Corrosion Mechanisms of Commercial Superalloys in Binary and Ternary Chloride Molten Salts
Abstract
1. Introduction
2. Experimental Methods
2.1. Materials Preparation
2.2. Exposure Test
2.3. Characterization Methods
3. Results
3.1. Microstructure Characterization
3.2. Corrosion Rate
3.3. Corrosion Product Analysis
3.4. Corrosion Morphology
3.4.1. NaCl–KCl Binary Molten Salts
3.4.2. NaCl–KCl–MgCl2
4. Discussion
4.1. Corrosion Mechanism of Inconel 625 in Molten Salts
4.2. Corrosion Mechanism of SS321 in Molten Salts
5. Conclusions
- (1)
- In binary molten salt, Inconel 625 undergoes sequential oxidation where Cr preferentially forms an outer Cr2O3 layer, followed by Ni oxidation generating an inner NiCr2O4 layer. Prolonged Cr depletion leads to Cr-depleted zones and intergranular corrosion. In contrast, in the ternary salt system, MgO replaces Cr2O3 as the dominant corrosion product. This is accompanied by Mo enrichment near the surface, which provides localized protection and collectively contributes to superior corrosion resistance compared to the binary salt environment.
- (2)
- When SS321 is exposed to binary molten salt, Cr preferentially oxidizes to form Cr2O3, followed by Fe and Ni oxidation producing a mixed, porous oxide layer, making grain boundaries susceptible to corrosion and damage. In ternary system, Cr2O3 is unstable and reacts with MgO to form loose MgCr2O4. Lacking stable elements such as Mo to provide support, an effective protective barrier cannot form, leading to rapid Cr depletion, severe grain boundary degradation, and a corrosion rate higher than in the binary salt environment.
- (3)
- The corrosion rate of Inconel 625 is 786.30 µm/y in the binary salt, which further decreases to 85.71 µm/y in the ternary salt. In contrast, SS321 shows much higher corrosion rates of 2143.38 µm/y in NaCl–KCl and 2835.51 µm/y in MgCl2–NaCl–KCl. Although MgCl2 increases the corrosivity of the molten salt, the H+, O2−, and Cl2 generated during its hydrolysis accelerate Cr dissolution, simultaneously promoting Mo enrichment in Inconel 625, enhancing its corrosion resistance. In contrast, in SS321, which lacks corrosion-resistant elements, MgCl2 primarily accelerates Cr depletion and structural degradation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Myers, P.D.; Goswami, D.Y. Thermal energy storage using chloride salts and their eutectics. Appl. Therm. Eng. 2016, 109, 889–900. [Google Scholar] [CrossRef]
- Henry, A.; Prasher, R. The prospect of high temperature solid state energy conversion to reduce the cost of concentrated solar power. Energy Environ. Sci. 2014, 7, 1819–1828. [Google Scholar] [CrossRef]
- Roeb, M.; Neises, M.; Monnerie, N.; Sattler, C.; Pitz-Paal, R. Technologies and trends in solar power and fuels. Energy Environ. Sci. 2011, 4, 2503–2511. [Google Scholar] [CrossRef]
- Villada, C.; Ding, W.; Bonk, A.; Bauer, T. Engineering molten MgCl2–KCl–NaCl salt for high-temperature thermal energy storage: Review on salt properties and corrosion control strategies. Sol. Energy Mater. Sol. Cells 2021, 232, 111344. [Google Scholar] [CrossRef]
- Sohal, M.S.; Ebner, M.A.; Sabharwall, P.; Sharpe, P. Engineering Database of Liquid Salt Thermos-Physical and Thermochemical Properties; No. INL/EXT-10-18297; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2010. [CrossRef]
- Kearney, D.; Herrmann, U.; Nava, P.; Kelly, B.; Mahoney, R.; Pacheco, J.; Cable, R.; Blake, D.; Price, H. Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. J. Sol. Energy Eng. 2003, 125, 170–176. [Google Scholar] [CrossRef]
- Fu, D.; Zhang, C.; Wang, G.; Na, H.; Wu, Y. An update review of molecular dynamic study on thermal physical properties of molten salt. Sol. Energy Mater. Sol. Cells. 2024, 273, 112916. [Google Scholar] [CrossRef]
- Xu, X.; Wang, X.; Li, P.; Li, Y.; Hao, Q.; Xiao, B.; Elsentriecy, H.; Gervasio, D. Experimental test of properties of KCl–MgCl2 eutectic molten salt for heat transfer and thermal storage fluid in concentrated solar power systems. J. Sol. Energy Eng. 2018, 140, 051011. [Google Scholar] [CrossRef]
- Wei, X.; Song, M.; Wang, W.; Ding, J.; Yang, J. Design and thermal properties of a novel ternary chloride eutectics for high-temperature solar energy storage. Appl. Energy. 2015, 156, 306–310. [Google Scholar] [CrossRef]
- Mehos, M.; Turchi, C.; Vidal, J.; Wagner, M.; Ma, Z.; Ho, C.; Kolb, W.; Andraka, C.; Kruizenga, A. Concentrating Solar Power Gen3 Demonstration Roadmap; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2017. [CrossRef]
- Vidal, J.C.; Klammer, N. Molten chloride technology pathway to meet the U.S. DOE SunShot initiative with Gen3 CSP. AIP Conf. Proc. 2019, 2126, 080006. [Google Scholar] [CrossRef]
- Vignarooban, K.; Xu, X.; Arvay, A.; Hsu, K.; Kannan, A.M. Heat transfer fluids for concentrating solar power systems—A review. Appl. Energy. 2015, 146, 383–396. [Google Scholar] [CrossRef]
- Serrano-López, R.; Fradera, J.; Cuesta-López, S. Molten salts database for energy applications. Chem. Eng. Process. Process Intensif. 2013, 73, 87–102. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Wang, X.; Li, P.; Hao, Q.; Xiao, B. Survey and evaluation of equations for thermophysical properties of binary/ternary eutectic salts from NaCl, KCl, MgCl2, CaCl2, ZnCl2 for heat transfer and thermal storage fluids in CSP. Sol. Energy 2017, 152, 57–79. [Google Scholar] [CrossRef]
- Sergeev, D.; Kobertz, D.; Müller, M. Thermodynamics of the NaCl–KCl system. Thermochim. Acta. 2015, 606, 25–33. [Google Scholar] [CrossRef]
- Ding, W.; Bonk, A.; Bauer, T. Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review. Front. Chem. Sci. Eng. 2018, 12, 564–576. [Google Scholar] [CrossRef]
- Gong, Q.; Shi, H.; Chai, Y.; Yu, R.; Weisenburger, A.; Wang, D.; Bonk, A.; Bauer, T.; Ding, W. Molten chloride salt technology for next-generation CSP plants: Compatibility of Fe-based alloys with purified molten MgCl2–KCl–NaCl salt at 700 °C. Appl. Energy. 2022, 324, 119708. [Google Scholar] [CrossRef]
- Hu, S.; Finklea, H.; Liu, X. A review on molten sulfate salts induced hot corrosion. J. Mater. Sci. Technol. 2021, 90, 243–254. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Yu, G.; Hou, J.; Zeng, C. Electrochemical study of the corrosion of a Ni-based alloy GH3535 in molten (Li, Na, K) F at 700 °C. J. Fluor. Chem. 2015, 178, 14–22. [Google Scholar] [CrossRef]
- Sun, H.; Wang, J.; Li, Z.; Zhang, P.; Su, X. Corrosion behavior of 316SS and Ni-based alloys in a ternary NaCl–KCl–MgCl2 molten salt. Sol. Energy. 2018, 171, 320–329. [Google Scholar] [CrossRef]
- Xu, Z.; Guan, B.; Wei, X.; Lu, J.; Ding, J.; Wang, W. High-temperature corrosion behavior of Inconel 625 alloy in a ternary molten salt of NaCl–CaCl2–MgCl2 in air and N2. Sol. Energy. 2022, 238, 216–225. [Google Scholar] [CrossRef]
- Yu, R.; Gong, Q.; Shi, H.; Chai, Y.; Bonk, A.; Weisenburger, A.; Wang, D.; Müller, G.; Bauer, T.; Ding, W. Corrosion behavior of Fe-Cr-Ni based alloys exposed to molten MgCl2–KCl–NaCl salt with over-added Mg corrosion inhibitor. Front. Chem. Sci. Eng. 2023, 17, 1608–1619. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, H.; Yin, H.; Li, N.; Wang, W.; Li, L.; Tang, Z.; Qian, Y. Corrosion behaviour of 316 stainless steel in NaCl–KCl–MgCl2 salt vapour at 700 °C. Corros. Sci. 2022, 194, 109921. [Google Scholar] [CrossRef]
- Shankar, V.; Bhanu Sankara Rao, K.; Mannan, S.L. Microstructure and mechanical properties of Inconel 625 superalloy. J. Nucl. Mater. 2001, 288, 222–232. [Google Scholar] [CrossRef]
- Li, S.; Wei, Q.; Shi, Y.; Zhu, Z.; Zhang, D. Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting. J. Mater. Sci. Technol. 2015, 31, 946–952, Erratum in J. Mater. Sci. Technol. 2016, 32, e1. https://doi.org/10.1016/j.jmst.2016.06.009. [Google Scholar] [CrossRef]
- de Oliveira, M.M.; Couto, A.A.; Almeida, G.F.C.; Reis, D.A.P.; de Lima, N.B.; Baldan, R. Mechanical behavior of Inconel 625 at elevated temperatures. Metals 2019, 9, 301. [Google Scholar] [CrossRef]
- Gumma, S.; Roychowdhury, S. Effect of solution annealing treatment parameters on sensitization behavior of SS321. J. Mater. Eng. Perform. 2025, 34, 2227–2241. [Google Scholar] [CrossRef]
- Manokaran, M.; Kashinath, A.S.; Jha, J.S.; Toppo, S.P.; Singh, R. Understanding the stress rupture behavior and microstructural changes in austenitic stainless steel SS321. J. Mater. Eng. Perform. 2021, 30, 9165–9180. [Google Scholar] [CrossRef]
- Pownceby, M.I.; Jenkins, D.H.; Ruzbacky, R.; Saunders, S. Preparation of anhydrous magnesium chloride: Solid–liquid phase diagram for the system MgCl2–NH3–C2H4[OH]2 at 323 K. J. Chem. Eng. Data 2012, 57, 2855–2862. [Google Scholar] [CrossRef]
- Rammelberg, H.U.; Schmidt, T.; Ruck, W. Hydration and dehydration of salt hydrates and hydroxides for thermal energy storage—Kinetics and energy release. Energ. Procedia 2012, 30, 362–369. [Google Scholar] [CrossRef]
- Zhang, M.; Leong, A.; Ren, J.; Zhang, J. Corrosion kinetics of pure metals (Fe, Cr, Ni) and alloys (A709, SS316) in thermal and chemical purified molten chloride salt. RSC Adv. 2025, 15, 19013–19022. [Google Scholar] [CrossRef]
- Lee, U.; Kim, M.W.; Na, J.; Lee, M.; Kim, S.J.; Kim, D.-J.; Yoon, Y.S. A study on the corrosion behavior of Fe/Ni-based structural materials in unpurified molten chloride salt. Materials. 2025, 18, 1653. [Google Scholar] [CrossRef]
- Liu, S.; Wang, R.; Wang, L.; Ge, F.; Gao, M.; Si, Y.; Li, B. Corrosion behavior of iron-based and Ni-based alloys melted in NaCl–MgCl2–KCl mixed molten salt under vacuum atmosphere. J. Mater. Res. Technol. 2024, 28, 1915–1923. [Google Scholar] [CrossRef]
- Huang, T.; Yu, R.; Zhang, X.; Gao, B.; Yue, S.; Hu, H.; Wu, K. Hot corrosion behavior of Fe-Cr-Ni based alloys in molten chlorides using Ti as purification agent. J. Alloys Compd. 2025, 1031, 181046. [Google Scholar] [CrossRef]
- Gertsman, V.Y.; Bruemmer, S.M. Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys. Acta Mater. 2001, 49, 1589–1598. [Google Scholar] [CrossRef]
- Gao, B.; Yu, R.; Chen, S.; Hu, H.; Wu, K.; Zhang, X. Corrosion behavior of surface-modified Ni-based alloys in molten NaCl–KCl for thermal energy storage. Mater. Chem. Phys. 2025, 332, 130288. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Z.; Liu, W.; Yin, H.; Tang, Z.; Qian, Y. Ni-Mo-Cr alloy corrosion in molten NaCl–KCl–MgCl2 salt and vapour. Corros. Sci. 2021, 180, 109183. [Google Scholar] [CrossRef]
- Chi, L.; Sun, H.; Zhou, X. Effects of alloying elements (Mo and W) on corrosion behavior of Ni-based alloys in NaCl–KCl–MgCl2 molten salt. Corros. Sci. 2024, 237, 112313. [Google Scholar] [CrossRef]
- Ding, W.; Shi, H.; Xiu, Y.; Bonk, A.; Weisenburger, A.; Jianu, A.; Bauer, T. Hot corrosion behavior of commercial alloys in thermal energy storage material of molten MgCl2/KCl/NaCl under inert atmosphere. Sol. Energy Mater. Sol. Cells. 2018, 184, 22–30. [Google Scholar] [CrossRef]
Samples | Ni | Fe | Cr | Mo | Nb | Al | Ti | Mn | Si | C | S | P |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Inconel625 | Bal. | 2.0 | 21.5 | 9.0 | 3.6 | 0.2 | 0.2 | 0.2 | 0.2 | 0.05 | 0.001 | 0.001 |
SS321 | 8.6 | Bal. | 17.3 | 0.09 | 0.001 | 0.06 | 0.2 | 1.3 | 0.4 | 0.02 | 0.001 | 0.02 |
Property | Melting Point | Specific Heat Capacity | Thermal Stability | Corrosiveness | Cost |
---|---|---|---|---|---|
NaCl–KCl (1:1 mol%) | High (~657 °C) [10] | Maximum [10] | Moderate (<750 °C) [10] | Moderate [10] | Low [10] |
NaCl–KCl–MgCl2 (1:1:3 mol%) | Low (~385–430 °C) [10] | High [10] | High (>850 °C) [10] | Strong [10] | Lower [10] |
Point | Fe | Ni | Cr | Mo | Nb | Mn | O |
---|---|---|---|---|---|---|---|
1 | \ | \ | 52.19 | \ | \ | \ | 47.81 |
2 | 4.63 | 4.01 | 33.11 | \ | \ | \ | 58.25 |
3 | 1.23 | 11.83 | 36.93 | \ | 1.39 | \ | 48.62 |
4 | 7.80 | 75.64 | 11.06 | 5.50 | \ | \ | \ |
5 | 2.15 | 62.98 | 3.91 | 9.17 | 10.47 | \ | 11.32 |
6 | 13.30 | 1.83 | 24.99 | \ | \ | \ | 59.88 |
7 | 31.90 | 9.95 | 22.54 | \ | \ | \ | 35.61 |
8 | 6.67 | \ | 34.10 | \ | \ | 3.47 | 55.76 |
9 | 80.52 | 11.00 | 8.48 | \ | \ | \ | \ |
Point | Fe | Ni | Cr | Mo | Ti | Mg | O |
---|---|---|---|---|---|---|---|
1 | 2.14 | 0.69 | \ | \ | \ | 52.01 | 45.16 |
2 | 0.89 | 0.46 | 0.09 | \ | \ | 50.20 | 48.36 |
3 | 30.12 | 22.66 | 2.07 | 14.05 | \ | 4.67 | 26.43 |
4 | 9.44 | 7.74 | 4.58 | 7.16 | \ | 18.05 | 53.03 |
5 | 23.01 | 19.97 | 2.50 | 26.81 | \ | 2.78 | 24.93 |
6 | 0.89 | \ | 6.98 | \ | 0.85 | 34.94 | 56.34 |
7 | 2.23 | \ | 11.31 | \ | 1.01 | 33.14 | 52.31 |
8 | 67.46 | 27.36 | \ | \ | \ | \ | 5.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Zhang, X.; Huang, T.; Yu, R.; Wu, K. Corrosion Mechanisms of Commercial Superalloys in Binary and Ternary Chloride Molten Salts. Corros. Mater. Degrad. 2025, 6, 49. https://doi.org/10.3390/cmd6040049
Hu H, Zhang X, Huang T, Yu R, Wu K. Corrosion Mechanisms of Commercial Superalloys in Binary and Ternary Chloride Molten Salts. Corrosion and Materials Degradation. 2025; 6(4):49. https://doi.org/10.3390/cmd6040049
Chicago/Turabian StyleHu, Hongyi, Xian Zhang, Tianyou Huang, Rui Yu, and Kaiming Wu. 2025. "Corrosion Mechanisms of Commercial Superalloys in Binary and Ternary Chloride Molten Salts" Corrosion and Materials Degradation 6, no. 4: 49. https://doi.org/10.3390/cmd6040049
APA StyleHu, H., Zhang, X., Huang, T., Yu, R., & Wu, K. (2025). Corrosion Mechanisms of Commercial Superalloys in Binary and Ternary Chloride Molten Salts. Corrosion and Materials Degradation, 6(4), 49. https://doi.org/10.3390/cmd6040049