Hydrogen Embrittlement Resistance of an Optimized Additively Manufactured Austenitic Stainless Steel from Recycled Sources
Abstract
1. Introduction
2. Materials and Methods
2.1. Scrap Material Sourcing and Preparation
2.2. Powder Atomization and Characterization
2.3. Printing of Atomized Powders and Preparation of Test Specimens
2.4. Testing Mechanical Performance and Resistance to Hydrogen Embrittlemen
3. Results
3.1. Optimization of Chemical Composition
3.2. Characterization of Powders Atomized from Scrap Metal
3.3. Effect of Hydrogen Loading on Mechanical Properties of AM Stainless Steel
4. Discussion
5. Conclusions
- Tuning of the chemical composition does not affect printability and yields high mechanical performance under both reference and pre-charged conditions.
- Thermal charging for 120 h and 360 h in a hydrogen-filled autoclave at 100 bar and 300 °C has a minor impact on the static tensile properties.
- Fatigue life for the specimens pre-charged for 360 h is improved with respect to the reference counterpart not exposed to hydrogen.
6. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HE | Hydrogen Embrittlement |
HEDE | Hydrogen-Enhanced Decohesion |
HIPT | Hydrogen-Induced Phase Transformation |
HELP | Hydrogen-Enhanced Local Plasticity |
HESIV | Hydrogen-Enhanced Strain-Induced Vacancy |
AIDE | Adsorption-Induced Dislocation Emission |
AM | Additive Manufacturing |
LPBF | Laser Powder Bed Fusion |
VIM | Vacuum Induction Melting |
VIGA | Vacuum Inert Gas Atomizer |
ICP-OES | Inductively Coupled Plasma Optical Emission Spectroscopy |
SEM | Scanning Electron Microscopy |
PSD | Particle Size Distribution |
OM | Optical Microscopy |
UTS | Ultimate Tensile Stress |
YS | Yield Stress |
HCF | High Cycle Fatigue |
References
- Martins, F.P.; Almaraz, S.D.; Junior, A.B.; Azzaro-Pantel, C.; Parikh, P. Hydrogen and the sustainable development goals: Synergies and trade-offs. Renew. Sustain. Energy Rev. 2024, 204, 114796. [Google Scholar] [CrossRef]
- Worku, A.K.; Ayele, D.W.; Deepak, D.B.; Gebreyohannes, A.Y.; Agegnehu, S.D.; Kolhe, M.L. Recent advances and challenges of hydrogen production technologies via renewable energy sources. Adv. Energy Sustain. Res. 2024, 5, 2300273. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, M.; Rong, L. Overview of hydrogen-resistant alloys for high-pressure hydrogen environment: On the hydrogen energy structural materials. Clean. Energy 2023, 7, 99–115. [Google Scholar] [CrossRef]
- Bin, S.; Chen, Z.; Zhu, Y.; Zhang, Y.; Xia, Y.; Gong, S.; Zhang, F.; Shi, L.; Duan, X.; Sun, Z. High-pressure proton exchange membrane water electrolysis: Current status and challenges in hydrogen production. Int. J. Hydrogen Energy 2024, 67, 390–405. [Google Scholar] [CrossRef]
- Esfandiari, N.; Aliofkhazraei, M.; Colli, A.N.; Walsh, F.C.; Cherevko, S.; Kibler, L.A.; Elnagar, M.M.; Lund, P.D.; Zhang, D.; Omanovic, S.; et al. Metal-based cathodes for hydrogen production by alkaline water electrolysis: Review of materials, degradation mechanism, and durability tests. Prog. Mater. Sci. 2024, 144, 101254. [Google Scholar] [CrossRef]
- Patil, V.; Reshmi, P.V.; Prajna, S.; Haleshappa, D.; Jayarama, A.; Pinto, R. Degradation mechanisms in PEM fuel cells: A brief review. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, D.; Xu, Y.; Wu, X.; Li, X. Comprehensive analysis of solid oxide fuel cell performance degradation mechanism, prediction, and optimization studies. Energies 2023, 16, 788. [Google Scholar] [CrossRef]
- Lynch, S. Hydrogen embrittlement phenomena and mechanisms. Corros. Rev. 2012, 30, 105–123. [Google Scholar] [CrossRef]
- San Marchi, C.; Somerday, B.P. Technical Reference for Hydrogen Compatibility of Materials; SAND2012-7321; Sandia National Laboratories: Albuquerque, NM, USA, 2012. [Google Scholar] [CrossRef]
- Yu, H.; Díaz, A.; Lu, X.; Sun, B.; Ding, Y.; Koyama, M.; He, J.; Oudriss, A.; Feaugas, X.; Zhang, Z. Hydrogen Embrittlement as a Conspicuous Material Challenge—Comprehensive Review and Future Directions. Chem. Rev. 2024, 124, 6271–6392. [Google Scholar] [CrossRef]
- Takakuwa, O.; Yamabe, J.; Matsunaga, H.; Furuya, Y.; Matsuoka, S. Comprehensive Understanding of Ductility Loss Mechanisms in Various Steels with External and Internal Hydrogen. Metall. Mater. Trans. A 2017, 48, 5717–5732. [Google Scholar] [CrossRef]
- Takaki, S.; Nanba, S.; Imakawa, K.; Macadre, A.; Yamabe, J.; Matsunaga, H.; Matsuoka, S. Determination of hydrogen compatibility for solution-treated austenitic stainless steels based on a newly proposed nickel-equivalent equation. Int. J. Hydrogen Energy 2016, 41, 15095–15100. [Google Scholar] [CrossRef]
- Gibbs, P.J.; Hough, P.D.; Thürmer, K.; Somerday, B.P.; San Marchi, C.; Zimmerman, J.A. Stacking fault energy based alloy screening for hydrogen compatibility. JOM 2020, 72, 1982–1992. [Google Scholar] [CrossRef]
- Kim, M.-S.; Chun, K.W. A Comprehensive Review on Material Compatibility and Safety Standards for Liquid Hydrogen Cargo and Fuel Containment Systems in Marine Applications. J. Mar. Sci. Eng. 2023, 11, 1927. [Google Scholar] [CrossRef]
- Fussik, R.; Egels, G.; Theisen, W.; Weber, S. Stacking Fault Energy in Relation to Hydrogen Environment Embrittlement of Metastable Austenitic Stainless CrNi-Steels. Metals 2021, 11, 1170. [Google Scholar] [CrossRef]
- Lai, C.L.; Tsay, L.W.; Chen, C. Effect of microstructure on hydrogen embrittlement of various stainless steels. Mater. Sci. Eng. A 2013, 584, 14–20. [Google Scholar] [CrossRef]
- Barrera, O.; Bombac, D.; Chen, Y.; Daff, T.D.; Galindo-Nava, E.; Gong, P.; Haley, D.; Horton, R.; Katzarov, I.; Kermode, J.R.; et al. Understanding and mitigating hydrogen embrittlement of steels: A review of experimental, modelling and design progress from atomistic to continuum. J. Mater. Sci. 2018, 53, 6251–6290. [Google Scholar] [CrossRef]
- Lee, J.C.; Yang, D.C.; Sung, M.Y.; Kim, N.S.; Park, H.K.; Choi, M.; Kim, Y.D.; Sohn, S.S.; Park, C.S. Influence of crystallographic textures on the hydrogen embrittlement resistance of austenitic stainless steel. J. Mater. Res. Technol. 2024, 32, 2757–2766. [Google Scholar] [CrossRef]
- Li, S.; Liu, M.; Ren, Y.; Wang, Y. Hydrogen embrittlement behaviors of additive manufactured maraging steel investigated by in situ high-energy X-ray diffraction. Mater. Sci. Eng. A 2019, 766, 138341. [Google Scholar] [CrossRef]
- Alnajjar, M.; Christien, F.; Bosch, C.; Wolski, K. A comparative study of microstructure and hydrogen embrittlement of selective laser melted and wrought 17–4 PH stainless steel. Mater. Sci. Eng. A 2020, 785, 139363. [Google Scholar] [CrossRef]
- Bertsch, K.M.; Nagao, A.; Rankouhi, B.; Kuehl, B.; Thoma, D.J. Hydrogen embrittlement of additively manufactured austenitic stainless steel 316L. Corros. Sci. 2021, 192, 109790. [Google Scholar] [CrossRef]
- Yao, J.; Tan, Q.; Venezuela, J.; Atrens, A.; Zhang, M. Recent research progress in hydrogen embrittlement of additively manufactured metals—A review. Curr. Opin. Solid State Mater. Sci. 2023, 27, 101106. [Google Scholar] [CrossRef]
- Zhao, Q.; Luo, H.; Pan, Z.; Cheng, H.; Xu, J.; Duan, G.; Qin, Y.; Wang, G. Comparative study on hydrogen embrittlement resistance in additive manufactured and forged austenitic stainless steel. Addit. Manuf. 2024, 88, 104262. [Google Scholar] [CrossRef]
- Nietzke, J.; Konert, F.; Poka, K.; Merz, B.; Sobol, O.; Böllinghaus, T. Comparison of hydrogen effects on additively manufactured and conventional austenitic steels. Eng. Fail. Anal. 2025, 167, 109042. [Google Scholar] [CrossRef]
- Zhou, C.; Yan, X.; Wang, H.; Huang, Y.; Xue, J.; Li, J.; Li, X.; Han, W. Advancements in hydrogen embrittlement of selective laser melting austenitic stainless steel: Mechanisms, microstructures, and future directions. J. Mater. Sci. Technol. 2025, 230, 219–235. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Meng, L.; Liu, D.; Xu, T.; Xu, D.; Shao, X.; Shao, C.; Li, S.; Zhang, P.; et al. Significance of melt pool structure on the hydrogen embrittlement behavior of a selective laser-melted 316L austenitic stainless steel. Materials 2023, 16, 1741. [Google Scholar] [CrossRef]
- Claeys, L.; Deconinck, L.; Verbeken, K.; Depover, T. Effect of additive manufacturing and subsequent heat and/or surface treatment on the hydrogen embrittlement sensitivity of 316L austenitic stainless steel. Int. J. Hydrogen Energy 2023, 48, 36142–36157. [Google Scholar] [CrossRef]
- ISO 13320:2020; Particle Size Analysis—Laser Diffraction Methods. International Organization for Standardization: Geneva, Switzerland, 2020; 59p. Available online: https://www.iso.org/standard/69111.html#lifecycle (accessed on 1 July 2025).
- ASTM B212-17; Standard Test Method for Apparent Density of Free-Flowing Metal Powders Using the Hall Flowmeter Funnel. ASTM International: West Conshohocken, PA, USA, 2021; 4p. Available online: https://store.astm.org/b0212-17.html (accessed on 1 July 2025).
- ASTM B527-93; Standard Test Method for Determination of Tap Density of Metallic Powders and Compounds. ASTM International: West Conshohocken, PA, USA, 2020; 2p. Available online: https://store.astm.org/b0527-93r00e01.html (accessed on 1 July 2025).
- ASTM B213-20; Standard Test Methods for Flow Rate of Metal Powders Using the Hall Flowmeter Funnel. ASTM International: West Conshohocken, PA, USA, 2020; 4p. Available online: https://store.astm.org/b0213-20.html (accessed on 1 July 2025).
- ASTM E8/E8M-21; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2021; 30p. Available online: https://store.astm.org/e0008_e0008m-21.html (accessed on 1 July 2025).
- ASTM E466-21; Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2021; 7p. Available online: https://store.astm.org/standards/e466 (accessed on 1 July 2025).
- Kawami, K.; Kinoshita, A.; Yamanaka, H.; Fukuda, Y.; Enoki, H.; Iijima, T.; Fukuyama, S.; Tsukane, R.; Tanaka, T.; Fukutani, T.; et al. Evaluation of the Hydrogen Barrier Properties of Chromium Oxide Films Deposited on SUS304 Austenitic Stainless Steels. In Proceedings of the Pressure Vessels and Piping Conference, Las Vegas, NV, USA, 17–22 July 2022. [Google Scholar] [CrossRef]
- Li, W.X.; Zhao, S.W.; He, P.F.; Wang, B.J. Experimental and numerical study on high-cycle fatigue performance of austenitic stainless steel with pre-charged hydrogen. Int. J. Fatigue 2024, 185, 108359. [Google Scholar] [CrossRef]
- Zhao, C.; Deng, L.; Wu, S.; Wu, W.; Peng, Y.; Wang, X.; Jiang, Y.; Gong, J. Dual role of hydrogen in fatigue life of 316L austenitic stainless steel. Int. J. Fatigue 2025, 198, 108975. [Google Scholar] [CrossRef]
- Behvar, A.; Haghshenas, M.; Djukic, M.B. Hydrogen embrittlement and hydrogen-induced crack initiation in additively manufactured metals: A critical review on mechanical and cyclic loading. Int. J. Hydrogen Energy 2024, 58, 1214–1239. [Google Scholar] [CrossRef]
- Šmíd, M.; Koutný, D.; Neumannová, K.; Chlup, Z.; Náhlík, L.; Jambor, M. Cyclic behaviour and microstructural evolution of metastable austenitic stainless steel 304L produced by laser powder bed fusion. Addit. Manuf. 2023, 68, 103503. [Google Scholar] [CrossRef]
- Gnanasekaran, B.; Song, J.; Vasudevan, V.; Fu, Y. Corrosion fatigue characteristics of 316L stainless steel fabricated by laser powder bed fusion. Metals 2021, 11, 1046. [Google Scholar] [CrossRef]
- Zhu, H.; Pan, Q.; Zhang, K.; Zhou, C.; Zhang, W.; Yao, Y.; Ying, D.; He, Y.; Zheng, J.; Zhang, L. The difference in fatigue crack growth induced by internal and external hydrogen in selective laser melted 304L stainless steel. Int. J. Fatigue 2022, 163, 107052. [Google Scholar] [CrossRef]
- Smith, T.R.; San Marchi, C.; Sugar, J.D.; Balch, D.K. Effects of extreme hydrogen environments on the fracture and fatigue behavior of additively manufactured stainless steels. In Proceedings of the Pressure Vessels and Piping Conference, San Antonio, TX, USA, 14–19 July 2019. [Google Scholar] [CrossRef]
Test Type | Condition | No. of Specimens |
---|---|---|
High Cycle Fatigue (HCF) | As-machined 1 | 3 |
Pre-charged—360 h | 3 | |
Tensile Test | As-machined 1 | 4 |
Pre-charged—120 h | 4 | |
Pre-charged—360 h | 4 | |
Hydrogen content | As-machined 1 | 1 |
Pre-charged—120 h | 1 | |
Pre-charged—360 h | 1 |
Element | Metal Scrap 316L [wt. %] | Target Composition [wt. %] | Atomized Powder [wt. %] |
---|---|---|---|
Fe | Balance | Balance | Balance |
Cr | 16.80 | 17.00–19.00 | 18.0 |
Ni | 10.17 | 13.00–15.00 | 13.9 |
Mo | 2.07 | 2.25–3.00 | 2.63 |
C | 0.02 | <0.03 | 0.027 |
Mn | 1.7 | <2.00 | 1.13 |
Cu | 0.40 | <1.00 | 0.44 |
P | 0.03 | <0.045 | 0.028 |
S | 0.02 | <0.030 | 0.014 |
Si | 0.34 | <1.00 | 0.36 |
N | 0.06 | <0.10 | 0.04 |
O | N/A * | <0.10 | 0.027 |
Hall Flowability [s/75 g] | Apparent Density [g/cm3] | Tap Density [g/cm3] |
---|---|---|
15.5 | 4.1 | 4.8 |
As-Machined 1 | Pre-Charged for 120 h | Pre-Charged for 360 h | |
---|---|---|---|
Hydrogen content [ppm] | 1.2 ± 0.7 | 40.4 ± 6.8 | 36.8 ± 6.1 |
Condition | UTS [MPa] | YS [MPa] | Ef [%] | Ψ [%] |
---|---|---|---|---|
As-machined 1 | 559.5 ± 2.0 | 464.0 ± 7.1 | 43.5 ± 2.7 | 63.5 ± 6.6 |
Pre-charged 120 h | 564.5 ± 4.2 | 465.0 ± 7.7 | 39.1 ± 5.3 | 62.8 ± 5.3 |
Pre-charged 360 h | 569.3 ± 3.8 | 472.3 ± 9.9 | 35.5 ± 5.3 | 65.0 ± 3.7 |
Condition | Fatigue Life [Cycles] | Average Fatigue Life [Cycles] | Std. Deviation [Cycles] |
---|---|---|---|
As-machined 1 | 2.8 × 105 | 3.9 × 105 | |
3.8 × 105 | 1.1 × 105 | ||
5.0 × 105 | |||
Pre-charged for 360 h | 3.9 × 105 | ||
6.2 × 105 | 4.8 × 105 | 1.3 × 105 | |
4.1 × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabrioli, M.; Silva Colmenero, M.; Vanazzi, M.; Mondora, L.E.; Acquistapace, G.; Esposito, F.; Giovanardi, M. Hydrogen Embrittlement Resistance of an Optimized Additively Manufactured Austenitic Stainless Steel from Recycled Sources. Corros. Mater. Degrad. 2025, 6, 34. https://doi.org/10.3390/cmd6030034
Cabrioli M, Silva Colmenero M, Vanazzi M, Mondora LE, Acquistapace G, Esposito F, Giovanardi M. Hydrogen Embrittlement Resistance of an Optimized Additively Manufactured Austenitic Stainless Steel from Recycled Sources. Corrosion and Materials Degradation. 2025; 6(3):34. https://doi.org/10.3390/cmd6030034
Chicago/Turabian StyleCabrioli, Mattia, María Silva Colmenero, Matteo Vanazzi, Luisa E. Mondora, Gianluca Acquistapace, Fabio Esposito, and Michela Giovanardi. 2025. "Hydrogen Embrittlement Resistance of an Optimized Additively Manufactured Austenitic Stainless Steel from Recycled Sources" Corrosion and Materials Degradation 6, no. 3: 34. https://doi.org/10.3390/cmd6030034
APA StyleCabrioli, M., Silva Colmenero, M., Vanazzi, M., Mondora, L. E., Acquistapace, G., Esposito, F., & Giovanardi, M. (2025). Hydrogen Embrittlement Resistance of an Optimized Additively Manufactured Austenitic Stainless Steel from Recycled Sources. Corrosion and Materials Degradation, 6(3), 34. https://doi.org/10.3390/cmd6030034