Excessive Glucose and Fructose Intake Aggravates the Pathogenesis of Rat Experimental Colitis
Abstract
:1. Introduction
2. Results
2.1. Changes in Body Weight and DAI Scores
2.2. Diet and 3% DSS Consumption
2.3. Changes in Rat Colon Lengths
2.4. Microscopic Observation and Evaluation of Colonic Inflammation
2.5. Evaluation of HIS and Serum Inflammatory Cytokines
2.6. Cytokine Concentration and mRNA Expression in Colon Tissues
2.7. Clinical Chemistry Parameter Measurement in Serum of Experimental Rats
3. Materials and Methods
3.1. Ethics Statement
3.2. Animals
3.3. Reagents
3.4. Protocol for Animal Experiments
3.5. Microscopic Examination of Harvested Rectal Tissues
3.6. Sample Preparation for the Protein Assay
3.7. Sample Preparation for the mRNA Assay
3.8. ELISA
3.9. Real-Time PCR
3.10. Clinical Chemistry Parameters Examined in Rat Serum
3.11. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marks, D.J.; Segal, A.W. Innate immunity in inflammatory bowel disease: A disease hypothesis. J. Pathol. 2008, 214, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Molodecky, N.A.; Soon, I.S.; Rabi, D.M.; Ghali, W.A.; Ferris, M.; Chernoff, G.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Barkema, H.W.; et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012, 142, 46–54. [Google Scholar] [CrossRef]
- Sartor, R.B. Mechanisms of disease: Pathogenesis of Crohn’s disease and ulcerative colitis. Nat. Clin. Pract. Gastroenterol. Hepatol. 2006, 3, 390–407. [Google Scholar] [CrossRef]
- Berends, S.E.; Strik, A.S.; Löwenberg, M.; D’Haens, G.R.; Mathôt, R.A.A. Clinical pharmacokinetic and pharmacodynamic considerations in the treatment of ulcerative colitis. Clin. Pharmacokinet. 2019, 58, 15–37. [Google Scholar] [CrossRef]
- Bibbò, S.; Ianiro, G.; Giorgio, V.; Scaldaferri, F.; Masucci, L.; Gasbarrini, A.; Cammarota, G. The role of diet on gut microbiota composition. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 4742–4749. [Google Scholar]
- Shen, J.; Zuo, Z.X.; Mao, A.P. Effect of probiotics on inducing remission and maintaining therapy in ulcerative colitis, Crohn’s disease, and pouchitis: Meta-analysis of randomized controlled trials. Inflamm. Bowel Dis. 2014, 20, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Kaur, L.; Gordon, M.; Baines, P.A.; Iheozor-Ejiofor, Z.; Sinopoulou, V.; Akobeng, A.K. Probiotics for induction of remission in ulcerative colitis. Cochrane Database Syst. Rev. 2020, 3, CD005573. [Google Scholar]
- Gravina, A.G.; Pellegrino, R.; Auletta, S.; Palladino, G.; Brandimarte, G.; D’Onofrio, R.; Arboretto, G.; Imperio, G.; Ventura, A.; Cipullo, M.; et al. Hericium erinaceus, a medicinal fungus with a centuries-old history: Evidence in gastrointestinal diseases. World J. Gastroenterol. 2023, 29, 3048–3065. [Google Scholar] [CrossRef]
- Chicco, F.; Magrì, S.; Cingolani, A.; Paduano, D.; Pesenti, M.; Zara, F.; Tumbarello, F.; Urru, E.; Melis, A.; Casula, L.; et al. Multidimensional Impact of Mediterranean Diet on IBD Patients. Inflamm. Bowel Dis. 2021, 27, 1–9. [Google Scholar] [CrossRef]
- Reddavide, R.; Rotolo, O.; Caruso, M.G.; Stasi, E.; Notarnicola, M.; Miraglia, C.; Nouvenne, A.; Meschi, T.; De’Angelis, G.L.; Di Mario, F.; et al. The role of diet in the prevention and treatment of Inflammatory Bowel Diseases. Acta Biomed. 2018, 89, 60–75. [Google Scholar]
- Rondanelli, M.; Lamburghini, S.; Faliva, M.A.; Peroni, G.; Riva, A.; Allegrini, P.; Spadaccini, D.; Gasparri, C.; Iannello, G.; Infantino, V.; et al. A food pyramid, based on a review of the emerging literature, for subjects with inflammatory bowel disease. Endocrinol. Diabetes. Nutr. 2021, 68, 17–46. [Google Scholar] [CrossRef]
- Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon, N.; Muller, A.; et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell 2016, 167, 1339–1353.e21. [Google Scholar] [CrossRef] [PubMed]
- Sarbagili-Shabat, C.; Albenberg, L.; Van Limbergen, J.; Pressman, N.; Otley, A.; Yaakov, M.; Wine, E.; Weiner, D.; Levine, A. A Novel UC Exclusion Diet and Antibiotics for Treatment of Mild to Moderate Pediatric Ulcerative Colitis: A Prospective Open-Label Pilot Study. Nutrients 2021, 13, 3736. [Google Scholar] [CrossRef] [PubMed]
- Basaranoglu, M.; Basaranoglu, G.; Bugianesi, E. Carbohydrate intake and nonalcoholic fatty liver disease: Fructose as a weapon of mass destruction. Hepatobiliary Surg. Nutr. 2015, 4, 109–116. [Google Scholar] [PubMed]
- Ma, X.; Nan, F.; Liang, H.; Shu, P.; Fan, X.; Song, X.; Hou, Y.; Zhang, D. Excessive intake of sugar: An accomplice of inflammation. Front. Immunol. 2022, 13, 988481. [Google Scholar] [CrossRef]
- Dey, M.; Cutolo, M.; Nikiphorou, E. Beverages in rheumatoid arthritis: What to prefer or to avoid. Nutrients 2020, 12, 3155. [Google Scholar] [CrossRef]
- Pasqualli, T.; Chaves, P.E.E.; Pereira, L.D.; Serpa, E.A.; de Oliveira, L.F.S.; Machado, M.M. The use of fructose as a sweetener. is it a safe alternative for our immune system? J. Food. Biochem. 2020, 44, e13496. [Google Scholar] [CrossRef]
- Zhang, D.F.; Jin, W.W.; Wu, R.Q.; Li, J.; Park, S.A.; Tu, E.; Zanvit, P.; Xu, J.; Liu, O.; Cain, A.; et al. High glucose intake exacerbates autoimmunity through reactive-Oxygen-Species-Mediated TGF-beta cytokine activation. Immunity 2019, 51, 671–681. [Google Scholar] [CrossRef]
- Khan, S.; Waliullah, S.; Godfrey, V.; Khan, M.A.W.; Ramachandran, R.A.; Cantarel, B.L.; Behrendt, C.; Peng, L.; Hooper, L.V.; Zaki, H. Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice. Sci. Trans. Med. 2020, 12, eaay6218. [Google Scholar] [CrossRef]
- Montrose, D.C.; Nishiguchi, R.; Basu, S.; Staab, H.A.; Zhou, X.K.; Wang, H.; Meng, L.; Johncilla, M.; Cubillos-Ruiz, J.R.; Morales, D.K.; et al. Dietary Fructose Alters the Composition, Localization, and Metabolism of Gut Microbiota in Association with Worsening Colitis. Cell. Mol. Gastroenterol. Hepatol. 2021, 11, 525–550. [Google Scholar] [CrossRef] [PubMed]
- Cooper, H.S.; Murthy, S.N.; Shah, R.S.; Sedergran, D.J. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab. Invest. 1933, 69, 238–249. [Google Scholar]
- Feagan, B.G.; Greenberg, G.R.; Wild, G.; Fedorak, R.N.; Paré, P.; McDonald, J.W.; Dubé, R.; Cohen, A.; Steinhart, A.H.; Landau, S.; et al. Treatment of ulcerative colitis with a humanized antibody to the alpha4beta7 integrin. N. Engl. J. Med. 2005, 352, 2499–2507. [Google Scholar] [CrossRef]
- Okada, K.; Itoh, H.; Kamikubo, Y.; Adachi, S.; Ikemoto, M. Establishment of S100A8 Transgenic Rats to Understand Innate Property of S100A8 and Its Immunological Role. Inflammation 2018, 41, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, L.A.; Madsen, K.A.; Cotterman, C.; Lustig, R.H. Added sugar intake and metabolic syndrome in US adolescents: Cross-sectional analysis of the national health and nutrition examination survey 2005–2012. Public Health Nutr. 2016, 19, 2424–2434. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, I. Is Fructose Sweeter Than Glucose for Rats? Physiol. Behav. 1996, 60, 1299–1306. [Google Scholar] [CrossRef]
- Ackroff, K.; Sclafani, A. Flavor preferences conditioned by sugars: Rats learn to prefer glucose over fructose. Physiol. Behav. 1991, 50, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Lustig, R.H.; Schmidt, L.A.; Brindis, C.D. The toxic truth about sugar. Nature 2012, 482, 27–29. [Google Scholar] [CrossRef]
- Wang, L.; Ji, T.; Yuan, Y.; Fu, H.; Wang, Y.; Tian, S.; Hu, J.; Wang, L.; Wang, Z. High-fructose corn syrup promotes proinflammatory Macrophage activation via ROS-mediated NF-κB signaling and exacerbates colitis in mice. Int. Immunopharmacol. 2022, 109, 108814. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, L.R.; Jenabzadeh, P. IBD and Bile Acid Absorption: Focus on Pre-clinical and Clinical Observations. Front. Physiol. 2020, 11, 564. [Google Scholar] [CrossRef]
- Queiroz-Leite, G.D.; Crajoinas, R.O.; Neri, E.A.; Bezerra, C.N.; Girardi, A.C.; Rebouças, N.A.; Malnic, G. Fructose acutely stimulates NHE3 activity in kidney proximal tubule. Kidney Blood Press. Res. 2012, 36, 320–334. [Google Scholar] [CrossRef] [PubMed]
DSS | DSS + Glu | DSS + Fru | |
---|---|---|---|
TP (g/dL) | 5.6 | 5.6 | 5.4 |
ALB (g/dL) | 4.2 | 3.6 | 3.6 |
Blood Glu (mg/dL) | 163 | 204 | 145 |
BUN (mg/dL) | 28.0 | 48.2 | 56.4 |
CRE (mg/dL) | 0.34 | 0.44 | 0.92 |
UA (mg/dL) | 1.3 | 1.5 | 1.9 |
Fe (μg/dL) | 163 | 118 | 151 |
AST (IU/L) | 162 | 103 | 465 |
ALT (IU/L) | 37 | 34 | 108 |
ALP (IU/L) | 84 | 133 | 244 |
LDH (IU/L) | 2097 | 644 | 2374 |
AMY (IU/L) | 1390 | 999 | 1331 |
CK (IU/L) | 1888 | 521 | 1031 |
r-GT (IU/L) | <3 | <3 | 3 |
ChE (IU/L) | 9 | 5 | 15 |
Lip (U/L) | 9 | 11 | 12 |
T-CHO (mg/dL) | 97 | 59 | 74 |
TG (mg/dL) | 84 | 78 | 68 |
LDL-C (mg/dL) | 8 | 8 | 10 |
HDL-C (mg/dL) | 33 | 17 | 24 |
Ingredient | Unit | AIN-93G | Glucose Diet | Fructose Diet |
Casein | % | 20 | 20 | 20 |
Cystine | % | 0.3 | 0.3 | 0.3 |
Alpha cornstarch | % | 39.75 | - | - |
Beta cornstarch | % | 13.2 | - | - |
Sucrose | % | 10 | - | - |
Glucose | % | - | 62.95 | - |
Fructose | % | - | - | 62.95 |
Soybean oil | % | 7 | 7 | 7 |
Cellulose powder | % | 5 | 5 | 5 |
Minerals | % | 3.5 | 3.5 | 3.5 |
Vitamins | % | 1 | 1 | 1 |
Choline bitartrate | % | 0.25 | 0.25 | 0.25 |
T-butylhydroquinone | % | 0.0014 | 0.0014 | 0.0014 |
Total | % | 100 | 100 | 100 |
Components | Unit | AIN-93G | Glucose Diet | Fructose Diet |
Water | g | 9 | 9 | 9 |
Crude protein | g | 18.1 | 16.9 | 16.9 |
Crude fat | g | 7.3 | 6.6 | 6.6 |
Crude ash | g | 3.1 | 2.8 | 2.8 |
Crude fiber | g | 5 | 4.7 | 4.7 |
Nitrogen-free extract (NFE) | g | 57.6 | 60 | 60 |
Calorie | kcal | 368 | 366.6 | 366.6 |
Protein calorie ratio | %kcal | 19.6 | 18.4 | 18.4 |
Fat calorie ratio | %kcal | 17.8 | 16.1 | 16.1 |
NFE calorie ratio | %kcal | 62.6 | 65.5 | 65.5 |
per 100 g diet |
DAI Scores | |||
---|---|---|---|
Scores | Weight Loss (%) | Stool Consistency | Occult/Gross Bleeding |
0 | None 1–5 | Normal | Normal |
1 | |||
2 | 6–10 | Loose stool | Occult bleeding |
3 | 11–20 | ||
4 | >20 | Diarrhea | Gross bleeding |
Histopathologic Index Score | |
---|---|
No activity (no extravascular neutrophils) | |
Normal biopsy or inactive colitis | 0 |
Mild activity (lamina propria neutrophils only) | |
Scattered individual neutrophils | 1 |
Patchy collections of neutrophils | 2 |
Diffuse neutrophilic infiltrate | 3 |
Moderate activity (cryptitis/crypt abscesses) | |
25% of crypts involved | 4 |
25–74% of crypts involved | 5 |
75% of crypts involved | 6 |
Severe activity | |
Erosions/ulcers | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okada, K.; Matsuo, K.; Amada, M.; Kashihara, S.; Katsuragi, K.; Doumae, M.; Moriwaki, M.; Yamauchi, R.; Yoshida, J. Excessive Glucose and Fructose Intake Aggravates the Pathogenesis of Rat Experimental Colitis. Gastrointest. Disord. 2023, 5, 474-486. https://doi.org/10.3390/gidisord5040039
Okada K, Matsuo K, Amada M, Kashihara S, Katsuragi K, Doumae M, Moriwaki M, Yamauchi R, Yoshida J. Excessive Glucose and Fructose Intake Aggravates the Pathogenesis of Rat Experimental Colitis. Gastrointestinal Disorders. 2023; 5(4):474-486. https://doi.org/10.3390/gidisord5040039
Chicago/Turabian StyleOkada, Kohki, Kano Matsuo, Miku Amada, Saki Kashihara, Koto Katsuragi, Miharu Doumae, Masaki Moriwaki, Ryouhei Yamauchi, and Jun Yoshida. 2023. "Excessive Glucose and Fructose Intake Aggravates the Pathogenesis of Rat Experimental Colitis" Gastrointestinal Disorders 5, no. 4: 474-486. https://doi.org/10.3390/gidisord5040039
APA StyleOkada, K., Matsuo, K., Amada, M., Kashihara, S., Katsuragi, K., Doumae, M., Moriwaki, M., Yamauchi, R., & Yoshida, J. (2023). Excessive Glucose and Fructose Intake Aggravates the Pathogenesis of Rat Experimental Colitis. Gastrointestinal Disorders, 5(4), 474-486. https://doi.org/10.3390/gidisord5040039