
3. Results
3.1. Cylindrical Cavity Diameter
3.2. Anechoic Layer
3.3. Steel Backplate
3.4. Cavity Length
3.5. Spherical Cavity
3.6. Optimised Model
4. Discussion
4.1. Resonance of the Cavity
4.2. Resonance of Anechoic Layer
4.3. Impedance Mismatch
4.4. Stiffness
4.5. Volume Fraction of Air
4.6. Velocity and Pressure
4.7. Rubber Absorption
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Eggler, D.; Kessissoglou, N. Active acoustic illusions for stealth and subterfuge. Sci. Rep. 2019, 9, 13596. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Peng, Z.; Wen, H.; Fan, J.; Song, H. Research on the Optimization Design of Acoustic Stealth Shape of the Underwater Vehicle Head. Acoust. Aust. 2020, 48, 39–47. [Google Scholar] [CrossRef]
- Tang, J.H. Acoustic propagation characteristics of heteromorphic metamaterials. AIP Adv. 2018, 8, 105305. [Google Scholar]
- Méresse, P.; Audoly, C.; Croënne, C.; Hladky-Hennion, A.C. Acoustic coatings for maritime systems applications using resonant phenomena. Comptes Rendus Mec. 2015, 343, 645–655. [Google Scholar] [CrossRef]
- Hladky Hennion, A.-C.; Decarpigny, J.N.A. Analysis of the scattering of a plane acoustic wave by a doubly periodic structure using the finite element method: Application to Alberich anechoic coatings. J. Acoust. Soc. Am. 1991, 90, 3356–3367. [Google Scholar] [CrossRef]
- Fu, X.; Jin, Z.; Yin, Y.; Liu, B. Sound absorption of a rib-stiffened plate covered by anechoic coatings. J. Acoust. Soc. Am. 2015, 137, 1551–1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, H.; Wen, J.; Zhao, H.; Lv, L.; Wen, X. Analysis of absorption performances of anechoic layers with steel. J. Acoust. Soc. Am. 2012, 132, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Easwaran, V.; Munjal, M.L. Analysis of reflection characteristics of a normal incidence plane. J. Acoust. Soc. Am. 1993, 93, 1308–1318. [Google Scholar] [CrossRef]
- Panigrahi, S.N.; Jog, C.S.; Munjal, M.L. Multi-focus design of underwater noise control linings based on finite element analysis. Appl. Acoust. 2008, 69, 1141–1153. [Google Scholar] [CrossRef]
- Zhong, J.; Zhao, H.; Yang, H.; Wang, Y.; Yin, J.; Wen, J. Theoretical requirements and inverse design for broadband perfect absorption of low-frequency waterborne sound by ultrathin metasurface. Sci. Rep. 2019, 9, 1181. [Google Scholar] [CrossRef] [PubMed]
- ANSYS, Inc. Harmonic Acoustic Analysis. 14 December 2020. Available online: https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v202/en/wb_sim/ds_harmonic_acoustics.html (accessed on 6 September 2021).
- Zhou, F.; Fan, J.; Wang, B.; Peng, Z. Absorption Performance of an Anechoic Layer with a Steel Plate Backing at Oblique Incidence. Acoust. Aust. 2018, 46, 217–327. [Google Scholar] [CrossRef]
- Britannica. Impedance. 23 January 2021. Available online: https://www.britannica.com/science/sound-physics/Impedance (accessed on 20 October 2021).
- Ketabdari, S.H. Numerical simulation of a viscoelastic sound absorbent coating with a doubly periodic array of cavities. Cogent Eng. 2018, 5, 1529721. [Google Scholar]
Material Property | Anechoic Layer | Steel Layer |
---|---|---|
Density ()/kgm−3 | 1100 | 7800 |
Length ()/mm | 50 | 12 |
Wave speed ()/ms−1 | 325 | - |
Loss factor (). | 0.23 | - |
Controlled Variable | Anechoic Layer | Steel Layer |
---|---|---|
Young’s Modulus ()/Pa | ||
Bulk Modulus ()/Pa | ||
Shear Modulus ()/Pa | ||
Poisson’s Ratio () |
Parameter | Value |
---|---|
LengthA/mm | |
LengthS/mm | 25 |
Cavity Diameter/mm | 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daniels, C.; Perera, N. Investigation of Alberich Coating to Optimise Acoustic Stealth of Submarines. Acoustics 2022, 4, 362-381. https://doi.org/10.3390/acoustics4020022
Daniels C, Perera N. Investigation of Alberich Coating to Optimise Acoustic Stealth of Submarines. Acoustics. 2022; 4(2):362-381. https://doi.org/10.3390/acoustics4020022
Chicago/Turabian StyleDaniels, Callum, and Noel Perera. 2022. "Investigation of Alberich Coating to Optimise Acoustic Stealth of Submarines" Acoustics 4, no. 2: 362-381. https://doi.org/10.3390/acoustics4020022
APA StyleDaniels, C., & Perera, N. (2022). Investigation of Alberich Coating to Optimise Acoustic Stealth of Submarines. Acoustics, 4(2), 362-381. https://doi.org/10.3390/acoustics4020022