The Oxidation of Copper in Air at Temperatures up to 100 °C
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Thermobalance Experiments
3.2. Quartz Crystal Microbalance Experiments
3.3. Electrochemical Analyses
3.4. Morphology of the Oxide Films
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, J.R. (Ed.) Copper and Copper Alloys; ASM International: Materials Park, OH, USA, 2001; 590p. [Google Scholar]
- Lipowsky, H.; Arpaci, E. Copper in the Automotive Industry; John Wiley & Sons: Weinheim, Germany, 2008; 177p. [Google Scholar]
- U.S. Congress, Office of Technology Assessment. Nonferrous Metals: Industry Structure Background Paper, OTA-BP-E-62; U.S. Government Printing Office: Washington DC, USA, 1990; 90p.
- King, F.; Lilja, C.; Pedersen, K.; Pitkänen, P.; Vähänen, M. An Update of the State-of-the-Art Report on the Corrosion of Copper Under Expected Conditions in a Deep Geologic Repository; Report POSIVA 2011-01; Posiva Oy: Eurajoki, Finland, 2011; 246p. [Google Scholar]
- Wan, Y.; Wang, X.; Sun, H.; Li, Y.; Zhang, K.; Wu, Y. Corrosion behavior of copper at elevated temperature. Int. J. Electrochem. Sci. 2012, 7, 7902–7914. [Google Scholar]
- Honkanen, M.; Vippola, M.; Lepisto, T. Low temperature oxidation of copper alloys—AEM and AFM characterization. J. Mater. Sci. 2007, 42, 4684–4691. [Google Scholar] [CrossRef]
- Lee, S.-K.; Hsu, H.-C.; Tuan, W.-H. Oxidation Behavior of Copper at a Temperature below 300 °C and the Methodology for Passivation. Mater. Res. 2016, 19, 51–56. [Google Scholar] [CrossRef]
- Pinnel, M.R.; Tompkins, H.G.; Heath, D.E. Oxidation of copper in controlled clean air and standard laboratory air at 50 °C to 150 °C. Appl. Surf. Sci. 1979, 2, 558–577. [Google Scholar] [CrossRef]
- Choudhary, S.; Sarma, J.V.N.; Pande, S.; Ababou-Girard, S.; Turban, P.; Lepine, B.; Gangopadhyay, S. Oxidation mechanism of thin Cu films: A gateway towards the formation of single oxide phase. AIP Adv. 2018, 8, 055114. [Google Scholar] [CrossRef]
- Zhong, C.; Jiang, Y.; Luo, Y.; Deng, B.; Zhang, I.; Li, J. Kinetics characterization of the oxidation of Cu thin films at low temperature by using sheet resistance measurement. Appl. Phys. A 2008, 90, 263–266. [Google Scholar] [CrossRef]
- Ramanandan, G.K.P.; Ramakrishnan, G.; Planken, P.C.M. Oxidation kinetics of nanoscale copper films studied by terahertz transmission spectroscopy. J. Appl. Phys. 2012, 111, 123517. [Google Scholar] [CrossRef]
- Rice, K.P.; Han, J.; Campbell, I.P.; Stoykovich, M.P. In situ Absorbance Spectroscopy for Characterizing the Low Temperature Oxidation Kinetics of Sputtered Copper Films. Oxid. Met. 2015, 83, 89–99. [Google Scholar] [CrossRef]
- Unutulmazsoy, Y.; Cancellieri, C.; Chiodi, M.; Siol, S.; Lin, L.; Jeurgens, L.P.H. In situ oxidation studies of Cu thin films: Growth kinetics and oxide phase evolution. J. Appl. Phys. 2020, 127, 065101. [Google Scholar] [CrossRef]
- Derin, H.; Kantarli, K. Optical characterization of thin thermal oxide films on copper by ellipsometry. Appl. Phys. A 2002, 75, 391–395. [Google Scholar] [CrossRef]
- Roy, S.K.; Bose, S.K.; Sircar, S.C. Pressure Dependencies of Copper Oxidation for Low and High-Temperature Parabolic Laws. Oxid. Met. 1991, 35, 1–18. [Google Scholar] [CrossRef]
- Platzman, I.; Brener, R.; Haick, H.; Tannenbaum, R. Oxidation of Polycrystalline Copper Thin Films at Ambient Conditions. J. Phys. Chem. C 2008, 112, 1101–1108. [Google Scholar] [CrossRef]
- Suzuki, S.; Ishikawa, Y.; Isshiki, M.; Waseda, Y. Native oxide layers formed on the surface of ultra high-purity iron and copper investigated by angle resolved XPS. Mater. Trans. JIM 1997, 38, 1004–1009. [Google Scholar] [CrossRef] [Green Version]
- Iijima, J.; Lim, J.-W.; Hong, S.-H.; Suzuki, S.; Mimura, K.; Isshiki, M. Native oxidation of ultra high purity Cu bulk and thin films. Appl. Surf. Sci. 2006, 253, 2825–2829. [Google Scholar] [CrossRef]
- Roy, S.K.; Sircar, S.C. A critical appraisal of the logarithmic rate law in thin-film formation during oxidation of copper and its alloys. Oxid. Met. 1981, 15, 9–20. [Google Scholar] [CrossRef]
- Feng, Z.; Marks, C.R.; Barkatt, A. Oxidation-Rate excursions during the oxidation of copper in gaseous environments at moderate temperatures. Oxid. Met. 2003, 60, 393–408. [Google Scholar] [CrossRef]
- Aromaa, J.; Chernyaev, A.; Tenitz, A.; Lundström, M. The effect of reaction product layers on copper corrosion in repository conditions. In Proceedings of the EUROCORR 2018, Krakow, Poland, 9–13 September 2018; p. 112357. [Google Scholar]
- Seo, M.; Ishikawa, Y.; Kodaira, M.; Sugimoto, A.; Nakayama, S.; Watanabe, M.; Furuya, M.; Minamitani, M.; Miyata, Y.; Nishikata, A.; et al. Cathodic reduction of the duplex oxide films formed on copper in air with high relative humidity at 60 °C. Corr. Sci. 2005, 47, 2079–2090. [Google Scholar] [CrossRef]
- Gil, H.; Leygraf, C. Quantitative In Situ Analysis of Initial Atmospheric Corrosion of Copper Induced by Acetic Acid. J. Electrochem. Soc. 2007, 154, C272–C278. [Google Scholar] [CrossRef]
- Nakayama, S.; Notoya, T.; Osakai, T. A Mechanism for the Atmospheric Corrosion of Copper Determined by Voltammetry with a Strongly Alkaline Electrolyte. J. Electrochem. Soc. 2010, 157, C289–C294. [Google Scholar] [CrossRef]
- Zhu, Y.; Mimura, K.; Isshiki, M. Oxidation Mechanism of Cu2O to CuO at 600–1050 °C. Oxid. Met. 2004, 62, 207–222. [Google Scholar] [CrossRef]
- Zhu, Y.; Mimura, K.; Lim, J.-W.; Isshiki, M.; Jiang, Q. Brief Review of Oxidation Kinetics of Copper at 350 °C to 1050 °C. Met. Mat. Trans. A 2006, 37, 1231–1237. [Google Scholar] [CrossRef]
- Han, Z.; Lu, L.; Zhang, H.W.; Yang, Z.Q.; Wang, F.H.; Lu, K. Comparison of the Oxidation Behavior of Nanocrystalline and Coarse-Grain Copper. Oxid. Met. 2005, 63, 261–275. [Google Scholar] [CrossRef]
- Gattinoni, C.; Michaelides, A. Atomistic details of oxide surfaces and surface oxidation: The example of copper and its oxides. Surf. Sci. Rep. 2015, 70, 424–447. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Mimura, K.; Isshiki, M. The Effect of Impurities on the Formation of the Inner Porous Layer in the Cu2O Scale during Copper Oxidation. Oxid. Met. 2004, 61, 293–301. [Google Scholar] [CrossRef]
Temperature | klog, μg cm−2 log(s)−1 | klin, μg cm−2 s− 1 |
---|---|---|
60 | 2.53 ± 0.19 | 0.24 ± 0.15 × 10−5 |
70 | 2.61 ± 0.26 | 0.38 ± 0.14 × 10−5 |
80 | 3.28 ± 0.47 | 1.84 ± 0.51 × 10−5 |
90 | 4.06 ± 0.60 | 3.08 ± 0.74 × 10−5 |
100 | 4.58 ± 0.80 | 4.57 ± 1.23 × 10−5 |
Test # | T, °C | t, h | m Cu2O μg cm−2 | m CuO μg cm−2 | d Cu2O nm | d CuO nm |
---|---|---|---|---|---|---|
I | 25 | 932 | 7.0 ± 0.9 | 2.1 ± 0.3 | 11.7 ± 1.4 | 3.4 ± 0.4 |
II | 60 | 46 | 8.3 ± 0.6 | 2.1 ± 0.1 | 13.9 ± 1.0 | 3.3 ± 0.1 |
III | 60 | 47 | 8.2 ± 0.8 | 1.7 ± 0.2 | 13.6 ± 1.4 | 2.7 ± 0.3 |
IV | 60 | 70 | 4.4 ± 0.4 | 1.3 ± 0.1 | 7.4 ± 0.7 | 2.0 ± 0.1 |
V | 60 | 574 | 6.9 ± 0.5 | 1.6 ± 0.3 | 11.5 ± 0.8 | 2.6 ± 0.4 |
VI | 70 | 236 | 12.1 ± 1.4 | 0.9 ± 0.2 | 20.2 ± 2.3 | 1.5 ± 0.3 |
VII | 70 | 263 | 10.4 ± 1.2 | 1.8 ± 0.3 | 17.4 ± 2.0 | 2.9 ± 0.4 |
VIII | 80 | 22 | 12.1 ± 0.3 | 1.6 ± 0.2 | 20.2 ± 0.5 | 2.6 ± 0.4 |
IX | 80 | 22 | 8.9 ± 0.7 | 1.2 ± 0.2 | 14.8 ± 1.2 | 2.0 ± 0.3 |
X | 80 | 71 | 13.4 ± 0.5 | 1.4 ± 0.2 | 22.3 ± 0.9 | 2.3 ± 0.4 |
XI | 80 | 263 | 22.6 ± 2.3 | 1.8 ± 0.3 | 37.6 ± 3.8 | 2.8 ± 0.4 |
XII | 90 | 261 | 77.2 ± 4.5 | 3.3 ± 0.4 | 128.7 ± 7.5 | 5.2 ± 0.7 |
XIII | 90 | 334 | 98.4 ± 5.9 | 2.6 ± 0.5 | 164 ± 9.9 | 4.1 ± 0.7 |
XIV | 100 | 22 | 22.3 ± 1.1 | 1.0 ± 0.2 | 37.1 ± 1.8 | 1.6 ± 0.3 |
XV | 100 | 22 | 25.4 ± 0.6 | 1.6 ± 0.4 | 42.3 ± 1.1 | 2.6 ± 0.6 |
XVI | 100 | 167 | 69.6 ± 6.4 | 6.1 ± 1.1 | 115.9 ± 10.7 | 9.6 ± 1.8 |
XVII | 100 | 237 | 71.5 ± 11 | 16.9 ± 2 | 119.2 ± 18.3 | 26.8 ± 3.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aromaa, J.; Kekkonen, M.; Mousapour, M.; Jokilaakso, A.; Lundström, M. The Oxidation of Copper in Air at Temperatures up to 100 °C. Corros. Mater. Degrad. 2021, 2, 625-640. https://doi.org/10.3390/cmd2040033
Aromaa J, Kekkonen M, Mousapour M, Jokilaakso A, Lundström M. The Oxidation of Copper in Air at Temperatures up to 100 °C. Corrosion and Materials Degradation. 2021; 2(4):625-640. https://doi.org/10.3390/cmd2040033
Chicago/Turabian StyleAromaa, Jari, Marko Kekkonen, Mehrdad Mousapour, Ari Jokilaakso, and Mari Lundström. 2021. "The Oxidation of Copper in Air at Temperatures up to 100 °C" Corrosion and Materials Degradation 2, no. 4: 625-640. https://doi.org/10.3390/cmd2040033
APA StyleAromaa, J., Kekkonen, M., Mousapour, M., Jokilaakso, A., & Lundström, M. (2021). The Oxidation of Copper in Air at Temperatures up to 100 °C. Corrosion and Materials Degradation, 2(4), 625-640. https://doi.org/10.3390/cmd2040033