Immunohistochemical Analysis of Nicotinamide Phosphoribosyltransferase Expression in Gastric and Esophageal Adenocarcinoma (AEG)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sampath, D.; Zabka, T.S.; Misner, D.L.; O’Brien, T.; Dragovich, P.S. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) as a therapeutic strategy in cancer. Pharmacol. Ther. 2015, 151, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Bi, T.Q.; Che, X.M.; Liao, X.H.; Zhang, D.J.; Long, H.L.; Li, H.J.; Zhao, W. Overexpression of Nampt in gastric cancer and chemopotentiating effects of the Nampt inhibitor FK866 in combination with fluorouracil. Oncol. Rep. 2011, 26, 1251–1257. [Google Scholar] [PubMed] [Green Version]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef]
- Pramono, A.A.; Rather, G.M.; Herman, H.; Lestari, K.; Bertino, J.R. NAD- and NADPH-Contributing Enzymes as Therapeutic Targets in Cancer: An Overview. Biomolecules 2020, 10, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Zhang, N.; Liu, Y.; Su, P.; Liang, Y.; Li, Y.; Wang, X.; Chen, T.; Song, X.; Sang, Y.; et al. Epigenetic Regulation of NAMPT by NAMPT-AS Drives Metastatic Progression in Triple-Negative Breast Cancer. Cancer Res. 2019, 79, 3347–3359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.-Q.; Lei, J.; Mao, L.-H.; Wang, Q.-L.; Xu, F.; Ran, T.; Zhou, Z.-H.; He, S. NAMPT and NAPRT, Key Enzymes in NAD Salvage Synthesis Pathway, Are of Negative Prognostic Value in Colorectal Cancer. Front. Oncol. 2019, 9, 736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, K.; Dunseth, C.D.; Mott, S.L.; Cramer-Morales, K.L.; Miller, A.M.; Ear, P.H.; Mezhir, J.J.; Bellizzi, A.M.; Chan, C.H.F. Nicotinamide phosphoribosyltransferase expression and clinical outcome of resected stage I/II pancreatic ductal adenocarcinoma. PLoS ONE 2019, 14, e0213576. [Google Scholar] [CrossRef]
- Heske, C.M. Beyond Energy Metabolism: Exploiting the Additional Roles of NAMPT for Cancer Therapy. Front. Oncol. 2020, 9, 1514. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Hasan, M.K.; Alvarado, E.; Yuan, H.; Wu, H.; Chen, W.Y. NAMPT overexpression in prostate cancer and its contribution to tumor cell survival and stress response. Oncogene 2011, 30, 907–921. [Google Scholar] [CrossRef] [Green Version]
- Schuster, S.; Penke, M.; Gorski, T.; Gebhardt, R.; Weiss, T.S.; Kiess, W.; Garten, A. FK866-induced NAMPT inhibition activates AMPK and downregulates mTOR signaling in hepatocarcinoma cells. Biochem. Biophys. Res. Commun. 2015, 458, 334–340. [Google Scholar] [CrossRef]
- Bang, Y.J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.Y.; et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 2014, 15, 1224–1235. [Google Scholar] [CrossRef]
- Kono, K.; Nakajima, S.; Mimura, K. Current status of immune checkpoint inhibitors for gastric cancer. Gastric Cancer 2020, 23, 565–578. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Russo, A.E.; Strong, V.E. Gastric Cancer Etiology and Management in Asia and the West. Annu. Rev. Med. 2019, 70, 353–367. [Google Scholar] [CrossRef]
- Li, H.; Bai, E.; Zhang, Y.; Jia, Z.; He, S.; Fu, J. Role of Nampt and Visceral Adiposity in Esophagogastric Junction Adenocarcinoma. J. Immunol. Res. 2017, 2017, 3970605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, P.A.; Sano, T. The difference in gastric cancer between Japan, USA and Europe: What are the facts? What are the suggestions? Crit. Rev. Oncol. Hematol. 2001, 40, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Rahman, R.; Asombang, A.W.; Ibdah, J.A. Characteristics of gastric cancer in Asia. World J. Gastroenterol. 2014, 20, 4483–4490. [Google Scholar] [CrossRef] [PubMed]
- Garten, A.; Schuster, S.; Penke, M.; Gorski, T.; de Giorgis, T.; Kiess, W. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat. Rev. Endocrinol. 2015, 11, 535–546. [Google Scholar] [CrossRef]
- Olszanecka-Glinianowicz, M.; Owczarek, A.; Bożentowicz-Wikarek, M.; Brzozowska, A.; Mossakowska, M.; Zdrojewski, T.; Grodzicki, T.; Więcek, A.; Chudek, J. Relationship between circulating visfatin/NAMPT, nutritional status and insulin resistance in an elderly population—Results from the PolSenior substudy. Metabolism 2014, 63, 1409–1418. [Google Scholar] [CrossRef]
- Yoshino, J.; Mills, K.F.; Yoon, M.J.; Imai, S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011, 14, 528–536. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Park, B.; Joo, J.; Kook, M.C.; Kim, Y.I.; Lee, J.Y.; Kim, C.G.; Choi, I.J.; Eom, B.W.; Yoon, H.M.; et al. Body mass index and mortality in patients with gastric cancer: A large cohort study. Gastric Cancer 2018, 21, 913–924. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, Y.; Vaca-Paniagua, F.; Herrera, L.; Oñate, L.; Herrera-Goepfert, R.; Navarro-Martínez, G.; Cerrato, D.; Díaz-Velázquez, C.; Quezada, E.M.; García-Cuellar, C.; et al. Nutritional Indexes as Predictors of Survival and Their Genomic Implications in Gastric Cancer Patients. Nutr. Cancer 2021, 73, 1429–1439. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Lee, J.E.; Shin, S.J.; Oh, S.; Kwon, G.; Kim, H.; Choi, Y.Y.; White, M.A.; Paik, S.; et al. Selective Cytotoxicity of the NAMPT Inhibitor FK866 Toward Gastric Cancer Cells With Markers of the Epithelial-Mesenchymal Transition, Due to Loss of NAPRT. Gastroenterology 2018, 155, 799–814.e713. [Google Scholar] [CrossRef]
- Piacente, F.; Caffa, I.; Ravera, S.; Sociali, G.; Passalacqua, M.; Vellone, V.G.; Becherini, P.; Reverberi, D.; Monacelli, F.; Ballestrero, A.; et al. Nicotinic Acid Phosphoribosyltransferase Regulates Cancer Cell Metabolism, Susceptibility to NAMPT Inhibitors, and DNA Repair. Cancer Res. 2017, 77, 3857–3869. [Google Scholar] [CrossRef] [Green Version]
- Rajman, L.; Chwalek, K.; Sinclair, D.A. Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence. Cell Metab. 2018, 27, 529–547. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Ryu, D.; Wu, Y.; Gariani, K.; Wang, X.; Luan, P.; D’Amico, D.; Ropelle, E.R.; Lutolf, M.P.; Aebersold, R.; et al. NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 2016, 352, 1436–1443. [Google Scholar] [CrossRef] [Green Version]
- Guarente, L. CELL METABOLISM. The resurgence of NAD⁺. Science 2016, 352, 1396–1397. [Google Scholar] [CrossRef]
- Rüdiger Siewert, J.; Feith, M.; Werner, M.; Stein, H.J. Adenocarcinoma of the esophagogastric junction: Results of surgical therapy based on anatomical/topographic classification in 1, 002 consecutive patients. Ann. Surg. 2000, 232, 353–361. [Google Scholar] [CrossRef]
- Siewert, J.R.; Feith, M.; Stein, H.J. Biologic and clinical variations of adenocarcinoma at the esophago-gastric junction: Relevance of a topographic-anatomic subclassification. J. Surg. Oncol. 2005, 90, 139–146; discussion 146. [Google Scholar] [CrossRef]
- Treese, C.; Werchan, J.; von Winterfeld, M.; Berg, E.; Hummel, M.; Timm, L.; Rau, B.; Daberkow, O.; Walther, W.; Daum, S.; et al. Inhibition of MACC1-Induced Metastasis in Esophageal and Gastric Adenocarcinomas. Cancers 2022, 14, 1773. [Google Scholar] [CrossRef] [PubMed]
- Arnold, A.; Daum, S.; von Winterfeld, M.; Berg, E.; Hummel, M.; Horst, D.; Rau, B.; Stein, U.; Treese, C. Analysis of NTRK expression in gastric and esophageal adenocarcinoma (AGE) with pan-TRK immunohistochemistry. Pathol. Res. Pract. 2019, 215, 152662. [Google Scholar] [CrossRef] [PubMed]
- Arnold, A.; Daum, S.; von Winterfeld, M.; Berg, E.; Hummel, M.; Rau, B.; Stein, U.; Treese, C. Prognostic impact of Claudin 18.2 in gastric and esophageal adenocarcinomas. Clin. Transl. Oncol. 2020, 22, 2357–2363. [Google Scholar] [CrossRef] [PubMed]
- Pötzsch, M.; Berg, E.; Hummel, M.; Stein, U.; von Winterfeld, M.; Jöhrens, K.; Rau, B.; Daum, S.; Treese, C. Better prognosis of gastric cancer patients with high levels of tumor infiltrating lymphocytes is counteracted by PD-1 expression. Oncoimmunology 2020, 9, 1824632. [Google Scholar] [CrossRef]
All | NAMPT | |||||
---|---|---|---|---|---|---|
Low | High | |||||
n | n | (%) | n | (%) | p | |
Gender | ||||||
Female | 107 | 97 | (90.7) | 10 | (9.3) | 0.797 |
Male | 189 | 173 | (91.5) | 16 | (8.5) | |
Age Group | ||||||
<65 years | 168 | 158 | (94.0) | 10 | (6.0) | 0.049 |
>=65 years | 128 | 112 | (87.5) | 16 | (12.5) | |
BMI | ||||||
<18 | 9 | 9 | (100) | 0 | (0.0) | 0.415 |
18–25 | 164 | 147 | (89.6) | 17 | (10.4) | |
>25 | 112 | 104 | (92.9) | 8 | (7.1) | |
Localization | ||||||
Gastric Cancer | 247 | 226 | (91.5) | 21 | (8.5) | 0.701 |
AEG | 49 | 44 | (89.8) | 5 | (10.2) | |
Tumor Stage | ||||||
T1 | 41 | 36 | (87.8) | 5 | (12.2) | 0.605 |
T2 | 122 | 109 | (89.3) | 13 | (10.7) | |
T3 | 104 | 97 | (93.3) | 7 | (6.7) | |
T4 | 28 | 27 | (96.4) | 1 | (3.6) | |
Unspecified | 1 | 0 | (0.0) | 1 | (100) | |
Node Stage | ||||||
N0 | 77 | 68 | (88.3) | 9 | (11.7) | 0.295 |
N+ | 219 | 202 | (92.2) | 17 | (7.8) | |
Metastasis | ||||||
M0 | 212 | 192 | (90.6) | 20 | (9.4) | 0.530 |
M1 | 84 | 78 | (92.9) | 6 | (7.1) | |
Lymph Vessel Invasion | ||||||
L0 | 97 | 87 | (89.7) | 10 | (10.3) | 0.331 |
L1 | 179 | 163 | (91.1) | 16 | (8.9) | |
Unspecified | 20 | 20 | (100) | 0 | (0.0) | |
Vein Invasion | ||||||
V0 | 176 | 161 | (91.5) | 15 | (8.5) | 0.221 |
V1 | 97 | 86 | (88.7) | 11 | (11.3) | |
Unspecified | 23 | 23 | (100) | 0 | (0.0) | |
Grading | ||||||
G1 | 1 | 1 | (100) | 0 | (0.0) | 0.926 |
G2 | 74 | 68 | (91.9) | 6 | (8.1) | |
G3 | 218 | 198 | (90.8) | 20 | (9.2) | |
Unspecified | 3 | 3 | (100) | 0 | (0.0) | |
Lauren Classification | ||||||
Intestinal | 102 | 91 | (89.2) | 11 | (10.8) | 0.445 |
Diffuse | 153 | 143 | (93.5) | 10 | (6.5) | |
Mixed | 38 | 33 | (86.8) | 5 | (13.2) | |
Unspecified | 3 | 3 | (100) | 0 | (0.0) | |
Ming Classification | ||||||
Expansive | 118 | 105 | (89.0) | 13 | (11.0) | 0.491 |
Infiltrative | 175 | 162 | (92.6) | 13 | (7.4) | |
Unspecified | 3 | 3 | (100) | 0 | (0.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnold, A.; von Winterfeld, M.; Berg, E.; Hummel, M.; Rau, B.; Krenzien, F.; Stein, U.; Treese, C. Immunohistochemical Analysis of Nicotinamide Phosphoribosyltransferase Expression in Gastric and Esophageal Adenocarcinoma (AEG). Gastrointest. Disord. 2022, 4, 333-340. https://doi.org/10.3390/gidisord4040031
Arnold A, von Winterfeld M, Berg E, Hummel M, Rau B, Krenzien F, Stein U, Treese C. Immunohistochemical Analysis of Nicotinamide Phosphoribosyltransferase Expression in Gastric and Esophageal Adenocarcinoma (AEG). Gastrointestinal Disorders. 2022; 4(4):333-340. https://doi.org/10.3390/gidisord4040031
Chicago/Turabian StyleArnold, Alexander, Moritz von Winterfeld, Erika Berg, Michael Hummel, Beate Rau, Felix Krenzien, Ulrike Stein, and Christoph Treese. 2022. "Immunohistochemical Analysis of Nicotinamide Phosphoribosyltransferase Expression in Gastric and Esophageal Adenocarcinoma (AEG)" Gastrointestinal Disorders 4, no. 4: 333-340. https://doi.org/10.3390/gidisord4040031
APA StyleArnold, A., von Winterfeld, M., Berg, E., Hummel, M., Rau, B., Krenzien, F., Stein, U., & Treese, C. (2022). Immunohistochemical Analysis of Nicotinamide Phosphoribosyltransferase Expression in Gastric and Esophageal Adenocarcinoma (AEG). Gastrointestinal Disorders, 4(4), 333-340. https://doi.org/10.3390/gidisord4040031