Co-Adsorption of Formic Acid and Hexane Selenol on Cu
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SAM | Self-assembled monolayer |
XPS | X-ray photoelectron spectroscopy |
L | Langmuir |
UHV | Ultra-high vacuum |
References
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103–1170. [Google Scholar] [CrossRef]
- Schreiber, F. Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 2000, 65, 151–257. [Google Scholar] [CrossRef]
- Ulman, A. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996, 96, 1533–1554. [Google Scholar] [CrossRef] [PubMed]
- Hosseinpour, S.; Hedberg, J.; Baldelli, S.; Leygraf, C.; Johnson, M. Initial oxidation of alkanethiol-covered copper studied by vibrational sum frequency spectroscopy. J. Phys. Chem. C 2011, 115, 23871–23879. [Google Scholar] [CrossRef]
- Hosseinpour, S.; Schwind, M.; Kasemo, B.; Leygraf, C.; Johnson, M. Integration of Quartz Crystal Microbalance with Vibrational Sum Frequency Spectroscopy−Quantification of the initial Oxidation of Alkanethiol-Covered Copper. J. Phys. Chem. C 2012, 116, 24549–24557. [Google Scholar] [CrossRef]
- Hosseinpour, S.; Johnson, C.M.; Leygraf, C. Alkanethiols as inhibitors for the atmospheric corrosion of copper induced by formic acid: Effect of chain length. J. Electrochem. Soc. 2013, 160, C270–C276. [Google Scholar] [CrossRef]
- Hosseinpour, S.; Göthelid, M.; Leygraf, C.; Johnson, C.M. Self-Assembled Monolayers as Inhibitors for the Atmospheric Corrosion of Copper Induced by Formic Acid: A Comparison between Hexanethiol and Hexaneselenol. J. Electrochem. Soc. 2014, 161, C50–C56. [Google Scholar] [CrossRef]
- Zhao, W.; Göthelid, M.; Hosseinpour, S.; Johansson, M.; Li, G.; Leygraf, C.; Johnsson, M. The nature of self-assembled octadecylphosphonic acid (ODPA) layers on copper substrates. J. Colloid Interface Sci. 2021, 581, 816–825. [Google Scholar] [CrossRef]
- Martinovic, I.; Zlatic, G.; Pilic, Z.; Susie, L.; Kowalska, O.; Petrovic, D.; Falak, F.; Miskovic, J. Self-Assembled Monolayers of Alkanethiol as Inhibitors against Copper Corrosion in Synthetic Acid Rain. Int. J. Electrochem. Sci. 2019, 14, 4206–4215. [Google Scholar] [CrossRef]
- Feng, L.; Zheng, S.; Zhu, H.; Ma, X.; Hu, Z. Detection of corrosion inhibition by dithiane self-assembled monolayers (SAMs) on copper. J. Taiwan Inst. Chem. Eng. 2023, 142, 104610. [Google Scholar] [CrossRef]
- Mendoza, A.R.; Corvo, F. Outdoor and indoor atmospheric corrosion of non-ferrous metals. Corros. Sci. 2000, 42, 1123–1147. [Google Scholar] [CrossRef]
- Bastidas, J.M.; López-Delgado, A.; Cano, E.; Polo, J.L.; López, F.A. Copper Corrosion Mechanism in the Presence of Formic Acid Vapor for Short Exposure Times. J. Electrochem. Soc. 2000, 147, 999. [Google Scholar] [CrossRef]
- Notoya, T. Localized corrosion in copper tubes and the effect of anti-tarnishing pretreatment. J. Mater. Sci. Lett. 1991, 10, 389–391. [Google Scholar] [CrossRef]
- Bastidas, D.M.; Cayuela, I.; Bastidas, J.M. Ant-nest corrosion of copper tubing in air-conditioning units. Rev. Metal. 2006, 42, 367–381. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Li, D.; Wang, Z.; Zhang, X.; Wang, S. An Investigation on the Mechanisms of Ant Nest Corrosion of Copper Tube in Formic Acid Environment. Mater. Corros. 2023, 74, 138–144. [Google Scholar] [CrossRef]
- de la Llave, E.; Scherlis, D.A. Selenium-Based Self-Assembled Monolayers: The Nature of Adsorbate−Surface Interactions. Langmuir 2010, 26, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Ossowski, J.; Wächter, T.; Silies, L.; Kind, M.; Noworolska, A.; Blobner, F.; Gnatek, D.; Rysz, J.; Bolte, M.; Feulner, P.; et al. Thiolate vs. selenolate: Structure, stability and charge transfer properties. ACS Nano 2015, 9, 4508–4526. [Google Scholar] [CrossRef]
- Tong, Y.; Jiang, T.; Bendounan, A.; Kotresh Harish, M.N.; Giglia, A.; Kubsky, S.; Sirotti, F.; Pasquali, L.; Sampath, S.; Esaulov, V.A. Case studies on the formation of chalcogenide self-assembled monolayers on surfaces and dissociative processes. Bielstein J. Nanotechnol. 2016, 7, 263–277. [Google Scholar] [CrossRef]
- Göthelid, M.; Hosseinpour, S.; Ahmadi, S.; Leygraf, C.; Johnson, C.M. Hexane selenol dissociation on Cu: The protective role of oxide and water. Appl. Surf. Sci. 2017, 423, 716–720. [Google Scholar] [CrossRef]
- Osada, W.; Tanaka, S.; Mukai, K.; Hyun Choi, Y.; Yoshinobu, J. Adsorption, desorption and decomposition of formic acid on Cu(977); the importance of facet of the step. J. Phys. Chem. C 2022, 126, 8354–8363. [Google Scholar] [CrossRef]
- Hohmann, L.; Dahlmann, F.; Braghin, G.B.; Laviron, L.; Hussein, L.; Martinez, J.; Harrer, A.; Robertson, H.; Guiborat, J.; Hu, X.; et al. Naphthalene Decomposition on Fe(110): Adsorption, Dehydrogenation, Surface Carbon Formation and the Influence of Coadsorbed Oxygen. J. Phys. Chem. C 2025, 129, 2441–2452. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zaera, F. Adsorption and thermal chemistry of formic acid on clean and oxygen-predosed Cu(110) single crystal surfaces revisited. Surf. Sci. 2016, 646, 37–44. [Google Scholar] [CrossRef]
- Tillborg, H.; Nilsson, A.; Mårtensson, N. Shake-up and shake-off structures in core level photoemission spectra from adsorbates. J. Electron Spectrosc. Relat. Phenom. 1993, 62, 73–93. [Google Scholar] [CrossRef]
- Önsten, A.; Stoltz, D.; Palmgren, P.; Yu, S.; Göthelid, M.; Karlsson, U.O. Water adsorption on ZnO(0001): Transition from triangular reconstructions to hydroxyl termination. J. Phys. Chem. C 2010, 114, 11157–11161. [Google Scholar] [CrossRef]
- Tissot, H.; Halldin Stenlid, J.; Wang, C.; Panahi, M.; Kaya, S.; Brinck, T.; Sassa, Y.; Johansson, F.O.L.; Weissenrieder, J. Acetic acid conversion to ketene on Cu2O(100): Reaction mechanism deduced from experimental observations and theoretical computations. J. Catal. 2021, 402, 154–165. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Götelid, M.A.; Götelid, S.A.; Hosseinpour, S.; Leygraf, C.; Johnson, C.M. Co-Adsorption of Formic Acid and Hexane Selenol on Cu. Corros. Mater. Degrad. 2025, 6, 48. https://doi.org/10.3390/cmd6040048
Götelid MA, Götelid SA, Hosseinpour S, Leygraf C, Johnson CM. Co-Adsorption of Formic Acid and Hexane Selenol on Cu. Corrosion and Materials Degradation. 2025; 6(4):48. https://doi.org/10.3390/cmd6040048
Chicago/Turabian StyleGötelid, Mats Ahmadi, Sareh Ahmadi Götelid, Saman Hosseinpour, Christofer Leygraf, and C. Magnus Johnson. 2025. "Co-Adsorption of Formic Acid and Hexane Selenol on Cu" Corrosion and Materials Degradation 6, no. 4: 48. https://doi.org/10.3390/cmd6040048
APA StyleGötelid, M. A., Götelid, S. A., Hosseinpour, S., Leygraf, C., & Johnson, C. M. (2025). Co-Adsorption of Formic Acid and Hexane Selenol on Cu. Corrosion and Materials Degradation, 6(4), 48. https://doi.org/10.3390/cmd6040048