The Effect of Loading Rate on the Environment-Assisted Cracking Behavior of AA7075-T651 in Aqueous NaCl Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Fracture Mechanics-Based Testing
3. Results
3.1. Comparison of Rising vs. Static K Testing for AA7075-T651 Immersed in 0.6 M NaCl as a Function of Applied Potential
3.2. Effect of dK/dt on EAC for AA7075-T651 at −950 mVSCE in 1.0 M NaCl
4. Discussion
4.1. Influence of Material/Environment Susceptibility on the Loading Rate Dependence of EAC
4.2. Implications of Results on Current EAC Standardized Testing Approaches
5. Conclusions
- AA7075-T651 immersed in both 0.6 M and 1.0 M NaCl exhibited a minimal influence of loading rate on the EAC behavior across all examined applied potentials.
- The observed minimal influence of loading rate suggests that the fracture behavior of the tested material/environment combination is stress-controlled, consistent with the non-zero crack growth rates measured under static K conditions. The observed stress-controlled EAC behavior was interpreted to be diffusion-limited, which was then utilized to explain the basis for the limited dK/dt-dependence of EAC in AA7075-T651 observed for dK/dt > 0 loading.
- Across all tested combinations of solution concentration and applied potential, the crack growth rates measured under rising K were greater than those measured under static K conditions. Such results demonstrate the conservativism and efficiency of the rising K methodology relative to current standardized EAC testing approaches, even under conditions that exhibit significant EAC susceptibility. However, caution must be taken to ensure that the employed loading rate does not preclude any required time-dependent process for EAC, as currently suggested in ISO 7539-9 [41].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burleigh, T.D. The postulated mechanisms for stress corrosion cracking of aluminum alloys: A review of the literature 1980–1989. Corrosion 1991, 47, 89–98. [Google Scholar] [CrossRef]
- Holroyd, N.J.H.; Vasudevan, A.K.; Christodoulou, L. Stress corrosion cracking of high-strength aluminum alloys. In Aluminum Alloys—Contemporary Research and Applications; Vasudevan, A.K., Doherty, R.D., Eds.; Academic Press, Inc.: London, UK, 1989; pp. 463–483. [Google Scholar]
- Holroyd, N.J.H. Environment-induced cracking of high-strength aluminum alloys. In Environment-Induced Cracking of Metals; Gangloff, R.P., Ives, M.B., Eds.; NACE International: Houston, TX, USA, 1990; pp. 311–345. [Google Scholar]
- Kannan, M.B.; Srinivasan, P.B.; Raja, V.S. Stress corrosion cracking (SCC) of aluminum alloys. In Stress Corrosion Cracking: Theory and Practice; Raja, V.S., Shoji, T., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2011; pp. 307–340. [Google Scholar]
- Braun, R. Environmentally assisted cracking of aluminum alloys in chloride solutions. In Proceedings of ICAA-6; Sato, T., Kenkyukai, K., Eds.; Japan Institute of Light Metals: Tokyo, Japan, 1998; pp. 153–164. [Google Scholar]
- Ambat, R.; Dwarakadasa, E.S. Effect of hydrogen in aluminium and aluminium alloys: A review. Bull. Mater. Sci. 1996, 19, 103–114. [Google Scholar] [CrossRef]
- Holroyd, N.J.H.; Scamans, G.M. Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments. Met. Mater. Trans. A 2013, 44, 1230–1253. [Google Scholar] [CrossRef] [Green Version]
- Speidel, M.O. Stress corrosion cracking of aluminum alloys. Met. Mater. Trans. A 1975, 6, 631–651. [Google Scholar] [CrossRef]
- Schwarzenböck, E.; Ollivier, E.; Garner, A.; Cassell, A.; Hack, T.; Barrett, Z.; Engel, C.; Burnett, T.L.; Holroyd, N.H.; Robson, J.D.; et al. Environmental cracking performance of new generation thick plate 7000-T7x series alloys in humid air. Corros. Sci. 2020, 171, 108701. [Google Scholar] [CrossRef]
- Brown, R.H.; Sprowls, D.O.; Shumaker, M.B. The resistance of wrought high strength aluminum alloys to stress corrosion cracking. In Stress Corrosion Cracking of Metals—A State of the Art; Craig, H.L., Ed.; ASTM International: West Conshohocken, PA, USA, 1972; pp. 87–118. [Google Scholar]
- Hermann, R. Environmentally Assisted fracture of aluminum alloys. Corrosion 1988, 44, 685–690. [Google Scholar] [CrossRef]
- Moshtaghi, M.; Safyari, M.; Hojo, T. Effect of solution treatment temperature on grain boundary composition and environmental hydrogen embrittlement of an Al–Zn–Mg–Cu alloy. Vacuum 2021, 184, 109937. [Google Scholar] [CrossRef]
- Safyari, M.; Moshtaghi, M.; Kuramoto, S. On the role of traps in the microstructural control of environmental hydrogen embrittlement of a 7xxx series aluminum alloy. J. Alloy. Compd. 2021, 855, 157300. [Google Scholar] [CrossRef]
- Moshtaghi, M.; Safyari, M.; Kuramoto, S.; Hojo, T. Unraveling the effect of dislocations and deformation-induced boundaries on environmental hydrogen embrittlement behavior of a cold-rolled Al-Zn-Mg-Cu alloy. Int. J. Hydrog. Energy 2021, 46, 8285–8299. [Google Scholar] [CrossRef]
- Oger, L.; Andrieu, E.; Odemer, G.; Peguet, L.; Blanc, C. Hydrogen—Dislocation interactions in a low-copper 7xxx aluminium alloy: About the analysis of interrupted stress corrosion cracking tests. Mater. Sci. Eng. A 2020, 790, 139654. [Google Scholar] [CrossRef]
- Holroyd, N.J.H.; Hardie, D. Strain-rate effects in the environmentally-assisted fracture of a commercial high-strength aluminum alloy (7049). Corros. Sci. 1981, 21, 129–144. [Google Scholar] [CrossRef]
- Dey, S.; Chattoraj, I. Interaction of strain rate and hydrogen input on the embrittlement of 7075 T6 aluminum alloy. Mater. Sci. Eng. A 2016, 661, 168–178. [Google Scholar] [CrossRef]
- Taheri, M.; Albrecht, J.; Bernstein, I.; Thompson, A. Strain-rate effects on hydrogen embrittlement of 7075 aluminum. Scr. Met. 1979, 13, 871–875. [Google Scholar] [CrossRef]
- Beavers, J.A.; Koch, G.H. Limitations of the slow strain rate test for stress corrosion cracking testing. Corrosion 1992, 48, 256–264. [Google Scholar] [CrossRef]
- Kim, C.D.; Wilde, B.E. A Review of the constant strain-rate stress corrosion cracking test. In Stress Corrosion Cracking—The Slow Strain-Rate Technique; Ugiansky, G.M., Payer, J.H., Eds.; ASTM International: West Conshohocken, PA, USA, 1979; pp. 97–112. ISBN 978-0-8031-0579-9. [Google Scholar]
- Henthorne, M. The slow strain rate stress corrosion cracking test—A 50 year retrospective. Corrosion 2016, 72, 1488–1518. [Google Scholar] [CrossRef]
- ASTM Standard G129-00, Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking; ASTM International: West Conshohocken, PA, USA, 2000. [CrossRef]
- McIntyre, D.R.; Kane, R.D.; Wilhelm, S.M. Slow strain rate testing for materials evaluation in high-pressure H2S environments. Corrosion 1988, 44, 920–926. [Google Scholar] [CrossRef]
- Ahluwalia, H. Problems associated with slow strain rate quality assurance testing of nickel-base corrosion resistant alloy tubulars in hydrogen sulfide environments. In Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications; Kane, R.D., Ed.; ASTM International: West Conshohocken, PA, USA, 1993; pp. 225–339. [Google Scholar] [CrossRef]
- Hibner, E.L. Improved SSR Test for Lot Acceptance Criterion. In Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications; Kane, R.D., Ed.; ASTM International: West Conshohocken, PA, USA, 1993; pp. 290–294. [Google Scholar] [CrossRef]
- le Hong, S. Influence of surface condition on primary water stress corrosion cracking initiation of alloy 600. Corrosion 2001, 57, 323–333. [Google Scholar] [CrossRef]
- Lee, H.; Kim, Y.; Jeong, Y.; Kim, S. Effects of testing variables on stress corrosion cracking susceptibility of Al 2024-T351. Corros. Sci. 2012, 55, 10–19. [Google Scholar] [CrossRef]
- Margot-Marette, H.; Bardou, G.; Charbonnier, J. The application of the slow strain rate test method for the development of linepipe steels resistant to sulphide stress cracking. Corros. Sci. 1987, 27, 1009–1026. [Google Scholar] [CrossRef]
- Holroyd, N.; Burnett, T.; Seifi, M.; Lewandowski, J. Improved understanding of environment-induced cracking (EIC) of sensitized 5XXX series aluminium alloys. Mater. Sci. Eng. A 2017, 682, 613–621. [Google Scholar] [CrossRef]
- Holroyd, N.H.; Burnett, T.L.; Palmer, B.C.; Lewandowski, J.J. Estimation of environment-induced crack growth rate as a function of stress intensity factors generated during slow strain rate testing of aluminum alloys. Corros. Rev. 2019, 37, 499–506. [Google Scholar] [CrossRef]
- Seifi, M.; Ghamarian, I.; Samimi, P.; Collins, P.; Holroyd, N.; Lewandowski, J. Sensitization and remediation effects on environmentally assisted cracking of Al-Mg naval alloys. Corros. Sci. 2018, 138, 219–241. [Google Scholar] [CrossRef]
- Haruna, T.; Shibata, T. Initiation and growth of stress corrosion cracks in type 316L stainless steel during slow strain rate testing. Corrosion 1994, 50, 785–791. [Google Scholar] [CrossRef]
- Garud, Y.S. An incremental damage formulation for stress corrosion cracking and its application to crack growth interpretation based on CERT data. Corrosion 1990, 46, 968–974. [Google Scholar] [CrossRef]
- Máthis, K.; Prchal, D.; Novotný, R.; Hähner, P. Acoustic emission monitoring of slow strain rate tensile tests of 304L stainless steel in supercritical water environment. Corros. Sci. 2011, 53, 59–63. [Google Scholar] [CrossRef]
- Sampath, D.; Akid, R.; Morana, R. Estimation of crack initiation stress and local fracture toughness of Ni-alloys 945X (UNS N09946) and 718 (UNS N07718) under hydrogen environment via fracture surface topography analysis. Eng. Fract. Mech. 2018, 191, 324–343. [Google Scholar] [CrossRef]
- Martelo, D.; Sampath, D.; Monici, A.; Morana, R.; Akid, R. Correlative analysis of digital imaging, acoustic emission, and fracture surface topography on hydrogen assisted cracking in Ni-alloy 625+. Eng. Fract. Mech. 2019, 221. [Google Scholar] [CrossRef]
- Martínez-Pañeda, E.; Harris, Z.D.; Fuentes-Alonso, S.; Scully, J.R.; Burns, J.T. On the suitability of slow strain rate tensile testing for assessing hydrogen embrittlement susceptibility. Corros. Sci. 2020, 163, 108291. [Google Scholar] [CrossRef] [Green Version]
- ASTM G168-17: Standard Practice for Making and Using Precracked Double Beam Stress Corrosion Specimens; ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM International, Standard Test Method for Determining Threshold Stress Intensity Factor for Environment-Assisted Cracking of Metallic Materials; ASTM International: West Conshohocken, PA, USA, 2003. [CrossRef]
- ASTM International, F-1624 Standard Test Method for Measurement of Hydrogen Embrittlement Threshold in Steel by the Incremental Step Loading Technique; ASTM International: West Conshohocken, PA, USA, 2014. [CrossRef]
- I.O. for Standardization, ISO 7539-9:2003, Corrosion of Metals and Alloys—Stress Corrosion Cracking; Part 9: Preparation and use of pre-crack specimens for tests under rising load or rising displacement; ISO—International Organization for Standardization: Geneva, Switzerland, 2003.
- Gangloff, R.P. Probabilistic fracture mechanics simulation of stress corrosion cracking using accelerated laboratory testing and multi-scale modeling. Corrosion 2016, 72, 862–880. [Google Scholar] [CrossRef]
- Gangloff, R.P. Hydrogen assisted cracking of high strength alloys. In Comprehensive Structural Inteqrity; Milne, I., Ritchie, R.O., Karihaloo, B., Eds.; Elsevier Science: New York, NY, USA, 2003; pp. 31–101. [Google Scholar]
- Gangloff, R.P.; Harlow, D.G. Interdisciplinary multi-scale research on environment assisted cracking: The 50 year legacy of Robert, P. Wei. Int. J. Fatigue 2017, 104, 81–98. [Google Scholar] [CrossRef]
- Anderson, T.L. Fracture Mechanics: Fundamentals and Applications, 3rd ed.; Taylor & Francis: Boca Raton, FL, USA, 2005. [Google Scholar]
- Dietzel, W. Rising displacement stress corrosion cracking testing. Met. Mater. Trans. A 2010, 42, 365–372. [Google Scholar] [CrossRef]
- Sarkar, B.; Marek, M.; Starke, E.A. The effect of copper content and heat treatment on the stress corrosion characteristics of Ai-6Zn-2Mg-X Cu alloys. Met. Mater. Trans. A 1981, 12, 1939–1943. [Google Scholar] [CrossRef]
- Vogt, H.; Speidel, M. Stress corrosion cracking of two aluminum alloys: A comparison between experimental observations and data based on modelling. Corros. Sci. 1998, 40, 251–270. [Google Scholar] [CrossRef]
- Holroyd, N.J.H.; Scamans, G.M. Crack propagation during sustained-load cracking of Al-Zn-Mg-Cu aluminum alloys exposed to moist air or distilled water. Met. Mater. Trans. A 2011, 42, 3979–3998. [Google Scholar] [CrossRef]
- Young, G.A.; Scully, J.R. The effects of test temperature, temper, and alloyed copper on the hydrogen-controlled crack growth rate of an Al-Zn-Mg-(Cu) alloy. Met. Mater. Trans. A 2002, 33, 1167–1181. [Google Scholar] [CrossRef]
- Dietzel, W.; Schwalbe, K.-H.; Wu, D. Application of fracture mechanics techniques to the environmentally assisted cracking of Aluminum 2024. Fatigue Fract. Eng. Mater. Struct. 1989, 12, 495–510. [Google Scholar] [CrossRef]
- Pickens, J.R.; Langan, T.J. The effect of solution heat-treatment on grain boundary segregation and stress-corrosion cracking of Al-Zn-Mg alloys. Met. Mater. Trans. A 1987, 18, 1735–1744. [Google Scholar] [CrossRef]
- Ferrer, C.P.; Koul, M.G.; Connolly, B.J.; Moran, A.L. Improvements in strength and stress corrosion cracking properties in aluminum alloy 7075 via low-temperature retrogression and re-aging heat treatments. Corrosion 2003, 59, 520–528. [Google Scholar] [CrossRef]
- Lee, S.-M.; Pyun, S.-I.; Chun, Y.-G. A critical evaluation of the stress-corrosion cracking mechanism in high-strength aluminum alloys. Met. Mater. Trans. A 1991, 22, 2407–2414. [Google Scholar] [CrossRef]
- Harris, Z.D.; Dubas, E.M.; Popernack, A.S.; Somerday, B.P.; Burns, J.T. Elucidating the loading rate dependence of hydrogen environment-assisted cracking in a Ni-Cu superalloy. Theor. Appl. Fract. Mech. 2021, 111, 102846. [Google Scholar] [CrossRef]
- Nibur, K.A.; Somerday, B.P.; Marchi, C.S.; Foulk, J.W.; Dadfarnia, M.; Sofronis, P.; Marchi, C.S. The relationship between crack-tip strain and subcritical cracking thresholds for steels in high-pressure hydrogen gas. Met. Mater. Trans. A 2012, 44, 248–269. [Google Scholar] [CrossRef]
- Somerday, B.; Nibur, K. Effect of applied K level on the crack-arrest threshold in hydrogen environments: Mechanics-based interpretation. Corrosion 2019, 75, 929–937. [Google Scholar] [CrossRef]
- Papazian, J.; Anagnostou, E.L.; Christ, R.J.; Engel, J.; Fridline, D.; Hoitsma, D.; Madsen, J. DARPA/NCG Structural Integrity Prognosis System, HR0011-04; DARPA: Arlington, VA, USA, 2009. [Google Scholar]
- B209-14 Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate; ASTM International: West Conshohocken, PA, USA, 2014. [CrossRef]
- Burns, J.T.; Larsen, J.M.; Gangloff, R.P. Driving forces for localized corrosion-to-fatigue crack transition in Al-Zn-Mg-Cu. Fatigue Fract. Eng. Mater. Struct. 2011, 34, 745–773. [Google Scholar] [CrossRef]
- Payne, J.; Welsh, G.; Christ, R.J., Jr.; Nardiello, J.; Papazian, J.M. Observations of fatigue crack initiation in 7075-T651. Int. J. Fatigue 2010, 32, 247–255. [Google Scholar] [CrossRef]
- ASTM A693-16 Standard Specification for Precipitation-Hardening Stainless and Heat-Resisting Steel Plate, Sheet, and Strip; ASTM International: West Conshohocken, PA, USA, 2016.
- Tada, H.; Paris, P.C.; Irwin, G.R. The Stress Analysis of Cracks Handbook; Paris Productions Incorporated: St. Louis, MO, USA, 1985. [Google Scholar]
- Dowling, N.E. Fatigue at notches and the local strain and fracture mechanics approaches. In Fracture Mechanics, Proceedings of the Eleventh National Symposium on Fracture Mechanics: Part I; Smith, C., Ed.; ASTM International: West Conshohocken, PA, USA, 1979; pp. 247–273. [Google Scholar]
- Smith, R.; Miller, K. Fatigue cracks at notches. Int. J. Mech. Sci. 1977, 19, 11–22. [Google Scholar] [CrossRef]
- Gangloff, R.; Slavik, D.; Piascik, R.; Van Stone, R. Direct current electrical potential measurement of the growth of small cracks. In Small-Crack Test Methods; Larsen, J.M., Allison, J.E., Eds.; ASTM International: Philadelphia, PA, USA, 1992; pp. 116–168. [Google Scholar]
- Donald, J.K.; Ruschau, J. Direct current potential difference fatigue crack measurement techniques. In Fatigue Crack Measurements: Techniques and Applications; Marsh, K.J., Smith, R.A., Ritchie, R.O., Eds.; EMAS: Warrington, UK, 1991; pp. 11–37. [Google Scholar]
- Johnson, H.H. Calibrating the electric potential method for studying slow crack growth. Mater. Res. Stand. 1965, 5, 442–445. [Google Scholar]
- ASTM Standard E647-13: Standard Test Method for Measurement of Fatigue Crack Growth Rates; ASTM International: West Conshohocken, PA, USA, 2013. [CrossRef]
- Popernack, A. Loading Rate Effects on the Hydrogen Enhanced Cracking Behavior of Ni- and Co-based Superalloys for Marine Applications; University of Virginia: Charlottesville, VA, USA, 2017. [Google Scholar]
- Tarnowski, K.; Dean, D.; Nikbin, K.; Davies, C. Predicting the influence of strain on crack length measurements performed using the potential drop method. Eng. Fract. Mech. 2017, 182, 635–657. [Google Scholar] [CrossRef]
- Ritchie, R.O.; Bathe, K.J. On the calibration of the electrical potential technique for monitoring crack growth using finite element methods. Int. J. Fract. 1979, 15, 47–55. [Google Scholar] [CrossRef]
- Gangloff, R.P.; Ha, H.M.; Burns, J.T.; Scully, J.R. Measurement and modeling of hydrogen environment-assisted cracking in monel K-500. Met. Mater. Trans. A 2014, 45, 3814–3834. [Google Scholar] [CrossRef] [Green Version]
- Burns, J.T.; Harris, Z.D.; Dolph, J.D.; Gangloff, R.P. Measurement and modeling of hydrogen environment-assisted cracking in a ni-cu-al-ti superalloy. Met. Mater. Trans. A 2016, 47, 990–997. [Google Scholar] [CrossRef]
- Harris, Z.D.; Burns, J.T. The effect of isothermal heat treatment on hydrogen environment-assisted cracking susceptibility in Monel K-500. Mater. Sci. Eng. A 2019, 764, 138249. [Google Scholar] [CrossRef]
- Wilkowski, G.M.; Wambaugh, J.O.; Prabhat, K. Single-Specimen J-resistance curve evaluations using the direct-current electric potential method and a computerized data acquisition system. In Fracture Mechanics: Fifteenth Symposium; Sanford, R.J., Ed.; ASTM International: West Conshohocken, PA, USA, 1984; pp. 553–576. [Google Scholar]
- ASTM E1457-19e1: Standard Test Method for Measurement of Creep Crack Growth Times in Metals; ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM E1820-20: Standard Test Method for Measurement of Fracture Toughness; ASTM International: West Conshohocken, PA, USA, 2020.
- Harris, Z.D.; Guiseva, K.; Scully, J.R.; Burns, J.T. On the hydrogen environment-assisted cracking resistance of a compositionally complex Co–Ni–Cr–Fe–Mo–Ti alloy. Mater. Sci. Eng. A 2021, 802, 140601. [Google Scholar] [CrossRef]
- Steiner, P.; Harris, Z.; Moraes, C.V.; Kelly, R.; Burns, J. Investigation of IG-SCC growth kinetics in Al-Mg alloys in thin film environments. Corrosion 2021. [Google Scholar] [CrossRef]
- Steiner, P.; Burns, J. Mechanistic studies of intergranular stress corrosion cracking in Al-Mg alloys under atmospheric exposure conditions. Corrosion 2018, 74, 1117–1131. [Google Scholar] [CrossRef]
- Crane, C.; Gangloff, R. Stress corrosion cracking of Al-Mg alloy 5083 sensitized at low temperature. Corrosion 2015, 72, 221–241. [Google Scholar] [CrossRef]
- Santucci, R.; Kannan, B.; Scully, J. Electrochemical diagnostic cycle testing of magnesium and magnesium oxide-pigmented primers on AA2024-T351. Corrosion 2018, 74, 96–111. [Google Scholar] [CrossRef]
- Chen, K.; Wang, J.; Du, D.; Andresen, P.L.; Zhang, L. dK/da effects on the SCC growth rates of nickel base alloys in high-temperature water. J. Nucl. Mater. 2018, 503, 13–21. [Google Scholar] [CrossRef]
- Andresen, P.L.; Morra, M.M. Effect of rising and falling K profiles on SCC growth rates in high-temperature water. J. Press. Vessel. Technol. 2007, 129, 488–506. [Google Scholar] [CrossRef]
- Andresen, P.L. Emerging issues and fundamental processes in environmental cracking in hot water. Corrosion 2008, 64, 439–464. [Google Scholar] [CrossRef]
- Thodla, R.; Rollins, B.C.; Scott, H.M.; Holtam, C. Effect of strain rate on the fatigue and static crack growth rate of UNS N07718 under cathodic polarization. Corrosion 2017, 9669, 1–10. [Google Scholar]
- Clark, W.G., Jr.; Landes, J.D. An evaluation of rising load KISCC testing. In Stress Corrosion—New Approaches; Craig, H.L., Ed.; ASTM International: West Conshohocken, PA, USA, 1976; pp. 108–127. [Google Scholar]
- Gruhl, W. Stress corrosion cracking of high strength aluminum alloys. Z. Fur Met. 1984, 75, 819–826. [Google Scholar]
- Gest, R.J.; Troiano, A.R. Stress corrosion and hydrogen embrittlement in an aluminum alloy. Corrosion 1974, 30, 274–279. [Google Scholar] [CrossRef]
- Polyanskii, V.M. Role of hydrogen embrittlement in the corrosion cracking of aluminum alloys. Mater. Sci. 1986, 21, 301–309. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.; Zou, L.; Yu, Y.; Li, Q. Effect of precipitate state on the stress corrosion behavior of 7050 aluminum alloy. Mater. Charact. 2016, 114, 1–8. [Google Scholar] [CrossRef]
- Knight, S.; Pohl, K.; Holroyd, N.; Birbilis, N.; Rometsch, P.; Muddle, B.; Goswami, R.; Lynch, S. Some effects of alloy composition on stress corrosion cracking in Al-Zn-Mg-Cu alloys. Corros. Sci. 2015, 98, 50–62. [Google Scholar] [CrossRef]
- Xu, D.; Birbilis, N.; Rometsch, P. Effect of S-phase dissolution on the corrosion and stress corrosion cracking of an as-rolled Al-Zn-Mg-Cu Alloy. Corrosion 2012, 68, 035001-1. [Google Scholar] [CrossRef]
- Hardwick, D.; Thompson, A.; Bernstein, I. The effect of copper content and heat treatment on the hydrogen embrittlement of 7050-type alloys. Corros. Sci. 1988, 28, 1127–1137. [Google Scholar] [CrossRef]
- Knight, S.; Birbilis, N.; Muddle, B.; Trueman, A.; Lynch, S. Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn-Mg-Cu alloys. Corros. Sci. 2010, 52, 4073–4080. [Google Scholar] [CrossRef]
- Goswami, R.; Lynch, S.; Holroyd, N.J.H.; Knight, S.P.; Holtz, R.L. Evolution of grain boundary precipitates in Al 7075 upon aging and correlation with stress corrosion cracking behavior. Met. Mater. Trans. A 2013, 44, 1268–1278. [Google Scholar] [CrossRef]
- Crane, C.; Kelly, R.; Gangloff, R. Crack chemistry control of intergranular SCC in sensitized Al-Mg. Corrosion 2015, 72, 242–263. [Google Scholar] [CrossRef]
- Ritchie, R.O.; Knott, J.F.; Rice, J.R. On the relationship between critical tensile stress and fracture toughness in mild steel. J. Mech. Phys. Solids 1973, 21, 395–410. [Google Scholar] [CrossRef]
- Akhurst, K.N.; Baker, T.J. The threshold stress intensity for hydrogen-induced crack growth. Met. Mater. Trans. A 1981, 12, 1059–1070. [Google Scholar] [CrossRef]
- Gangloff, R.P. Diffusion control of hydrogen environment embrittlement in high strength alloys. Hydrogen Effects on Materials; Moody, N.R., Thompson, A.W., Eds.; The Minerals, Metals & Materials Society: Warrendale, PA, USA, 2002. [Google Scholar]
- Raykar, N.; Maiti, S.; Raman, R.S. Modelling of mode-I stable crack growth under hydrogen assisted stress corrosion cracking. Eng. Fract. Mech. 2011, 78, 3153–3165. [Google Scholar] [CrossRef]
- Scully, J.; Young, G.; Smith, S. Hydrogen embrittlement of aluminum and aluminum-based alloys. In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies; Gangloff, R.P., Somerday, B.P., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2012; pp. 707–768. [Google Scholar] [CrossRef]
- Dietzel, W.; Schwalbe, K.-H. Application of the rising displacement test to SCC investigations. In Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications; Kane, R.D., Ed.; ASTM International: West Conshohocken, PA, USA, 2009; pp. 134–148. [Google Scholar]
Al | Zn | Mg | Cu | Cr | Fe | Si | Mn | Ti |
---|---|---|---|---|---|---|---|---|
Bal | 5.7 | 2.5 | 1.7 | 0.19 | 0.26 | 0.06 | 0.03 | 0.03 |
σYS (MPa) | σUTS (MPa) | E (GPa) | RA |
---|---|---|---|
482 | 561 | 70.7 | 0.086 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harris, Z.D.; Burns, J.T. The Effect of Loading Rate on the Environment-Assisted Cracking Behavior of AA7075-T651 in Aqueous NaCl Solution. Corros. Mater. Degrad. 2021, 2, 360-375. https://doi.org/10.3390/cmd2030019
Harris ZD, Burns JT. The Effect of Loading Rate on the Environment-Assisted Cracking Behavior of AA7075-T651 in Aqueous NaCl Solution. Corrosion and Materials Degradation. 2021; 2(3):360-375. https://doi.org/10.3390/cmd2030019
Chicago/Turabian StyleHarris, Zachary D., and James T. Burns. 2021. "The Effect of Loading Rate on the Environment-Assisted Cracking Behavior of AA7075-T651 in Aqueous NaCl Solution" Corrosion and Materials Degradation 2, no. 3: 360-375. https://doi.org/10.3390/cmd2030019
APA StyleHarris, Z. D., & Burns, J. T. (2021). The Effect of Loading Rate on the Environment-Assisted Cracking Behavior of AA7075-T651 in Aqueous NaCl Solution. Corrosion and Materials Degradation, 2(3), 360-375. https://doi.org/10.3390/cmd2030019