Review of Corrosion Evaluation Methods for Steel Reinforcement in Concrete
Abstract
1. Introduction
2. Steel Rebar Corrosion Evaluation and Methods
2.1. Electrochemical Techniques
2.1.1. Half-Cell Potential Measurement
2.1.2. Concrete Resistivity Measurement
2.1.3. Linear Polarization Resistance
2.1.4. Electrochemical Impedance Spectroscopy
2.2. Ultrasonic Method
2.3. X-Ray Tomography Method
2.4. Infrared Thermography Method
2.5. Ground Penetrating Radar Method
2.6. Magnetic Flux Leakage Method
2.7. Eddy Current Testing Method
3. Summary, Discussion, and Recommendations
- -
- -
- -
Funding
Data Availability Statement
Conflicts of Interest
References
- Amir, O. A topology optimization procedure for reinforced concrete structures. Comput. Struct. 2013, 114, 46–58. [Google Scholar] [CrossRef]
- Melchers, R.E. Long-Term Durability of Marine Reinforced Concrete Structures. J. Mar. Sci. Eng. 2020, 8, 290. [Google Scholar] [CrossRef]
- Nishiyama, M. Mechanical properties of concrete and reinforcement—State-of-the-art report on HSC and HSS in Japan. J. Adv. Concr. Technol. 2009, 7, 157–182. [Google Scholar] [CrossRef]
- Cabrera, J.G. Deterioration of concrete due to reinforcement steel corrosion. Cem. Concr. Compos. 1996, 18, 47–59. [Google Scholar] [CrossRef]
- Abosrra, L.; Ashour, A.F.; Youseffi, M. Corrosion of steel reinforcement in concrete of different compressive strengths. Constr. Build. Mater. 2011, 25, 3915–3925. [Google Scholar] [CrossRef]
- Pradhan, B. Corrosion behavior of steel reinforcement in concrete exposed to composite chloride-sulfate environment. Constr. Build. Mater. 2014, 72, 398–410. [Google Scholar] [CrossRef]
- Green, W.K. Steel reinforcement corrosion in concrete—An overview of some fundamentals. Corros. Eng. Sci. Technol. 2020, 55, 289–302. [Google Scholar] [CrossRef]
- Montemor, M.F. Functional and smart coatings for corrosion protection: A review of recent advances. Surf. Coat. Technol. 2014, 258, 17–37. [Google Scholar] [CrossRef]
- Ahmad, S. Reinforcement corrosion in concrete structures, its monitoring and service life prediction—A review. Cem. Concr. Compos. 2003, 25, 459–471. [Google Scholar] [CrossRef]
- He, D. Evaluation of Steel Rebar in Concrete Using Electromagnetic Method. In Failure Analysis; Huang, Z.-M., Hemeda, S., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Ohtsu, M.; Tomoda, Y. Compensated half-cell potential technique for NDE of rebar corrosion. In Proceedings of the 26th Seiken Symposium on Non-Destructive Testing in Civil Engineering 2000, Tokyo, Japan, 25–27 April 2000; pp. 615–624. [Google Scholar]
- Pour-Ghaz, M.; Isgor, O.B.; Ghods, P. Quantitative interpretation of half-cell potential measurements in concrete structures. J. Mater. Civ. Eng. 2009, 21, 467–475. [Google Scholar] [CrossRef]
- ASTM C876-91; Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete. Annual Book of ASTM Standards: Philadelphia, PA, USA, 1999.
- Feliu, S.; González, J.A.; Feliu, S.; Andrade, C. Relationship between conductivity of concrete and corrosion of reinforcing bars. Br. Corros. J. 1989, 24, 195–198. [Google Scholar] [CrossRef]
- Song, H.W.; Saraswathy, V. Corrosion monitoring of reinforced concrete structures—A review. Int. J. Electrochem. Sci. 2007, 2, 1–28. [Google Scholar] [CrossRef]
- Polder, R.B. Test methods for onsite measurement of resistivity of concrete—A RILEM TC-154 technical recommendation. Constr. Build. Mater. 2001, 15, 125–131. [Google Scholar] [CrossRef]
- Elsener, B.; Andrade, C.; Gulikers, J.; Polder, R.; Raupach, M.; Reichling, K.; Vennesland, Ø. Half-cell potential measurements—Potential mapping on reinforced concrete structures. Mater. Struct. 2003, 36, 461–471. [Google Scholar] [CrossRef]
- So, H.S.; Millard, S.G. On-site measurements on corrosion rate of steel in reinforced concrete. ACI Mater. J. 2007, 104, 638–642. [Google Scholar] [CrossRef]
- Sadowski, L. New non-destructive method for linear polarisation resistance corrosion rate measurement. Arch. Civ. Mech. Eng. 2010, 10, 109–116. [Google Scholar] [CrossRef]
- Videm, K.; Myrdal, R. Electrochemical behavior of steel in concrete and evaluation of the corrosion rate. Corrosion 1997, 53, 734–742. [Google Scholar] [CrossRef]
- Milliard, S.G.; Law, D.W.; Bunsey, J.H.; Cairus, J. Environmental influences on linear polarization corrosion rate measurement in reinforced concrete. NDT E Int. 2001, 34, 409–417. [Google Scholar] [CrossRef]
- Andrade, C.; Alonso, M.C.; Gonzalez, J.A. An initial effort to use corrosion rate measurements for estimating rebar durability. In Corrosion Rates of Steel in Concrete; ASTM STP 1065; Berke, N.S., Chaker, V., David Whiting, D., Eds.; ASTM: West Conshohocken, PA, USA, 1990; pp. 29–37. [Google Scholar]
- Ramón, J.E.; Martínez, I.; Gandía-Romero, J.M.; Soto, J. Improved Tafel-Based Potentiostatic Approach for Corrosion Rate Monitoring of Reinforcing Steel. J. Nondestruct. Eval. 2022, 41, 70. [Google Scholar] [CrossRef]
- Ramón, J.E.; Gandía-Romero, J.M.; Bataller, R.; Alcañiz, M.; Valcuende, M.; Soto, J. Potential step voltammetry: An approach to corrosion rate measurement of reinforcements in concrete. Cem. Concr. Compos. 2020, 110, 203590. [Google Scholar] [CrossRef]
- Dhouibi, L.; Triki, E.; Raharinaivo, A. The application of electrochemical impedance spectroscopy to determine the long-term effectiveness of corrosion inhibitors for steel in concrete. Cem. Concr. Compos. 2002, 24, 35–43. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Xiong, J. Effectively analysis of concrete bridge deck corrosion using electrochemical impedance spectroscopy. Int. J. Electrochem. Sci. 2016, 11, 5702–5709. [Google Scholar] [CrossRef]
- Herrera Hernández, H.; González Díaz, F.; Fajardo San Miguel, G.D.J.; Velázquez Altamirano, J.C.; González Morán, C.O.; Morales Hernández, J. Electrochemical Impedance Spectroscopy as a Practical Tool for Monitoring the Carbonation Process on Reinforced Concrete Structures. Arab. J. Sci. Eng. 2019, 44, 10087–10103. [Google Scholar] [CrossRef]
- Dawson, J.L.; Callow, L.M.; Hladky, K.; Richardson, J.A. Use of electrochemical impedance measurements applied to the corrosion of reinforcing steel in concrete. In Proceedings of the Corrosion ‘78, Bethlehem, PA, USA, 13–15 November 1978; p. 125. [Google Scholar]
- Feliu, V.; Gonzalez, J.A.; Andrade, C.; Feliu, S. Equivalent circuit for modelling the steel-concrete interface. I. Experimental evidence and theoretical predictions. Corros. Sci. 1998, 40, 975–993. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kim, J.G.; Lee, K.M. Corrosion behavior of steel bar embedded in fly ash concrete. Corros. Sci. 2006, 48, 1733–1745. [Google Scholar] [CrossRef]
- Hoshi, Y.; Hasegawa, C.; Okamoto, T.; Soukura, M.; Tokieda, H.; Shitanda, I.; Itagaki, M.; Kato, Y. Electrochemical impedance analysis of corrosion of reinforcing bars in concrete. Electrochemistry 2019, 87, 78–83. [Google Scholar] [CrossRef]
- Andrade, C.; Martinez, I.; Castellote, M. Feasibility of determining corrosion rates by means of stray current-induced polarization. J. Appl. Electrochem. 2008, 38, 1467–1476. [Google Scholar] [CrossRef]
- Hoshi, Y.; Koike, T.; Tokieda, H.; Shitanda, I.; Itagaki, M.; Kato, Y. Non-contact measurement to detect steel rebar corrosion in reinforced concrete by electrochemical impedance spectroscopy. J. Electrochem. Soc. 2019, 166, C3316–C3319. [Google Scholar] [CrossRef]
- Sharma, S.; Mukherjee, A. Longitudinal guided waves for monitoring chloride corrosion in reinforcing bars in concrete. Struct. Health Monit. 2010, 9, 555–567. [Google Scholar] [CrossRef]
- C-597-83; Standard Test Method for Pulse Velocity Through Concrete. ASTM International: West Conshohocken, PA, USA, 1989.
- Liang, M.T.; Su, P.J. Detection of the corrosion damage of rebar in concrete using impact-echo method. Cem. Concr. Res. 2001, 31, 1427–1436. [Google Scholar] [CrossRef]
- Zaki, A.; Chai, H.K.; Aggelis, D.G.; Alver, N. Non-destructive evaluation for corrosion monitoring in concrete: A review and capability of acoustic emission technique. Sensors 2015, 15, 19069–19101. [Google Scholar] [CrossRef]
- Jhang, K.Y. Nonlinear ultrasonic techniques for non-destructive assessment of microdamage in materials: A review. Int. J. Precis. Eng. Manuf. 2009, 10, 123–135. [Google Scholar] [CrossRef]
- Climent, M.Á.; Miró, M.; Carbajo, J.; Poveda, P.; de Vera, G.; Ramis, J. Use of non-linear ultrasonic techniques to detect cracks due to steel corrosion in reinforced concrete structures. Materials 2019, 12, 813. [Google Scholar] [CrossRef]
- Shah, A.A.; Ribakov, Y.; Hirose, S. Nondestructive evaluation of damaged concrete using nonlinear ultrasonics. Mater. Des. 2009, 30, 775–782. [Google Scholar] [CrossRef]
- Xiang, H.; Newtson, C.M.; Woodward, C. Optimization of nonlinear ultrasound results to determine dynamic properties of concrete. J. Mater. Civ. Eng. 2008, 20, 700–706. [Google Scholar] [CrossRef]
- Robuschi, S.; Tengattini, A.; Dijkstra, J.; Fernandez, I.; Lundgren, K. A closer look at corrosion of steel reinforcement bars in concrete using 3D neutron and X-ray computed tomography. Cem. Concr. Res. 2021, 144, 106439. [Google Scholar] [CrossRef]
- Dong, B.; Shi, G.; Dong, P.; Ding, W.; Teng, X.; Qin, S.; Liu, Y.; Xing, F.; Hong, S. Visualized tracing of rebar corrosion evolution in concrete with x-ray microcomputed tomography method. Cem. Concr. Compos. 2018, 92, 102–109. [Google Scholar] [CrossRef]
- Michel, A.; Pease, B.J.; Geiker, M.R.; Stang, H.; Olesen, J.F. Monitoring reinforcement corrosion and corrosion-induced cracking using non-destructive x-ray attenuation measurements. Cem. Concr. Res. 2011, 41, 1085–1094. [Google Scholar] [CrossRef]
- Xi, X.; Yang, S.T. Investigating the spatial development of corrosion of corner-located steel bar in concrete by X-ray computed tomography. Constr. Build. Mater. 2019, 221, 177–189. [Google Scholar] [CrossRef]
- Skarżyński, Ł.; Kibort, K.; Małachowska, A. 3D X-ray Micro-CT Analysis of Rebar Corrosion in Reinforced Concrete Subjected to a Chloride-Induced Environment. Molecules 2022, 27, 192. [Google Scholar] [CrossRef] [PubMed]
- Maldague, X.P.V. Theory and Practice of Infrared Technology for Nondestructive Testing; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Avdelidis, N.P.; Moropoulou, A. Applications of infrared thermography for the investigation of historic structures. J. Cult. Herit. 2004, 5, 119–127. [Google Scholar] [CrossRef]
- Tran, Q.H.; Huh, J.; Mac, V.H.; Kang, C.; Han, D. Effects of rebars on the detectability of subsurface defects in concrete bridges using square pulse thermography. NDT E Int. 2018, 100, 92–100. [Google Scholar] [CrossRef]
- Yuan, F.; Liu, Q.; Liu, G.; Wang, J. Application of UAV-based infrared thermography in detecting subsurface delamination of bridge decks. Autom. Constr. 2020, 112, 103102. [Google Scholar]
- Ichi, E.O. Validating NDE Dataset and Benchmarking Infrared Thermography for Delamination Detection in Bridge Decks. Master’s Thesis, University of North Dakota, Grand Forks, ND, USA, 2021. Available online: https://commons.und.edu/theses/4170 (accessed on 26 June 2025).
- Leon-Salas, W.D.; Halmen, C. A RFID sensor for corrosion monitoring in concrete. IEEE Sens. J. 2015, 16, 32–42. [Google Scholar] [CrossRef]
- Baek, S.; Bortolin, A.; Ferrarini, G.; Molinas, B.; Giantin, D.; Zonta, P.; Bison, P. Nondestructive corrosion detection in RC through integrated heat induction and IR thermography. J. Nondestruct. Eval. 2012, 31, 181–190. [Google Scholar] [CrossRef]
- Na, S.; Paik, I. Application of thermal image data to detect rebar corrosion in concrete structures. Appl. Sci. 2019, 9, 4700. [Google Scholar] [CrossRef]
- Keo, S.A.; Brachelet, F.; Breaban, F.; Defer, D. Steel detection in reinforced concrete wall by microwave infrared thermography. NDT E Int. 2014, 62, 172–177. [Google Scholar] [CrossRef]
- He, Y.; Tian, G.; Pan, M.; Chen, D. Eddy current pulsed phase thermography and feature extraction. Appl. Phys. Lett. 2013, 103, 084104. [Google Scholar] [CrossRef]
- Neal, A. Ground-penetrating radar and its use in sedimentology: Principles, problems and progress. Earth-Sci. Rev. 2004, 66, 261–330. [Google Scholar] [CrossRef]
- Maierhofer, C. Nondestructive evaluation of concrete infrastructure with ground penetrating radar. J. Mater. Civil. Eng. 2003, 15, 287–297. [Google Scholar] [CrossRef]
- Barnes, C.L.; Trottier, J.F.; Forgeron, D. Improved concrete bridge deck evaluation using GPR by accounting for signal depth–amplitude effects. NDT E Int. 2008, 41, 427–433. [Google Scholar] [CrossRef]
- Sbartaï, Z.M.; Laurens, S.; Rhazi, J.; Balayssac, J.P.; Arliguie, G. Using radar direct wave for concrete condition assessment: Correlation with electrical resistivity. J. Appl. Geophys. 2007, 62, 361–374. [Google Scholar] [CrossRef]
- Lai, W.L.; Derobert, X.; Annan, P. A review of ground penetrating radar application in civil engineering: A 30-year journey from locating and testing to imaging and diagnosis. NDT E Int. 2018, 96, 58–78. [Google Scholar] [CrossRef]
- Bungey, J.H. Sub-surface radar testing of concrete: A review. Constr. Build. Mater. 2004, 18, 1–8. [Google Scholar] [CrossRef]
- Annan, A.P. Electromagnetic principles of ground penetrating radar. In Ground Penetrating Radar: Theory and Applications, 1st ed.; Jol, H.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 4–40. [Google Scholar]
- Chang, C.-W.; Tsai, C.-A.; Shiau, Y.-C. Inspection of Steel Bars Corrosion in Reinforced Concrete Structures by Nondestructive Ground Penetrating Radar. Appl. Sci. 2022, 12, 5567. [Google Scholar] [CrossRef]
- Varnavina, A.V.; Khamzin, A.K.; Sneed, L.H.; Torgashov, E.V.; Anderson, N.L.; Maerz, N.H.; Boyko, K.J. Concrete bridge deck assessment: Relationship between GPR data and concrete removal depth measurements collected after hydrodemolition. Constr. Build. Mater. 2015, 99, 26–38. [Google Scholar] [CrossRef]
- Zaki, A.; Johari, M.; Azmi, M.; Hussin, W.; Aminuddin, W.M.; Jusman, Y. Experimental assessment of rebar corrosion in concrete slab using ground penetrating radar (GPR). Int. J. Corros. 2018, 2018, 5389829. [Google Scholar] [CrossRef]
- Hugenschmidt, J.; Loser, R. Detection of chlorides and moisture in concrete structures with ground penetrating radar. Mater. Struct. 2008, 41, 785–792. [Google Scholar] [CrossRef]
- Tarussov, A.; Vandry, M.; Haza, A.D.L. Condition assessment of concrete structures using a new analysis method: Ground-penetrating radar computer-assisted visual interpretation. Constr. Build. Mater. 2013, 38, 1246–1254. [Google Scholar] [CrossRef]
- Feng, B.; Wu, J.; Tu, H.; Tang, J.; Kang, Y. A review of magnetic flux leakage nondestructive testing. Materials 2022, 15, 7362. [Google Scholar] [CrossRef]
- Sun, Y.; Kang, Y. Magnetic mechanisms of magnetic flux leakage nondestructive testing. Appl. Phys. Lett. 2013, 103, 184104. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, C.; Li, R.; Cai, M.; Jia, G. Theory and application of magnetic flux leakage pipeline detection. Sensors 2015, 15, 31036–31055. [Google Scholar] [CrossRef]
- Qiu, J.; Zhang, W.; Jing, Y. Quantitative linear correlation between self-magnetic flux leakage field variation and corrosion unevenness of corroded rebars. Measurement 2023, 218, 113173. [Google Scholar] [CrossRef]
- Yousaf, J.; Harseno, R.W.; Kee, S.-H.; Yee, J.-J. Evaluation of the size of a defect in reinforcing steel using magnetic flux leakage (MFL) measurements. Sensors 2023, 23, 5374. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, J.; Zhao, Q.; Xia, Q.; Zhang, H.; Wang, L. Quantitative detection of corroded reinforced concrete of different sizes based on SMFL. KSCE J. Civ. Eng. 2022, 26, 143–154. [Google Scholar] [CrossRef]
- Jin, Z.; Mohd Noor Sam, M.A.I.; Oogane, M.; Ando, Y. Serial MTJ-based TMR sensors in bridge configuration for detection of fractured steel bar in magnetic flux leakage testing. Sensors 2021, 21, 668. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, S.; Wang, J.; Jing, L.; Mao, F. A novel magnetic flux leakage method incorporating TMR sensors for detecting zinc dross defects on the surface of hot-dip galvanized sheets. Magnetochemistry 2024, 10, 101. [Google Scholar] [CrossRef]
- Nicolicea, A.; Oliveros-Mata, E.S.; Zabila, Y.; Makarov, D.; Melzer, M.; Pelkner, M. Flexible anisotropic magnetoresistive sensors for novel magnetic flux leakage testing capabilities. NDT E Int. 2024, 146, 103160. [Google Scholar] [CrossRef]
- Huang, S.; Peng, L.; Sun, H.; Li, S. Deep learning for magnetic flux leakage detection and evaluation of oil & gas pipelines: A review. Energies 2023, 16, 1372. [Google Scholar] [CrossRef]
- Kim, J.-W.; Park, S. Magnetic Flux Leakage Sensing and Artificial Neural Network Pattern Recognition-Based Automated Damage Detection and Quantification for Wire Rope Non-Destructive Evaluation. Sensors 2018, 18, 109. [Google Scholar] [CrossRef]
- Li, S.; Bai, L.; Ren, C.; Zhang, X.; Ai, J.; Zhang, J. A multidirectional magnetic flux leakage detection based crack 3-D profile reconstruction method. Mech. Syst. Signal Process. 2025, 228, 112408. [Google Scholar] [CrossRef]
- Machado, M.A. Eddy Currents Probe Design for NDT Applications: A Review. Sensors 2024, 24, 5819. [Google Scholar] [CrossRef] [PubMed]
- García-Martín, J.; Gómez-Gil, J.; Vázquez-Sánchez, E. Non-destructive techniques based on eddy current testing. Sensors 2011, 11, 2525–2565. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, T.A.; Carvalho, A.L.; Honorio, L.M.; Cerqueira, A.S.; Filho, L.M.A.; Nobrega, R.A. Detection and Classification System for Rail Surface Defects Based on Eddy Current. Sensors 2021, 21, 7937. [Google Scholar] [CrossRef]
- He, D.; Kusano, M.; Watanabe, M. Detecting the defects of warm-sprayed Ti-6Al-4V coating using Eddy current testing method. NDT E Int. 2022, 125, 102565. [Google Scholar] [CrossRef]
- He, D.F.; Zhang, Y.Z.; Shiwa, M.; Moriya, S. Development of eddy current testing system for inspection of combustion chambers of liquid rocket engines. Rev. Sci. Instrum. 2013, 84, 014701. [Google Scholar] [CrossRef]
- Gaydecki, P.A.; Burdekin, F.M. An inductive scanning system for two dimensional imaging of reinforcing components in concrete structures. Meas. Sci. Technol. 1994, 5, 1272–1280. [Google Scholar] [CrossRef]
- Yu, Z.Z.; Gaydecki, P.A.; Silva, I.; Fernandes, B.T.; Burdekin, F.M. Magnetic field imaging of steel reinforcing bars in concrete using portable scanning systems. Rev. Prog. Quant. Nondestruct. Eval. 1999, 18, 2145–2152. [Google Scholar]
- Gaydecki, P.; Silva, I.; Fernandes, B.T.; Yu, Z. Z A portable inductive scanning system for imaging steel-reinforcing bars embedded within concrete. Sens. Actuators A 2000, 84, 25–32. [Google Scholar] [CrossRef]
- Miller, G.; Gaydecki, P.; Quek, S.; Fernandes, B.; Zaid, M. A combined Q and heterodyne sensor incorporating real-time DSP for reinforcement imaging, corrosion detection and material characterization. Sens. Actuators A Phys. 2005, 121, 339–346. [Google Scholar] [CrossRef]
- Ricken, W.; Mehlhorn, G.; Becker, W. Determining of the concrete cover thickness and the bar diameter in reinforced concrete with a method of eddy current testing. Proc. Int. Symp. Non-Destr. Test. Civ. Eng. 1995, 1, 197–204. [Google Scholar]
- Miller, G.; Gaydecki, P.; Quek, S.; Fernandes, B.T.; Zaid, M.A.M. Detection and imaging of surface corrosion on steel reinforcing bars using a phase-sensitive inductive sensor intended for use with concrete. NDT E Int. 2003, 36, 19–26. [Google Scholar] [CrossRef]
- He, D. Surface corrosion evaluation of steel cable for suspension bridge using electromagnetic method. Surf. Sci. Tech. 2023, 1, 16. [Google Scholar] [CrossRef]
- He, D. Corrosion evaluation of steel rebar using electromagnetic induction method. Stud. Appl. Electromagn. Mech. 2020, 45, 141–146. [Google Scholar]
- He, D. Detecting the Corrosion of a Steel Rebar Using the Eddy Current Testing Method. Standards 2024, 4, 286–299. [Google Scholar] [CrossRef]
Potential Value (mV vs. SCE) | Potential Value (mV vs. CSE) | Corrosion Condition |
---|---|---|
≥−125 | ≥−200 | Low (10% risk of corrosion) |
−126 to −275 | −201 to −350 | Intermediate corrosion risk |
−276 to −425 | −351 to −500 | High (<90% risk of corrosion) |
≤−426 | ≤−501 | Severe corrosion |
Corrosion Current (Icorr) | Condition of Steel Rebar |
---|---|
<0.2 µA/cm2 | No corrosion expected |
0.2~1.0 µA/cm2 | Corrosion possible in 10–15 years |
1.0~10 µA/cm2 | Corrosion expected in 2–10 years |
>10 µA/cm2 | Corrosion expected in 2 years or less |
Longitudinal Pulse Velocity (km/sec.) | Approximate Compressive Strength (N/mm2) | Quality of Concrete |
---|---|---|
Below 2.0 | --- | Very poor |
2.0 to 3.0 | 4.0 | Poor |
3.0 to 3.5 | Up to 10 | Fairly good |
3.5 to 4.0 | Up to 25 | Good |
4.0 to 4.5 | Up to 40 | Very good |
Above 4.5 | Up to 40 | Excellent |
Technique | Principle | Advantages | Limitations | Applications | Stage and Cost |
---|---|---|---|---|---|
Half-cell potential (HCP) | Measures corrosion potential | Simple, standardized | Sensitive to moisture, qualitative | Bridge decks, piers; field | Initiation corrosion; low cost |
Concrete resistivity | Conductivity of concrete | Supports Ecorr interpretation | Influenced by surface moisture | Combined with HCP; field | Initiation corrosion; low cost |
Linear polarization resistance (LPR) | Measures polarization resistance | Corrosion rate, quantitatively | Require rebar exposure, stable environment | Concrete cores, lab validation, field | Propagation corrosion, medium cost |
Electrochemical impedance spectroscopy (EIS) | Impedance over frequency spectrum | Detailed mechanism insights | Complex, not practical on-site | Lab testing, material studies | Initiation and propagation; high cost |
Ultrasonic | Sends stress waves and measures reflection | Penetrates deep | Requires coupling medium; surface conditions affect signals | Large structures, internal defect mapping; lab and field | Propagation; low–-medium cost |
X-ray tomography | Uses X-rays to produce 3D view | Detailed internal view, high resolution, quantitative | Requires specialized equipment; limited size; radiation safety | Small components, primarily lab | Initiation and propagation; high cost |
Infrared thermography | Measures surface temperature and abnormalities | Large area scanning, non-contact, fast | Shallow depth; surface conditions and solar influence results | Bridge decks, large structures; field | Propagation; low–medium cost |
GPR | Detects reflection of electromagnetic signals | Measures depth, large area scanning | Affected by moisture, material properties | Bridge decks, highway structures; field | Cover loss, delamination; medium cost |
MFL | Magnetic flux disturbance signals | Localized pitting, cross-section reduction | Need strong magnet, limited depth | Pipelines, rebars, storage tanks; field | Propagation; medium cost |
Eddy current | Measures eddy current induced by AC magnetic field | Small defects, initial corrosion, non-contact | Shallow depth, influenced by nearby conductive materials | Bridge decks, aircraft parts, small rebars; lab and field | Initiation corrosion; medium cost |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, D. Review of Corrosion Evaluation Methods for Steel Reinforcement in Concrete. Corros. Mater. Degrad. 2025, 6, 37. https://doi.org/10.3390/cmd6030037
He D. Review of Corrosion Evaluation Methods for Steel Reinforcement in Concrete. Corrosion and Materials Degradation. 2025; 6(3):37. https://doi.org/10.3390/cmd6030037
Chicago/Turabian StyleHe, Dongfeng. 2025. "Review of Corrosion Evaluation Methods for Steel Reinforcement in Concrete" Corrosion and Materials Degradation 6, no. 3: 37. https://doi.org/10.3390/cmd6030037
APA StyleHe, D. (2025). Review of Corrosion Evaluation Methods for Steel Reinforcement in Concrete. Corrosion and Materials Degradation, 6(3), 37. https://doi.org/10.3390/cmd6030037