Impact of Chloride on the Environmentally-Assisted Crack Initiation Behaviour of Low-Alloy Steel under Boiling Water Reactor Conditions
Abstract
:1. Introduction
2. Materials and Experimental Procedure
2.1. Material and Specimen
2.2. Experimental Procedure
2.2.1. Test Set-Up, Environmental Conditions, and Procedure
2.2.2. Electrochemical Noise Measurements
2.2.3. Bellows-Driven Scratching Device
3. Results and Discussion
3.1. CERT Tests with Continuous Chloride Addition
3.2. CERT Tests with Temporary Chloride Transients
3.3. Constant Load Tests with Continuous Chloride Addition
3.4. Mechanistic Considerations
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seifert, H.P.; Ritter, S. Stress Corrosion Cracking of Low-Alloy Reactor Pressure Vessel Steels under Boiling Water Reactor Conditions. J. Nucl. Mater. 2008, 372, 114–131. [Google Scholar] [CrossRef]
- Seifert, H.P.; Ritter, S. Research and Service Experience with Environmentally-Assisted Cracking of Carbon & Low-Alloy Steels in High-Temperature Water; 2005:60; SKI: Stockholm, Sweden, 2005. [Google Scholar]
- Seifert, H.P.; Ritter, S.; Hickling, J. Research and Service Experience with Environmentally-Assisted Cracking of Low-Alloy Steel Pressure-Boundary Components under LWR Conditions. PowerPlant Chem. 2004, 6, 111–123. [Google Scholar]
- Ford, F.P. Environmentally Assisted Cracking of Low-Alloy Steels; EPRI NP-7473-L; Electric Power Research Institute: Palo Alto, CA, USA, 1992. [Google Scholar]
- Ford, F.P. Quantitative prediction of environmentally assisted cracking. Corrosion 1996, 52, 375–395. [Google Scholar] [CrossRef] [Green Version]
- Scott, P.; Tice, D. Stress corrosion in low alloy steels. Nucl. Eng. Des. 1990, 119, 399–413. [Google Scholar] [CrossRef]
- Seifert, H.P.; Ritter, S. 5—Environmentally-assisted cracking of carbon and low-alloy steels in light water reactors. In Nuclear Corrosion: Research, Progress and Challenges, 1st ed.; Ritter, S., Ed.; EFC Publications No. 69; Woodhead Publishing: Cambridge, UK, 2020; pp. 119–211. [Google Scholar]
- Seifert, H.P.; Ritter, S.; Leber, H.J.; Roychowdhury, S. Stress corrosion cracking behavior in the transition region of alloy 182/low-alloy reactor pressure vessel steel dissimilar metal weld joints in light water reactor environments. Corrosion 2015, 71, 433–454. [Google Scholar] [CrossRef]
- Seifert, H.P.; Ritter, S. The influence of ppb levels of chloride impurities on the stress corrosion crack growth behaviour of low-alloy steels under simulated boiling water reactor conditions. Corros. Sci. 2016, 108, 134–147. [Google Scholar] [CrossRef]
- Seifert, H.P.; Ritter, S. The influence of ppb levels of chloride impurities on the stain-induced corrosion cracking and corrosion fatigue crack growth behavior of low-alloy steels under simulated boling water reactor conditions. Corros. Sci. 2016, 108, 148–159. [Google Scholar] [CrossRef]
- Herbst, M.; Roth, A. Investigations on the effect of chloride on the general corrosion behavior of low-alloy steels in oxygenated high-temperature water. Mater. Corros. 2013, 64, 691–699. [Google Scholar] [CrossRef]
- Herbst, M.; Roth, A.; Widera, M. Summary of the Results of a German Research Project on Chloride Effects on the General Corrosion and Stress Corrosion Cracking Behavior of LAS under BWR Conditions. In Proceedings of the 17th International Conference on Environmental Degradation of Materials in Nuclear Systems—Water Reactors, Ottawa, ON, Canada, 9–13 August 2015. [Google Scholar]
- Lou, X.; Andresen, P.L.; Lian, T.; Pathania, R. Effect of ppb Levels of Chloride on the Stress Corrosion Cracking of Pressure Vessel Steel. In Proceedings of the 17th International Conference on Environmental Degradation of Materials in Nuclear Systems—Water Reactors, Ottawa, ON, Canada, 9–13 August 2015. [Google Scholar]
- Lou, X.; Pathania, R. Effect of chloride transients on crack growth rates in low alloy steels in BWR environments. In Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Systems—Water Reactors, Portland, OR, USA, 13–17 August 2017; pp. 433–445. [Google Scholar]
- Lou, X.; Pathania, R.; Andresen, P.L. Effects of chloride transients on stress corrosion crack in pressure vessel low alloy steels in high temperature water. Corros. Sci. 2017, 126, 305–316. [Google Scholar] [CrossRef]
- Lou, X.; Andresen, P.L.; Yang, J.; Pathania, R.; Lian, T.; Carter, R.G. Mechanical and metallurgical considerations on the effects of ppb-level chloride on stress corrosion cracking of low alloy steels in high-temperature water. Corros. Sci. 2021, 179, 109136. [Google Scholar] [CrossRef]
- Odell, D.; McGehee, A. Interim Guidance for BWR Water Chemistry Guidelines (BWRVIP Letter 2016-123); EPRI: Palo Alto, CA, USA, 2016; p. 64. [Google Scholar]
- Seifert, H.P.; Ritter, S.; Spätig, P.; Bai, J.; Roychowdhury, S. Safe Long-Term Operation in the Context of Environmental Effects on Fracture, Fatigue and Environmentally-Assisted Cracking—Final Report of the SAFE-I Project; No. 15-03; Paul Scherrer Institut: Villigen, Switzerland, 2015; p. 215. [Google Scholar]
- Cheng, B.; Gilman, J.; Nelson, L.; Pathania, R.; Wood, C. BWR Water Chemistry Guidelines—1996 Revision; EPRI TR-103515-R1; Electric Power Research Institute: Palo Alto, CA, USA, 1996. [Google Scholar]
- European Cooperative Group on Corrosion Monitoring of Nuclear Materials—ECG-COMON. Available online: http://www.ecg-comon.org (accessed on 10 January 2022).
- Bosch, R.-W.; Cottis, R.A.; Csecs, K.; Dorsch, T.; Dunbar, L.; Heyn, A.; Huet, F.; Hyökyvirta, O.; Kerner, Z.; Kobzova, A.; et al. Reliability of electrochemical noise measurements: Results of round-robin testing on electrochemical noise. Electrochim. Acta 2014, 120, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Ritter, S.; Huet, F.; Cottis, R.A. Guideline for an assessment of electrochemical noise measurement devices. Mater. Corros. 2012, 63, 297–302. [Google Scholar] [CrossRef]
- Ritter, S.; Seifert, H.P. Detection of SCC initiation in austenitic stainless steel by electrochemical noise measurements. Mater. Corros. 2013, 64, 683–690. [Google Scholar] [CrossRef]
- Ritter, S.; Seifert, H.P. Influence of reference electrode distance and hydrogen content on the electrochemical potential noise during SCC in high-purity, high-temperature water. Corros. Eng. Sci. Technol. 2013, 48, 199–206. [Google Scholar] [CrossRef]
- Ritter, S.; Seifert, H.P. Detection of stress corrosion cracking in a simulated BWR environment by combined electrochemical potential noise and direct current potential drop measurements. In Corrosion Monitoring in Nuclear Systems: Research and Applications; Ritter, S., Molander, A., Eds.; EFC Publications No. 56; Maney Publishing: London, UK, 2010; pp. 46–62. [Google Scholar]
- Andresen, P.L.; Ford, F.P. Modeling and Life prediction of Stress Corrosion Cracking in Sensitized Stainless Steel in High Temperature Water. In Predictive Capabilities in Environmentally Assisted Cracking; Rugta, R., Ed.; ASME: New York, NY, USA, 1985; pp. 17–39. [Google Scholar]
- Herbst, M. Effect of Chloride on Environemtally Assisted Cracking of Low Alloy Steels in Oxygenated High-Temperature Water; Liverpool John Moores University: Liverpool, UK, 2013. [Google Scholar]
- Bojinov, M.; Nowak, E.; Stanislowski, M.; Saario, T. Effect of chloride transients on the corrosion behavior of low-alloy steels in cladding flaws of reactor pressure vessels under oxygenated high-temperature water conditions. Atw-Int. J. Nucl. Power 2014, 60, 221–227. [Google Scholar]
- Sipilä, K.; Bojinov, M.; Mayinger, W.; Saario, T.; Stanislowski, M. Effect of chloride and sulfate additions on corrosion of low alloy steel in high-temperature water. Electrochim. Acta 2015, 173, 757–770. [Google Scholar] [CrossRef]
- Sipilä, K.; Bojinov, M.; Mayinger, W.; Saario, T.; Selektor, M. Corrosion mechanism of low-alloyed steel in high-temperature water: Effect of additives and time of exposure. J. Electrochem. Soc. 2016, 163, C530–C538. [Google Scholar] [CrossRef]
Parameter | BWR NWC | BWR HWC or NMCA | Allowed Time for Reduction of Parameter below AL | |
---|---|---|---|---|
Action level 1 | Chloride | ≥3 ppb | >5 ppb | 96 h |
Sulphate | >5 ppb | >5 ppb | 96 h | |
Action level 2 | Sulphate & chloride | >20 ppb | >50 ppb | 24 h |
Action level 3 | Sulphate & chloride | >100 ppb | >200 ppb | 0 h |
Good practice | Sulphate | <2 ppb | <2 ppb | -- |
Good practice | Chloride | <1 ppb | <1 ppb | -- |
C | Si | Mn | P | S | Cr | Mo | Ni | V | Al | Cu | |
---|---|---|---|---|---|---|---|---|---|---|---|
SA 533 B Cl.1 | 0.25 | 0.24 | 1.42 | 0.006 | 0.018 | 0.12 | 0.54 | 0.62 | 0.007 | 0.03 | 0.15 |
YS (25 °C) [MPa] | UTS (25 °C) [MPa] | A (25 °C) [%] | Z (25 °C) [%] | YS (288 °C) [MPa] | |
---|---|---|---|---|---|
SA 533 B Cl.1 | 456 | 605 | 23.4 | 59.9 | 412 |
Test Number | tstart [h] | tend [h] | Δt [h] | ΔtHPW [h] |
---|---|---|---|---|
1 | −120 | −24 | 96 | 75 |
2 | −96 | 0 | 96 | 51 |
3 | −72 | 24 | 96 | 27 |
4 | −68 | 28 | 96 | 23 |
5 | −60 | 36 | 96 | 15 |
Test Number | Environment | Chloride Content [ppb] | σinitiation [MPa] | Δtinitiation [h] | ΔtCERT [h] | Δamean [mm] | Δamax [mm] | da/dtmean [m/s] | da/dtmax [m/s] |
---|---|---|---|---|---|---|---|---|---|
6 | NWC | <0.6 | 735 | 108 | 118 | 0.426 | 1.140 | 1.2 × 10−8 | 3.2 × 10−8 |
7 | NWC | <0.6 | >822 | >189 | 189 | N.E. | N.E. | N.E. | N.E. |
8 | NWC | <0.6 | 679 | 91 | 107 | N.E. | N.E. | N.E. | N.E. |
9 | NWC | 2 | 556 | 61 | 75 | N.E. | N.E. | N.E. | N.E. |
10 | NWC | 2 | 572 | 55 | 65 | N.E. | N.E. | N.E. | N.E. |
11 | NWC | 3 | 522 | 52 | 64 | N.E. | N.E. | N.E. | N.E. |
12 | NWC | 3 | 493 | 50 | 59 | N.E. | N.E. | N.E. | N.E. |
13 | NWC | 5 | 507 | 47 | 60.0 | 0.627 | 1.314 | 1.3 × 10−8 | 2.7 × 10−8 |
14 | NWC | 7 | 556 | 51 | 59 | N.E. | N.E. | N.E. | N.E. |
15 | NWC | 10 | 557 | 57 | 74 | N.E. | N.E. | N.E. | N.E. |
16 | NWC | 15 | 517 | 49 | 65 | 0.705 | 1.137 | 1.2 × 10−8 | 2.0 × 10−8 |
17 | NWC | 110 | 477 | 46 | 62 | 0.369 | 0.980 | 6.1 × 10−9 | 1.6 × 10−8 |
18 | HWC | 210 | >817 | >188 | 188 | N.E. | N.E. | N.E. | N.E. |
19 | HWC | 700 | >780 | >156 | 156 | N.E. | N.E. | N.E. | N.E. |
Test Number | Environment | Chloride Content (for 96 h Period) [ppb] | σinitiation [MPa] | Δtinitiation [h] |
---|---|---|---|---|
1 | NWC | 20 | 654 | 76 |
2 | NWC | 20 | 675 | 86 |
3 | NWC | 20 | 666 | 85 |
4 | NWC | 20 | 759 | 142 |
5 | NWC | 20 | 593 | 55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ritter, S.; Seifert, H.-P. Impact of Chloride on the Environmentally-Assisted Crack Initiation Behaviour of Low-Alloy Steel under Boiling Water Reactor Conditions. Corros. Mater. Degrad. 2022, 3, 178-191. https://doi.org/10.3390/cmd3020010
Ritter S, Seifert H-P. Impact of Chloride on the Environmentally-Assisted Crack Initiation Behaviour of Low-Alloy Steel under Boiling Water Reactor Conditions. Corrosion and Materials Degradation. 2022; 3(2):178-191. https://doi.org/10.3390/cmd3020010
Chicago/Turabian StyleRitter, Stefan, and Hans-Peter Seifert. 2022. "Impact of Chloride on the Environmentally-Assisted Crack Initiation Behaviour of Low-Alloy Steel under Boiling Water Reactor Conditions" Corrosion and Materials Degradation 3, no. 2: 178-191. https://doi.org/10.3390/cmd3020010
APA StyleRitter, S., & Seifert, H. -P. (2022). Impact of Chloride on the Environmentally-Assisted Crack Initiation Behaviour of Low-Alloy Steel under Boiling Water Reactor Conditions. Corrosion and Materials Degradation, 3(2), 178-191. https://doi.org/10.3390/cmd3020010