Modification, Degradation and Evaluation of a Few Organic Coatings for Some Marine Applications
Abstract
:1. Introduction
2. Organic Coatings for Marine Applications
3. Defects and Defect-Modification
4. Substrate Effect
5. Environmental Influence
5.1. Environmental Factors
5.2. Water
5.3. Salt
5.4. Synergistic Effect
6. Evaluation
6.1. Simulation and Rapid Evaluation
6.1.1. Salt Spray
6.1.2. Immersion and EIS
6.1.3. AC/DC/AC
6.1.4. Scratch
6.1.5. UV Irradiation
6.2. Degradation and Damage
7. Bio-Fouling
7.1. Antifouling Coatings
7.2. Self-Polishing and Biocides-Releasing Coatings
7.3. Non-Fouling Coatings
7.4. Self-Healing Antifouling Coatings
7.5. Evaluation of Antifouling Coatings
8. Concluding Remarks
9. Future Perspective
9.1. Coating on New Marine Material
9.2. Environmentally Friendly Coating
9.3. Rapid Reliable Coating Valuation
9.4. Service Life Prediction
Funding
Acknowledgments
Conflicts of Interest
References
- Amirudin, A.; Thierry, D. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Prog. Org. Coat. 1995, 26, 1–28. [Google Scholar] [CrossRef]
- Bellucci, F.; Nicodemo, L.; Monetta, T.; Kloppers, M.J.; Latanision, R.M. A study of corrosion initiation on polyimide coatings. Corros. Sci. 1992, 33, 1203–1226. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, J.; Zhao, X.; Deng, H. Life evaluation of organic coatings on hydraulic metal structures. Prog. Org. Coat. 2020, 148, 105848. [Google Scholar] [CrossRef]
- Gimeno, M.J.; Puig, M.; Chamorro, S.; Molina, J.; March, R.; Oró, E.; Pérez, P.; Pérez, P.; Suay, J.J. Improvement of the anticorrosive properties of an alkyd coating with zinc phosphate pigments assessed by NSS and ACET. Prog. Org. Coat. 2016, 95, 46–53. [Google Scholar]
- Yi, H.; Deng, Y.; Wang, C. Technology. Pickering emulsion-based fabrication of epoxy and amine microcapsules for dual core self-healing coating. Compos. Sci. Technol. 2016, 133, 51–59. [Google Scholar] [CrossRef]
- Kaur, H.; Sharma, J.; Jindal, D.; Arya, R.K.; Ahuja, S.K.; Arya, S.B. Crosslinked polymer doped binary coatings for corrosion protection. Prog. Org. Coat. 2018, 125, 32–39. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, X. A Review on Conducting Polymers and Nanopolymer Composite Coatings for Steel Corrosion Protection. Coatings 2019, 9, 807. [Google Scholar]
- Zhang, X.; Ma, R.; Du, A.; Liu, Q.; Fan, Y.; Zhao, X.; Wu, J.; Cao, X. Corrosion resistance of organic coating based on polyhedral oligomeric silsesquioxane-functionalized graphene oxide. Appl. Surf. Sci. 2019, 484, 814–824. [Google Scholar] [CrossRef]
- Monetta, T.; Bellucci, F.; Nicodemo, L.; Nicolais, L. Protective properties of epoxy-based organic coatings on mild steel. Prog. Org. Coat. 1993, 21, 353–369. [Google Scholar] [CrossRef]
- Waśkiewicz, S.; Zenkner, K.; Langer, E.; Lenartowicz, M.; Gajlewicz, I. Organic coatings based on new Schiff base epoxy resins. Prog. Org. Coat. 2013, 76, 1040–1045. [Google Scholar] [CrossRef]
- Chang, C.H.; Hsu, M.H.; Weng, C.J.; Hung, W.I.; Chuang, T.L.; Chang, K.C.; Peng, C.W.; Yen, Y.C.; Yeh, J.M. 3D-bioprinting approach to fabricate superhydrophobic epoxy/organophilic clay as an advanced anticorrosive coating with the synergistic effect of superhydrophobicity and gas barrier properties. J. Mater. Chem. A 2013, 1, 13869–13877. [Google Scholar] [CrossRef]
- Rout, T.K.; Gaikwad, A.V. In-situ generation and application of nanocomposites on steel surface for anti-corrosion coating. Prog. Org. Coat. 2015, 79, 98–105. [Google Scholar] [CrossRef]
- Jacques, L.F.E. Accelerated and outdoor/natural exposure testing of coatings. Prog. Polym. Sci. 2000, 25, 1337–1362. [Google Scholar] [CrossRef]
- Singh, S.K.; Tambe, S.P.; Raja, V.S.; Kumar, D. Thermally sprayable polyethylene coatings for marine environment. Prog. Org. Coat. 2007, 60, 186–193. [Google Scholar] [CrossRef]
- Armelin, E.; Alemán, C.; Iribarren, J. Anticorrosion performances of epoxy coatings modified with polyaniline: A comparison between the emeraldine base and salt forms. Prog. Org. Coat. 2009, 65, 88–93. [Google Scholar] [CrossRef]
- Chen, K.; Zhou, S.; Wu, L. Self-Healing Underwater Superoleophobic and Antibiofouling Coatings Based on the Assembly of Hierarchical Microgel Spheres. ACS Nano 2016, 10, 1386. [Google Scholar] [CrossRef]
- Hu, J.; Li, X.; Gao, J.; Zhao, Q. Design. UV aging characterization of epoxy varnish coated steel upon exposure to artificial weathering environment. Mater. Des. 2009, 30, 1542–1547. [Google Scholar] [CrossRef]
- Jisr, R.M.; Keller, T.C.S.; Schlenoff, J.B. Patterned Friction and Cell Attachment on Schizophobic Polyelectrolyte Surfaces. Langmuir 2013, 29, 15579–15588. [Google Scholar] [CrossRef]
- Wu, G.; Liu, D.; Chen, J.; Liu, G.; Kong, Z. Preparation and properties of super hydrophobic films from siloxane-modified two-component waterborne polyurethane and hydrophobic nano SiO2. Prog. Org. Coat. 2019, 127, 80–87. [Google Scholar] [CrossRef]
- Pidhatika, B.; Nalam, P.C. Investigation of design parameters in generating antifouling and lubricating surfaces using hydrophilic polymer brushes. J. Appl. Polym. Sci. 2019, 136, 47659. [Google Scholar] [CrossRef]
- Yeonwoo, J.; Le, T.T.; So, H.K.; Ko, S.; Kim, S.; Cho, W.K.; Choi, J.S.; Kang, S.M. Multipurpose Antifouling Coating of Solid Surfaces with the Marine-Derived Polymer Fucoidan. Macromol. Biosci. 2018, 18, 1800137. [Google Scholar]
- Hamidon, T.S.; Hussin, M.H. Susceptibility of hybrid sol-gel (TEOS-APTES) doped with caffeine as potent corrosion protective coatings for mild steel in 3.5 wt.% NaCl. Prog. Org. Coat. 2020, 140, 105478. [Google Scholar] [CrossRef]
- Rajkumar, R.; Vedhi, C. Study of the corrosion protection efficiency of polypyrrole/metal oxide nanocomposites as additives in anticorrosion coating. Anti-Corros. Methods Mater. 2020, 67, 305–312. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Wang, X.; Zhang, C.; Liu, H.; Yang, W.; Cai, M.; Pei, X.; Zhou, F. Self-polishing emulsion platforms: Eco-friendly surface engineering of coatings toward water borne marine antifouling. Prog. Org. Coat. 2020, 149, 108482. [Google Scholar] [CrossRef]
- Wanka, R.; Koc, J.; Clarke, J.; Hunsucker, K.; Swain, G.; Aldred, N.; Finlay, J.; Clare, A.; Rosenhahn, A. Sol–Gel-Based Hybrid Materials as Antifouling and Fouling-Release Coatings for Marine Applications. ACS Appl. Mater. Interfaces 2020, 12, 53286–53296. [Google Scholar] [CrossRef]
- Sun, W.; Xing, C.; Tang, X.; Zuo, Y.; Tang, Y.; Zhao, X. Comparative study on the degradation of a zinc-rich epoxy primer/acrylic polyurethane coating in different simulated atmospheric solutions. J. Coat. Technol. Res. 2020. [Google Scholar] [CrossRef]
- Chen, J.F.; Zhang, J.T.; Hu, M.J.; Zheng, Z.Q.; Wang, K.D.; Li, X.B. Preparation of Ni/graphene hydrophobic composite coating with micro-nano binary structure by poly-dopamine modification. Surf. Coat. Technol. 2018, 353, 1–7. [Google Scholar] [CrossRef]
- Zhan, Y.; Zhang, J.; Wan, X.; Long, Z.; He, S.; Yi, H. Epoxy composites coating with Fe3O4 decorated graphene oxide: Modified bio-inspired surface chemistry, synergistic effect and improved anti-corrosion performance. Appl. Surf. Sci. 2018, 436, 756–767. [Google Scholar] [CrossRef]
- Cho, H.; Lee, J.; Lee, S.; Hwang, W. Durable superhydrophilic/phobic surfaces based on green patina with corrosion resistance. Phys. Chem. Chem. Phys. 2015, 17, 6786–6793. [Google Scholar] [CrossRef] [Green Version]
- Yeganeh, M.; Omidi, M.; Rabizadeh, T. Anti-corrosion behavior of epoxy composite coatings containing molybdate-loaded mesoporous silica. Prog. Org. Coat. 2019, 126, 18–27. [Google Scholar] [CrossRef]
- Chen, C.; Wei, S.; Xiang, B.; Wang, B.; Yuan, Y.J.C. Synthesis of Silane Functionalized Graphene Oxide and Its Application in Anti-Corrosion Waterborne Polyurethane Composite Coatings. Coatings 2019, 9, 587. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.J.; Wang, H.Y.; Li, M.L.; Liu, Z.J.; Lv, C.J.; Zhu, Y.J.; Bao, N.Z. Anti-corrosion and wear resistance properties of polymer composite coatings: Effect of oily functional fillers. J. Taiwan Inst. Chem. Eng. 2018, 85, 248–256. [Google Scholar] [CrossRef]
- Eom, S.; Kim, S.; Lee, J. Assessment of Anti-Corrosion Performances of Coating Systems for Corrosion Prevention of Offshore Wind Power Steel Structures. Coatings 2020, 10, 970. [Google Scholar] [CrossRef]
- Pélissier, K.; Thierry, D. Powder and High-Solid Coatings as Anticorrosive Solutions for Marine and Offshore Applications? A Review. Coatings 2020, 10, 916. [Google Scholar]
- Gu, Y.; Yu, L.; Mou, J.; Wu, D.; Ren, Y. Research Strategies to Develop Environmentally Friendly Marine Antifouling Coatings. Mar. Drugs 2020, 18, 371. [Google Scholar] [CrossRef]
- Selim, M.S.; El-Safty, S.A.; Shenashen, M.A.; Higazy, S.A.; Elmarakbi, A. Progress in biomimetic leverages for marine antifouling using nanocomposite coatings. J. Mater. Chem. B 2020, 8, 3701–3732. [Google Scholar] [CrossRef]
- Kalyva, Μ.; Chronaki, C.; Papaspyrides, C.D.; Korres, D.; Vouyiouka, S. Antifouling encapsulation systems for making coating applications. In Proceedings of the 12th Hellenic Polymer Society International Conference, Ioannina, Greece, 30 September–3 October 2018. [Google Scholar]
- Suleiman, R.; Khaled, M.; Khalil, A.; Bassam, S.A.; Ali, E. Marine Anticorrosion and Antifouling Assessment of Multifunctionalized Hybrid Sol-Gel Coatings. In Proceedings of the NACE International Corrosion Conference Proceedings, Phoenix, AZ, USA, 15–19 April 2018. [Google Scholar]
- Xu, S.; Hao, S.; Li, S. The Inhibitor Evaluation for Water Injection Pipeline of YanChang Oilfield. In Proceedings of the 7th International Conference on Energy, Environment and Sustainable, Development, Shenzhen, China, 30–31 March 2018; pp. 909–913. [Google Scholar]
- Fredj, N.; Cohendoz, S.; Mallarino, S.; Feaugas, X.; Touzain, S. Evidencing antagonist effects of water uptake and leaching processes in marine organic coatings by gravimetry and EIS. Prog. Org. Coat. 2010, 67, 287–295. [Google Scholar] [CrossRef]
- Deflorian, F.; Rossi, S.; Fedel, M. Aluminium components for marine applications protected against corrosion by organic coating cycles with low environmental impact. Corros. Eng. Sci. Technol. 2011, 46, 237–244. [Google Scholar] [CrossRef]
- Marceaux, S.; Bressy, C.; Perrin, F.; Martin, C.; Margaillan, A. Development of polyorganosilazane–silicone marine coatings. Prog. Org. Coat. 2014, 77, 1919–1928. [Google Scholar] [CrossRef]
- Chambers, L.D.; Walsh, F.C.; Wood, R.; Stokes, K.R. Biomimetic approach to the design of the marine antifouling coatings. In Proceedings of the World Maritime Technology Conference, London, UK, 6–10 March 2006. [Google Scholar]
- Wit, J.; Mol, J.; Bos, W.; Ferrari, G.M. Organic Coatings for Marine and Shipping Applications; Elsevier: Amsterdam, The Netherland, 2008; Chapter 16; pp. 337–371. [Google Scholar]
- Jones, F.N.; Nichols, M.E.; Pappas, S.P. Organic Coatings (Science and Technology); Wiley: Hoboken, NJ, USA, 2017; pp. 1–5. [Google Scholar]
- Manolakis, I.; Azhar, U. Recent Advances in Mussel-Inspired Synthetic Polymers as Marine Antifouling Coatings. Coatings 2020, 10, 653. [Google Scholar] [CrossRef]
- Xu, G.; Neoh, K.G.; Kang, E.T.; Teo, L. Switchable Antimicrobial and Antifouling Coatings from Tannic Acid-Scaffolded Binary Polymer Brushes. ACS Sustain. Chem. Eng. 2020, 8, 2586–2595. [Google Scholar] [CrossRef]
- Zhou, Y.; Rossi, B.; Zhou, Q.; Hihara, L.H.; Foster, M. Thin Plasma-Polymerized Coatings as a Primer with Polyurethane Topcoat for Improved Corrosion Resistance. Langmuir 2020, 36, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Rucoba, D.; Arias, R.R.; Sánchez, I.G. First experiences in the assessment and mitigation of marine corrosion in metallic components for Marine Renewable Energy devices. Eurocorr 2013, 4, 1–3. [Google Scholar]
- Rucoba, D.; Arias, R.R.; Ruiz, L.; Martínez, Y. Degradation and corrosion testing of materials and coating systems for offshore wind turbine substructures in North Sea waters. IWEC 2014, 3, 1–8. [Google Scholar]
- Kathy, R.L. Tackling a Super Corrosion Challenge. Mater. Perform. 2009, 48, 32–38. [Google Scholar]
- Srinath, M.K.; Prasad, M. Corrosion Analysis of TiCN Coated Al-7075 Alloy for Marine Applications: A Case Study. J. Inst. Eng. 2019, 100, 371–377. [Google Scholar] [CrossRef]
- Bauer, D.R.; Martin, J.W. Service life prediction of organic coatings. Am. Chem. Soc. 1999, 8, 191–200. [Google Scholar]
- Pickett, J.; White, C. Service Life Prediction: Why Is This so Hard? In Service Life Prediction of Polymers and Plastics Exposed to Outdoor Weathering; Elsevier: Amsterdam, The Netherlands, 2018; Chapter 1; pp. 1–18. [Google Scholar]
- Reitman, M.; Dimitriou, M.D.; Vargas, J.R.; Madden, S.B. Why is service life prediction of polymers and plastics exposed to outdoor weathering important? In Service Life Prediction of Polymers and Coatings; Elsevier: Amsterdam, The Netherlands, 2020; pp. 19–32. [Google Scholar]
- Song, S.; Song, G.L.; Shen, W.; Liu, M.J.C. Corrosion and Electrochemical Evaluation of Coated Magnesium Alloys. Corrosion 2012, 68, 109–121. [Google Scholar] [CrossRef]
- Ji, W.G.; Hu, J.M.; Zhang, J.Q.; Cao, C. Reducing the water absorption in epoxy coatings by silane monomer incorporation. Corros. Sci. 2006, 48, 3731–3739. [Google Scholar] [CrossRef]
- Jiang, M.Y.; Wu, L.K.; Hu, J.M.; Zhang, J. Silane-incorporated epoxy coatings on aluminum alloy (AA2024). Part 1: Improved corrosion performance. Corros. Sci. 2015, 92, 118–126. [Google Scholar] [CrossRef]
- Francisco, J.S.; Capelossi, V.R.; Aoki, I. Evaluation of a sulfursilane anticorrosive pretreatment on galvannealed steel compared to phosphate under a waterborne epoxy coating. Electrochim. Acta 2014, 124, 128–136. [Google Scholar] [CrossRef]
- Leth-Olsen, H.; Nisancioglu, K. Filiform corrosion of aluminium sheet. I. corrosion behaviour of painted material. Corros. Sci. 1998, 40, 1179–1194. [Google Scholar] [CrossRef]
- Mills, D.J.; Mabbutt, S. Investigation of defects in organic anti-corrosive coatings using electrochemical noise measurement. Prog. Org. Coat. 2000, 39, 41–48. [Google Scholar] [CrossRef]
- Mišković-stanković, V.B.; Dražić, D.M.; Teodorović, M.J. Electrolyte penetration through epoxy coatings electrodeposited on steel. Corros. Sci. 1995, 37, 241–252. [Google Scholar] [CrossRef]
- Nguyen, T.; Hubbard, J.B.; Pommersheim, J.M. Unified model for the degradation of organic coatings on steel in a neutral electrolyte. J. Coat. Technol. 1996, 68, 45–56. [Google Scholar]
- Sørensen, P.A.; Kiil, S.; Dam-Johansen, K.; Weinell, C.E. Anticorrosive coatings: A review. J. Coat. Technol. Res. 2009, 6, 135–176. [Google Scholar] [CrossRef]
- Wang, L.; Deng, L.; Zhang, D.; Qian, H.; Du, C.; Li, X.; Mol, J.M.C.; Terryn, H. Shape memory composite (SMC) self-healing coatings for corrosion protection. Prog. Org. Coat. 2016, 97, 261–268. [Google Scholar] [CrossRef]
- Bastos, A.C.; Quevedo, M.C.; Ferreira, M.G.S. Investigating the separation of anodic and cathodic defects in organic coatings applied on metal substrates. An experimental contribution. Prog. Org. Coat. 2016, 96, 26–31. [Google Scholar] [CrossRef]
- Klüppel, I.; Schinkinger, B.; Grundmeier, G. In-situ Electrochemical Studies of Forming Induced Defects of Organic Coatings on Metals. Electrochim. Acta 2009, 54, 3553–3560. [Google Scholar] [CrossRef]
- Shi, X.; Croll, S.G. Recovery of surface defects on epoxy coatings and implications for the use of accelerated weathering. Prog. Org. Coat. 2010, 68, 79–87. [Google Scholar] [CrossRef]
- Duan, J.; Zhang, J.; Jiang, P. Effect of external electric field on morphologies and properties of the cured epoxy and epoxy/acrylate systems. J. Appl. Polym. Sci. 2012, 125, 902–914. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, Z.M.; Song, G.L.; Zheng, D.; Xu, Y. Modification of an alkyd resin coating by airflow. Mater. Corros. 2019, 71, 637–645. [Google Scholar] [CrossRef]
- Erich, S.J.F.; Laven, J.; Pel, L.; Huinink, H.P.; Kopinga, K.J.P. Influence of catalyst type on the curing process and network structure of alkyd coatings. Polymer 2006, 47, 1141–1149. [Google Scholar] [CrossRef]
- Bernhard, A.M.; Czekaj, I.; Elsener, M.; Wokaun, A.; Oliver, K. Evaporation of urea at atmospheric pressure. J. Phys. Chem. A 2011, 115, 2581–2589. [Google Scholar] [CrossRef]
- Sefiane, K.; Wilson, S.K.; David, S.; Dunn, G.J.; Duffy, B.R. On the effect of the atmosphere on the evaporation of sessile droplets of water. Phys. Fluids 2009, 21, 625–646. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.L.; Song, G.L.; Zheng, D.J.; Xu, Y.Q. Response of a semiliquid epoxy film to a DC plasma. J. Phys. D Appl. Phys. 2019, 52, 16LT01. [Google Scholar] [CrossRef]
- Feng, Z.L.; Song, G.L.; Zheng, D.J.; Qi, G.; Xu, Y.Q. Electric field induced surface modification and impermeability enhancement for a polymer film. AIP Adv. 2018, 8, 075102. [Google Scholar] [CrossRef]
- Heng, P.W.S.; Chan, L.W.; Tang, E.S.K. Use of swirling airflow to enhance coating performance of bottom spray fluid bed coaters. Int. J. Pharm. 2006, 327, 26–35. [Google Scholar] [CrossRef]
- Ustun, S.V.; Demirtas, M. Optimal tuning of PI speed controller coefficients for electric drives using neural network and genetic algorithms. Electr. Eng. 2005, 87, 77–82. [Google Scholar] [CrossRef]
- Wiik, J.A.; Isobe, T.; Takaku, T.; Wijaya, F.D.; Usuki, K.; Arai, N.; Shimada, R. Feasible series compensation applications using Magnetic Energy Recovery Switch (MERS). In Proceedings of the 2007 European Conference on Power Electronics & Applications (IEEE), Aalborg, Denmark, 2–5 September 2007. [Google Scholar]
- Funke, W.; Zorll, U. Mechanical anchoring of polymer layers on polymer substrates with an open-porous surface structure. J. Appl. Polym. Sci. 1973, 17, 977. [Google Scholar] [CrossRef]
- Funke, W. Problems and Progress in Organic Coatings Science and Technology. Prog. Org. Coat. 1997, 31, 5–9. [Google Scholar] [CrossRef]
- Pletincx, S.; Abrahami, S.; Mol, J.; Hauffman, T.; Terryn, H. Advanced (In Situ) Surface Analysis of Organic Coating/Metal Oxide Interactions for Corrosion Protection of Passivated Metals. Encycl. Interfacial Chem. 2018. [Google Scholar] [CrossRef]
- Morcillo, M.; Simancas, J.; Fierro, J.L.G.; Feliu, S., Jr.; Galván, J.C. Accelerated degradation of a chlorinated rubber paint system applied over rusted steel. Prog. Org. Coat. 1993, 24, 315–325. [Google Scholar] [CrossRef]
- Roselli, S.N.; Amo, B.D.; Carbonari, R.O.; Sarli, A.R.D.; Romagnoli, R. Painting rusted steel: The role of aluminum phosphosilicate. Corros. Sci. 2013, 74, 194–205. [Google Scholar] [CrossRef]
- Saji, V. Progress in rust converters. Prog. Org. Coat. 2019, 127, 88–99. [Google Scholar] [CrossRef]
- Singh, D.D.N.; Bhattacharya, D. Performance and mechanism of action of self-priming organic coating on oxide covered steel surface. Prog. Org. Coat. 2010, 67, 129–136. [Google Scholar] [CrossRef]
- Song, G.L.; Liu, M. The effect of Mg alloy substrate on “electroless” E-coating performance. Corros. Sci. 2011, 53, 3500–3508. [Google Scholar] [CrossRef]
- Shi, Z.M.; Song, G.L.; Atrens, A. The corrosion performance of anodised magnesium alloys. Corros. Sci. 2006, 48, 3531–3546. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, S.; Chen, M.; Zhang, W.; Mao, J.; Zhao, Y.; Maitz, M.F.; Huang, N.; Wan, G. Sandwiched polydopamine (PDA) layer for titanium dioxide (TiO2) coating on magnesium to enhance corrosion protection. Corros. Sci. 2015, 96, 67–73. [Google Scholar] [CrossRef]
- Song, G.L.; Liu, M. The effect of surface pretreatment on the corrosion performance of Electroless E-coating coated AZ31. Corros. Sci. 2012, 62, 61–72. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, W.; Wu, F.; Cen, Q.; Zeng, Z.; Wu, X.; Xue, Q. Effect of curing agent molecular structures on the tribological and corrosion behaviors of epoxy resin coatings. Colloid Surf. A 2015, 472, 85–91. [Google Scholar] [CrossRef]
- Luo, X.; Zhong, J.; Zhou, Q.; Du, S.; Yuan, S.; Liu, Y. Cationic Reduced Graphene Oxide as Self-Aligned Nanofiller in the Epoxy Nanocomposite Coating with Excellent Anticorrosive Performance and Its High Antibacterial Activity. ACS Appl. Mater. Interfaces 2018, 10, 18400–18415. [Google Scholar] [CrossRef] [PubMed]
- Parhizkar, N.; Ramezanzadeh, B.; Shahrabi, T. Corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by a sol-gel based silane coating filled with amino and isocyanate silane functionalized graphene oxide nanosheets. Appl. Surf. Sci. 2018, 439, 45–59. [Google Scholar] [CrossRef]
- Guin, K.A.; Mallik, B.P.; Shreepathi, S. Journal SJPiOCAIR. Electrochemical and mechanical studies on influence of curing agents on performance of epoxy tank linings. Prog. Org. Coat. 2015, 78, 340–347. [Google Scholar] [CrossRef]
- Feng, Z.L.; Song, G.L.; Xu, Y.Q.; Zheng, D.; Chen, X. Micro-galvanic corrosion during formation of epoxy coating. Prog. Org. Coat. 2020, 147, 105799. [Google Scholar] [CrossRef]
- Tsutsumi, K.; Kitano, J.; Miyahara, O.; Kyouda, H. Substrate Treatment Method, Coating Film Removing Apparatus, and Substrate Treatment System. U.S. Patent 8,366,872, 2 May 2013. [Google Scholar]
- Lamraoui, A.; Costil, S.; Langlade, C.; Coddet, C. Laser surface texturing (LST) treatment before thermal spraying: A new process to improve the substrate-coating adherence. Surf. Coat. Technol. 2010, 205, S164–S167. [Google Scholar] [CrossRef]
- Rackhimyanov, H.M.; Nikitin, Y.V.; Semyonova, J.S. Surface preparation of machine parts and instruments by ultrasonic impact treatment before coating. In Proceedings of the 3rd International Forum on Strategic Technologies, Novosibirsk, Russia, 23–29 June 2008. [Google Scholar]
- Bajat, J.B.; Popić, J.P.; Mišković-Stanković, V.B. The influence of aluminium surface pretreatment on the corrosion stability and adhesion of powder polyester coating. Prog. Org. Coat. 2010, 69, 316–321. [Google Scholar] [CrossRef]
- Emeritus, F.; Nichols, M.E.; Consultant, S. Adhesion; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017. [Google Scholar]
- Cambier, S.M.; Frankel, G.S. Coating and Interface Degradation of Coated steel, Part 2: Accelerated Laboratory Tests. Electrochim. Acta 2014, 136, 442–449. [Google Scholar] [CrossRef]
- Bhargava, S.; Kubota, M.; Lewis, R.D.; Advani, S.G.; Prasad, A.K.; Deitzel, J.M. Ultraviolet, water, and thermal aging studies of a waterborne polyurethane elastomer-based high reflectivity coating. Prog. Org. Coat. 2015, 79, 75–82. [Google Scholar]
- Nguyen, T.V.; Tri, P.N.; Nguyen, T.D.; Aidani, R.E.; Trinh, V.T.; Decker, C. Accelerated degradation of water borne acrylic nanocomposites used in outdoor protective coatings. Polym. Degrad. Stab. 2016, 128, 65–76. [Google Scholar] [CrossRef]
- Wu, J.; Cui, J.P.; Zheng, Q.J.; Zhang, S.D.; Wang, J.Q. Insight into the corrosion evolution of Fe-based amorphous coatings under wet-dry cyclic conditions. Electrochim. Acta 2019, 319, 966–980. [Google Scholar] [CrossRef]
- Mathivanan, L.; Arof, A.K. The degradation of silicone coatings in high temperature atmospheres. Anti-Corros. Methods Mater. 1998, 45, 403–412. [Google Scholar] [CrossRef]
- Rose, N.; Bras, M.L.; Bourbigot, S.; Delobel, R.; Costes, B. Comprehensive study of the oxidative degradation of an epoxy resin using the degradation front model. Polym. Degrad. Stab. 1996, 54, 355–360. [Google Scholar] [CrossRef]
- Mantia, F.P.L.; Morreale, M.; Botta, L.; Mistretta, M.C.; Ceraulo, M.; Scaffaro, R. Degradation of polymer blends: A brief review. Polym. Degrad. Stab. 2017, 145, 79–92. [Google Scholar] [CrossRef]
- Johnson, B.W.; Mcintyre, R. Analysis of test methods for UV durability predictions of polymer coatings. Prog. Org. Coat. 1996, 27, 95–106. [Google Scholar] [CrossRef]
- Hult, A.; Rånby, B. Photostability of photo-cured organic coatings: Part II-Yellowing and photo-oxidation of thioxanthone/amine photo-cured organic coatings. Polym. Degrad. Stab. 1984, 8, 89–105. [Google Scholar] [CrossRef]
- Morita, K.; Yamashita, H.; Yabuuchi, N.; Ishii, M.; Arimoto, M.; Ishimoto, K.; Ohara, H.; Kobayashi, S. Anti-hydrolysis performance of cured coating films of acrylic polyols with pendant poly(lactic acid)s. Prog. Org. Coat. 2015, 78, 183–187. [Google Scholar] [CrossRef]
- Thoma, K.; Bechtold, K. Influence of aqueous coatings on the stability of enteric coated pellets and tablets. Eur. J. Pharm. Biopharm. 1999, 47, 39–50. [Google Scholar] [CrossRef]
- Xiao, G.Z.; Shanahan, M.E.R. Swelling of DGEBA/DDA epoxy resin during hygrothermal ageing. Polymer 1998, 39, 3253–3260. [Google Scholar] [CrossRef]
- Choi, S.S.; Ha, S.H. Water swelling behaviors of silica-reinforced NBR composites in deionized water and salt solution. J. Ind. Eng. Chem. 2010, 16, 238–242. [Google Scholar] [CrossRef]
- Vlachou, M.; Hani, N.; Efentakis, M.; Tarantili, P.A.; Andreopoulos, A.G. Polymers for use in controlled release systems: The effect of surfactants on their swelling properties. J. Biomater. Appl. 2000, 15, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Vlachou, M.; Naseef, H.; Efentakis, M.; Tarantili, P.A.; Andreopoulos, A.G. Swelling properties of various polymers used in controlled release systems. J. Biomater. Appl. 2001, 15, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Abdelkader, A.F.; White, J.R. Influence of relative humidity on the development of internal stresses in epoxy resin based coatings. J. Mater. Sci. 2002, 37, 4769–4773. [Google Scholar] [CrossRef]
- Tambe, S.P.; Jagtap, S.D.; Choudhari, R.N.; Mallik, B.P. Influence of cross-linking agents and curing condition on the performance of epoxy coating. Pigment. Resin Technol. 2016, 45, 354–362. [Google Scholar] [CrossRef]
- Espinosa-Marzal, R.M.; Scherer, G.W. Advances in Understanding Damage by Salt Crystallization. Acc. Chem. Res. 2010, 43, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Rijniers, L.A.; Huinink, H.P.; Pel, L.; Kopinga, K. Experimental Evidence of Crystallization Pressure inside Porous Media. Phys. Rev. Lett. 2005, 94, 075503. [Google Scholar] [CrossRef] [Green Version]
- Schiro, M.; Ruiz-Agudo, E.; Rodriguez-Navarre, C. Damage Mechanisms of Porous Materials due to In-Pore Salt Crystallization. Phys. Rev. Lett. 2012, 109, 265503. [Google Scholar] [CrossRef]
- Feng, Z.L.; Song, G.L.; Wang, Z.M.; Xu, Y.Q.; Zheng, D.J.; Wu, P.P.; Chen, X.D. Salt crystallization-assisted degradation of epoxy resin surface in simulated marine environments. Prog. Org. Coat. 2020, 149, 105932. [Google Scholar] [CrossRef]
- Scherer, G.W. Crystallization in pores. Cem. Concr. Res. 1999, 29, 1347–1358. [Google Scholar] [CrossRef]
- Steiger, M.; Asmussen, S. Crystallization of sodium sulfate phases in porous materials: The phase diagram Na2SO4-H2O and the generation of stress. Geochim. Cosmochim. Acta 2008, 72, 4291–4306. [Google Scholar] [CrossRef]
- Scherer, G.W. Stress from crystallization of salt. Cem. Concr. Res. 2004, 34, 1613–1624. [Google Scholar] [CrossRef]
- Al-Turaif, H.A. Surface morphology and chemistry of epoxy-based coatings after exposure to ultraviolet radiation. Prog. Org. Coat. 2013, 76, 677–681. [Google Scholar] [CrossRef]
- Larche, J.F.; Bussiere, P.O.; Therias, S.; Gardette, J.L. Photooxidation of polymers: Relating material properties to chemical changes. Polym. Degrad. Stab. 2012, 97, 25–34. [Google Scholar] [CrossRef]
- Bouvet, G.; Cohendoz, S.; Feaugas, X.; Touzain, S.; Mallarino, S. Microstructural reorganization in model epoxy network during cyclic hygrothermal ageing. Polymer 2017, 122, 1–11. [Google Scholar] [CrossRef]
- Krakovsky, I.; Pleštil, J.; Almásy, L. Structure and swelling behaviour of hydrophilic epoxy networks investigated by SANS. Polymer 2006, 47, 218–226. [Google Scholar] [CrossRef]
- Deflorian, F.; Fedrizzi, L.; Rossi, S.; Bonora, P. Organic coating capacitance measurement by EIS: Ideal and actual trends. Electrochim. Acta 1999, 44, 4243–4249. [Google Scholar] [CrossRef]
- Deflorian, F.; Rossi, S.; Fedrizzi, L.; Bonora, P. EIS study of organic coating on zinc surface pretreated with environmentally friendly products. Prog. Org. Coat. 2005, 52, 271–279. [Google Scholar] [CrossRef]
- Liu, J.; Lu, Z.; Zhang, L.; Li, C.; Cui, H. Studies of corrosion behaviors of a carbon steel/copper-nickel alloy couple under epoxy coating with artificial defect in 3.5 wt.% NaCl solution using the WBE and EIS techniques. Prog. Org. Coat. 2020, 148, 105909. [Google Scholar] [CrossRef]
- Bierwagen, G.P.; Jeffcoate, C.S.; Li, J.; Balbyshev, S.; Mills, D. The use of electrochemical noise methods (ENM) to study thick, high impedance coatings. Prog. Org. Coat. 1996, 29, 21–29. [Google Scholar] [CrossRef]
- Mills, D.J.; Woodcock, C.P. Use of Electrochemical Noise Method and ElectrochemicalImpedance Spectroscopy for Investigation of a set of OrganicCoatings on steel. In Proceedings of the EuroCorr 2008, Edinburgh, UK, 7–11 September 2008. [Google Scholar]
- Zhao, B.; Yu, Y.X.; Zhou, T.Y.; Shi, W.Z.; Tong, X. Evaluation for Properties of Anti-Corrosion Epoxy Coating after Photo-Oxidation Aging. Key Eng. Mater. 2019, 795, 200–207. [Google Scholar] [CrossRef]
- Nuraini, L.; Prifiharni, S.; Gadang Priyotomo, S.; Gunawan, H. Evaluation of anticorrosion and antifouling paint performance after exposure under seawater Surabaya-Madura (Suramadu) bridge. AIP Conf. Proc. 2017, 1823, 020101. [Google Scholar]
- Palimi, M.J.; Peymannia, M.; Ramezanzadeh, B. An evaluation of the anticorrosion properties of the spinel nanopigment-filled epoxy composite coatings applied on the steel surface. Prog. Org. Coat. 2015, 80, 164–175. [Google Scholar] [CrossRef]
- Rajagopalan, R.; Jo, I. Characterization of polyaniline–polypyrrole composite coatings on low carbon steel: A XPS and infrared spectroscopy study. Appl. Surf. Sci. 2003, 218, 58–69. [Google Scholar] [CrossRef]
- Rosu, L.; Cascaval, C.N.; Ciobanu, C.; Rosu, D.; Ion, E.D.; Morosanu, C.; Enachescu, M. Effect of UV radiation on the semi-interpenetrating polymer networks based on polyurethane and epoxy maleate of bisphenol A. J. Photochem. Photobiol. A 2005, 169, 177–185. [Google Scholar] [CrossRef]
- Hsueh, H.C.; Jacobs, D.S.; Gorham, J.M.; Rabb, S.A.; Yu, L.L.; Tien, C.C.; Nguyen, T. L Sung. Kinetics of photodegradation and nanoparticle surface accumulation of a nanosilica/epoxy coating exposed to UV light. J. Coat. Technol. Res. 2017, 14, 893–902. [Google Scholar] [CrossRef]
- Cai, G.; Zhang, D.; Jiang, D.; Dong, Z. Degradation of fluorinated polyurethane coating under UVA and salt spray. Part Ⅱ: Molecular structures and depth profile. Prog. Org. Coat. 2018, 124, 25–32. [Google Scholar] [CrossRef]
- Zhang, W.R.; Zhu, T.T.; Smith, R.; Lowe, C. A non-destructive study on the degradation of polymer coating II: Modelling of degradation depth profiles. Polym. Test. 2012, 31, 1100–1104. [Google Scholar] [CrossRef]
- Ecco, L.G.; Pan, J.; Fedel, M.; Deflorian, F.; Pan, J. EIS and in situ AFM study of barrier property and stability of waterborne and solventborne clear coats. Prog. Org. Coat. 2014, 77, 600–608. [Google Scholar] [CrossRef]
- Suriano, R.; Oldani, V.; Bianchi, C.L.; Turri, S. AFM nanomechanical properties and durability of new hybrid fluorinated sol-gel coatings. Surf. Coat. Technol. 2015, 264, 87–96. [Google Scholar] [CrossRef]
- Wicks, Z.W.; Jones, F.N.; Pappas, S.P.; Wicks, D.A. Organic Coatings: Science and Technology, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Khanna, A.S.; Kumar, S. Characterization, evaluation and testing of organic paint coatings. In High-performance organic coatings; Woodhead Publishing: Cambridge, UK, 2008. [Google Scholar]
- Mi, D.-W.; Liu, H.-F. Brief Introduction of Relative Standards of Neutral Salt-Fog Test for Organic Coatings. Mod. Paint Finish. 2007, 8, 47–48. [Google Scholar]
- Man, H.H.; Man, H.C.; Leung, L.K. Corrosion protection of NdFeB magnets by surface coatings-Part I: Salt spray test. J. Magn. Magn. Mater. 1996, 152, 40–46. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, S.C.; Wang, Y.J.; Xu, B.S. An EIS Study of the Corrosion Behavior of Arc Spraying Al-RE Coating in Salt Spray Test. Adv. Mater. Res. 2011, 236–238, 1645–1648. [Google Scholar] [CrossRef]
- Kiosidou, E.D.; Karantonis, A.D.; Pantelis, I.; Silva, E.R.; Bordado, J.C.M. Rust morphology characterization of silicone-based marine antifouling paints after salt spray test on scribed specimens. J. Coat. Technol. Res. 2017, 14, 333–345. [Google Scholar] [CrossRef]
- Sakhri, A.; Perrin, F.X.; Benaboura, A.; Aragon, E.; Lamouri, S. Corrosion protection of steel by sulfo-doped polyaniline-pigmented coating. Prog. Org. Coat. 2011, 72, 473–479. [Google Scholar] [CrossRef]
- Palimi, M.J.; Rostami, M.; Mahdavian, M.; Ramezanzadeh, B. Application of EIS and salt spray tests for investigation of the anticorrosion properties of polyurethane-based nanocomposites containing Cr2O3 nanoparticles modified with 3-amino propyl trimethoxy silane. Prog. Org. Coat. 2014, 77, 1935–1945. [Google Scholar] [CrossRef]
- Song, S.; Shen, W.D.; Liu, M.H.; Song, G.L. Corrosion study of new surface treatment/coating for AZ31B magnesium alloy. Surf. Eng. 2013, 28, 486–490. [Google Scholar] [CrossRef]
- Rammelt, U.; Reinhard, G. Application of electrochemical impedance spectroscopy (EIS) for characterizing the corrosion-protective performance of organic coatings on metals. Prog. Org. Coat. 1992, 21, 205–226. [Google Scholar] [CrossRef]
- Liu, X.; Shao, Y.; Liu, M.; Chen, S.; Wang, L. LEIS study of the protection of zinc phosphate/epoxy coatings under cathodic protection. RSC Adv. 2016, 6, 46479–46486. [Google Scholar] [CrossRef]
- Huang, M.W.; Wu, S.L.; Orazem, M.E.; Pébère, N.; Tribollet, B.; Vivier, V. Local electrochemical impedance spectroscopy: A review and some recent developments. Electrochim. Acta 2011, 23, 8048–8057. [Google Scholar] [CrossRef] [Green Version]
- Ding, R.; Jiang, J.; Gui, T. Study of impedance model and water transport behavior of modified solvent-free epoxy anticorrosion coating by EIS. J. Coat. Technol. Res. 2016, 13, 501–515. [Google Scholar] [CrossRef]
- Kendig, M.; Mansfeld, F.; Tsai, S. Determination of the long term corrosion behavior of coated steel with A.C. impedance measurements. Chem. Inf. 1983, 23, 317–329. [Google Scholar] [CrossRef]
- Mansfeld, F.; Kendig, M.W.; Tsai, S. Evaluation of Corrosion Behavior of Coated Metals with AC Impedance Measurements. Corrosion 1982, 38, 478–485. [Google Scholar] [CrossRef]
- Song, G.L. A dipping E-coating for Mg alloys. Prog. Org. Coat. 2011, 70, 252–258. [Google Scholar] [CrossRef]
- García, S.J.; Suay, J. Anticorrosive properties of an epoxy-Meldrum acid cured system catalyzed by erbium III trifluromethanesulfonate. Prog. Org. Coat. 2006, 57, 319–331. [Google Scholar] [CrossRef]
- Poelman, M.; Olivier, M.G.; Gayarre, N.; Petitjean, J.P. Electrochemical study of different ageing tests for the evaluation of a cataphoretic epoxy primer on aluminium. Prog. Org. Coat. 2005, 54, 55–62. [Google Scholar] [CrossRef]
- Suay, J.J.; Rodriguez, M.T.; Izquierdo, R.; Kudama, A.H.; Saura, J.J. Rapid assessment of automotive epoxy primers by electrochemical techniques. J. Coat. Technol. 2003, 75, 103–111. [Google Scholar] [CrossRef]
- Song, G.L.; Xu, Z.Q. The surface, microstructure and corrosion of magnesium alloy AZ31 sheet. Electrochim. Acta 2010, 55, 4148–4161. [Google Scholar] [CrossRef]
- Song, C.H.; Choi, Y.; Shin, E.H.; Seong, B.S.; Han, Y.S. Analysis of organic-coated steels by using small-angle neutron scattering. Phys. Metal. Metallogr. 2014, 115, 1333–1337. [Google Scholar] [CrossRef]
- Yu-Nan, L.I.; Jia, W.; Wei, Z. Comparative Studies on the Deterioration Process of Organic Coatings under Immersed and Cyclic Wet-Dry Conditions by EIS. Electrochemistry 2010, 16, 393–400. [Google Scholar]
- Allahar, K.N.; Hinderliter, B.R.; Bierwagen, G.P.; Tallman, D.E.; Croll, S.G. Cyclic wet drying of an epoxy coating using an ionic liquid. Prog. Org. Coat. 2008, 62, 87–95. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, X.Z.; Yin, P.F.; Xu, Z.K.; Han, B.; Wang, J. Eis study on the deterioration process of organic coatings under immersion and cyclic wet-dry conditions. Appl. Mechan. Mater. 2012, 161, 58–66. [Google Scholar] [CrossRef]
- Rodríguez, M.T.; Gracenea, J.J.; García, S.J.; Saura, J.J.; Suay, J.J. Testing the influence of the plasticizers addition on the anticorrosive properties of an epoxy primer by means of electrochemical techniques. Prog. Org. Coat. 2004, 50, 123–131. [Google Scholar] [CrossRef]
- Kendig, M.; Jeanjaquet, S.; Brown, R.; Thomas, F. Rapid electrochemical assessment of paint. J. Coat. Technol. 1996, 68, 39–47. [Google Scholar]
- Hollaender, J. Rapid assessment of food/package interactions by electrochemical impedance spectroscopy (EIS). Food Addit. Contam. 1997, 14, 617–626. [Google Scholar] [CrossRef]
- Floyd, F.L.; Groseclose, R.G.; Frey, C.M. Mechanistic Model for Corrosion Protection via Paint. J. Oil. Col. Chem. Assoc. 1983, 66, 329. [Google Scholar]
- Parks, J.; Leidheiser, H. Ionic migration through organic coatings and its consequences to corrosion. Ind. Eng. Chem. Prod. Res. Dev. 1986, 25, 1–6. [Google Scholar] [CrossRef]
- Bedoya, F.E.; Bermúdez, Á.; Castaño, O.J.G.; Echeverría, F.; Calderón, J.A. Electrochemical impedance study for modeling the anticorrosive performance of coatings based on accelerated tests and outdoor exposures. J. Coat. Technol. Res. 2016, 13, 1–10. [Google Scholar] [CrossRef]
- Khan, A.; Sliem, M.H.; Arif, A.; Salih, M.A.; Hasan, A. Progress in Organic Coatings Designing and performance evaluation of polyelectrolyte multilayered composite smart coatings. Prog. Org. Coat. 2019, 137, 105319. [Google Scholar] [CrossRef]
- Sambyal, P.; Ruhi, G.; Bhandari, H.; Dhawan, K.S. Advanced anti corrosive properties of poly(aniline-co-o-toluidine)/flyash composite coatings. Surf. Coat. Technol. 2015, 272, 129–140. [Google Scholar] [CrossRef]
- Yan, M.; Vetter, C.A.; Gelling, V.J. Corrosion inhibition performance of polypyrrole Al flake composite coatings for Al alloys. Corros. Sci. 2013, 70, 37–45. [Google Scholar] [CrossRef]
- Chen, T.; Fu, J.J. An intelligent anticorrosion coating based on pH-responsive supramolecular nanocontainers. Nanotechnology 2012, 23, 505705. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhao, H.; Hou, P.; Qian, B.; Wang, X.; Guo, C.; Wang, L. Efficient Graphene/Cyclodextrin-Based Nanocontainer: Synthesis and Host-Guest Inclusion for Self-Healing Anticorrosion Application. ACS Appl. Mater. Interfaces 2018, 10, 36229–36239. [Google Scholar] [CrossRef] [PubMed]
- Morsch, S.; Lyon, S.; Gibbon, S.R. The generation of artificial microscopic defects in organic coatings by AFM scratching. Corros. Sci. 2015, 100, 517–523. [Google Scholar] [CrossRef]
- Ghasemi-Kahrizsangi, A.; Neshati, J.; Shariatpanahi, H.; Akbarinezhad, E. Improving the UV degradation resistance of epoxy coatings using modified carbon black nanoparticles. Prog. Org. Coat. 2015, 85, 199–207. [Google Scholar] [CrossRef]
- Irigoyen, M.; Bartolomeo, P.; Perrin, F.X.; Aragon, E.; Vernet, J.L. UV ageing characterisation of organic anticorrosion coatings by dynamic mechanical analysis, Vickers microhardness, and infra-red analysis. Polym. Degrad. Stab. 2001, 74, 59–67. [Google Scholar] [CrossRef]
- Ochs, H.; Vogelsang, J.; Meyer, G. Enhanced surface roughness of organic coatings due to UV-degradation: An unknown source of EIS-artifacts. Prog. Org. Coat. 2003, 46, 182–190. [Google Scholar] [CrossRef]
- Valentinelli, L.; Vogelsang, J.; Ochs, H.; Fedrizzi, L. Evaluation of barrier coatings by cycling testing. Prog. Org. Coat. 2002, 45, 405–413. [Google Scholar] [CrossRef]
- Funke, W. Towards environmentally acceptable corrosion protection by organic coating. Anti-Corros. Methods Mater. 1984, 31, 4–7. [Google Scholar] [CrossRef]
- Lyon, S.B.; Philippe, L.; Tsuousoglou, E. Direct measurements of ionic diffusion in protective organic coatings. Trans. IMF 2006, 84, 23–27. [Google Scholar] [CrossRef]
- Lahodny-Šarc, L.; Kaštelan, O. The influence of pH on the inhibition of corrosion of iron and mild steel by sodium silicate. Corros. Sci. 1981, 21, 265–271. [Google Scholar] [CrossRef]
- Vuong, V.D. Different behaviors of zinc rich paint against corrosion in atmospheric zone and tidal zone of industrial port environment. Brunt NA. Blistering of paint layers as an effect of swelling by water. Viet. J. Sci. Technol. 2017, 55, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Lebozec, N.; Baudoin, J.L.; Orain, V.; Thierry, D. Blistering on Painted Automotive Materials Induced by Galvanic Coupling with Rubber Material. Corrosion 2012, 63, 635–639. [Google Scholar] [CrossRef]
- Croll, S.G.; Shi, X.; Fernando, B. The interplay of physical aging and degradation during weathering for two crosslinked coatings. Prog. Org. Coat. 2008, 61, 136–144. [Google Scholar] [CrossRef]
- Bierwagen, G.P.; Tallman, D.E. Choice and measurement of crucial aircraft coatings system properties. Prog. Org. Coat. 2001, 41, 201–216. [Google Scholar] [CrossRef]
- Kim, H.; Urban, M.W. Molecular Level Chain Scission Mechanisms of Epoxy and Urethane Polymeric Films Exposed to UV/H2O. Multidimensional Spectroscopic Studies. Langmuir 2000, 16, 5382–5390. [Google Scholar] [CrossRef]
- Liu, F.; Yin, M.; Xiong, B.; Zheng, F.; Mao, W.; Chen, Z.; He, C.; Zhao, X.; Fang, P. Evolution of microstructure of epoxy coating during UV degradation progress studied by slow positron annihilation spectroscopy and electrochemical impedance spectroscopy. Electrochim. Acta. 2014, 133, 283–293. [Google Scholar] [CrossRef]
- Lejars, M.; Margaillan, A.; Bressy, C. Fouling Release Coatings: A Nontoxic Alternative to Biocidal Antifouling Coatings. Chem. Rev. 2012, 112, 4347–4390. [Google Scholar]
- Liu, C.; Xie, Q.; Ma, C.; Zhang, G. Fouling Release Property of Polydimethylsiloxane-Based Polyurea with Improved Adhesion to Substrate. Ind. Eng. Chem. Res. 2016, 55, 6671–6676. [Google Scholar] [CrossRef]
- Nikolaou, M.; Neofitou, N.; Skordas, K.; Castritsi-Catharios, I.; Tziantziou, L. Fish farming and anti-fouling paints: A potential source of Cu and Zn in farmed fish. Aquacu. Environ. Interact. 2014, 5, 163–171. [Google Scholar] [CrossRef]
- Wisniewski, N.; Reichert, M. Methods for reducing biosensor membrane biofouling. Colloids Surf. B 2000, 18, 197–219. [Google Scholar] [CrossRef]
- Ware, C.S.; Smith-Palmer, T.; Peppou-Chapman, S.; Scarratt, L.R.J.; Humphries, E.M.; Balzer, D.; Neto, C. Marine Antifouling Behavior of Lubricant-Infused Nanowrinkled Polymeric Surfaces. ACS Appl. Mater. Interfaces 2018, 10, 4173–4182. [Google Scholar] [CrossRef] [PubMed]
- Selim, M.S.; Shenashen, M.A.; El-Safty, S.A.; Higazy, S.A.; Elmarakbi, A. Recent Progress in Marine Foul-Release Polymeric Nanocomposite Coatings. Prog. Mater. Sci. 2017, 87, 1–32. [Google Scholar] [CrossRef]
- Yang, W.; Zhao, W.; Liu, Y.; Hu, H.; Pei, X.; Wu, Y.; Zhou, F. The effect of wetting property on anti-fouling/foul-release performance under quasi-static/hydrodynamic conditions. Prog. Org. Coat. 2016, 95, 64–71. [Google Scholar] [CrossRef]
- Muñoz-Bonilla, A.; Fernández-García, M. Polymeric materials with antimicrobial activity. Prog. Polym. Sci. 2012, 37, 281–339. [Google Scholar] [CrossRef]
- Sathya, S.; Murthy, P.S.; Das, A.; Sankar, G.G.; Venkatnarayanan, S.; Pandian, R.; Sathyaseelan, V.S.; Pandiyan, V.; Doble, M.; Venugopalan, V.P. Marine antifouling property of PMMA nanocomposite films: Results of laboratory and field assessment. Int. Biodeterior. Biodegrad. 2016, 114, 57–66. [Google Scholar] [CrossRef]
- Dupraz, V.; Stachowski-Haberkorn, S.; Ménard, D.; Limon, G.; Akcha, F.; Budzinski, H.; Cedergreen, N. Combined effects of antifouling biocides on the growth of three marine microalgal species. Chemosphere 2018, 209, 801. [Google Scholar] [CrossRef] [Green Version]
- Konstantinou, I.K.; Albanis, T.A. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: A review. Environ. Int. 2004, 30, 235–248. [Google Scholar] [CrossRef]
- Bader, S.L.; Luescher, M.U.; Gademann, K. Synthesis of maculalactone A and derivatives for environmental fate tracking studies. Org. Biomol. Chem. 2015, 13, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Manzo, S.; Ansanelli, G.; Parrella, L.; Di, L.G.; Massanisso, P.; Schiavo, S.; Minopoli, C.; Lanza, B.; Boggia, R.; Aleksi, P. First evaluation of the threat posed by antifouling biocides in the Southern Adriatic Sea. Environ. Sci.-Proc. Impacts 2014, 16, 1981–1993. [Google Scholar] [CrossRef]
- Liu, C.; Ma, C.; Xie, Q.; Zhang, G. Self-repairing silicone coatings for marine anti-biofouling. J. Mater. Chem. A 2017, 5, 15855. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Niu, J.; Chen, Y. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 2012, 6, 5164–5173. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.; Li, Y.H.; Liu, X.Q.; Jiang, Y.; Sun, L.B. Core-Shell AgCl@SiO2 Nanoparticles: Ag(I)-Based Antibacterial Materials with Enhanced Stability. ACS Sustain. Chem. Eng. 2016, 4, 3268–3275. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, Y.; Yan, L.; Peltier, R.; Hui, W.; Yao, X.; Cui, Y.; Chen, X.; Sun, H.; Wang, Z. Interfacial Engineering of Bimetallic Ag/Pt Nanoparticles on Reduced Graphene Oxide Matrix for Enhanced Antimicrobial Activity. ACS Appl. Mater. Interfaces 2016, 8, 8834–8840. [Google Scholar] [CrossRef]
- Li, M.; Schlaich, C.; Kulka, M.W.; Donskyi, I.S.; Schwerdtle, T.; Unger, W.E.S.; Haag, R. Mussel-inspired coatings with tunable wettability, for enhanced antibacterial efficiency and reduced bacterial adhesion. J. Mater. Chem. B 2019, 7, 3438–3445. [Google Scholar] [CrossRef]
- Banerjee, I.; Pangule, R.C.; Kane, R.S. Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Adv. Mater. 2011, 23, 690–718. [Google Scholar] [CrossRef]
- Guo, H.S.; Yang, J.; Zhao, W.Q.; Xu, T.; Lin, C.; Zhang, J.; Zhang, L. Direct formation of amphiphilic crosslinked networks based on PVP as a marine anti-biofouling coating. Chem. Eng. J. 2019, 374, 1353–1363. [Google Scholar] [CrossRef]
- Lepoittevin, B.; Bedel, S.; Dragoé, D.; Bruzaud, J.M.; Barthés-Labrousse, M.G.; Mazerat, S.; Herry, J.M.; Bellon-Fontaine, M.N.; Roger, P. Antibacterial surfaces obtained through dopamine and fluorination functionalizations. Prog. Org. Coat. 2015, 82, 17–25. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, B.; Zhang, J. Transparent and durable superhydrophobic coatings for anti-bioadhesion. J. Colloid Interface Sci. 2017, 501, 222–230. [Google Scholar] [CrossRef]
- Wang, K.K.; He, J.H. One-Pot Fabrication of Antireflective/Antibacterial Dual-Function Ag NP-Containing Mesoporous Silica Thin Films. ACS Appl. Mater. Interfaces 2018, 10, 11189–11196. [Google Scholar] [CrossRef]
- Selim, M.S.; Shenashen, M.A.; Elmarakbi, A.; Fatthallah, N.A.; Hasegawa, S.I.; El-Safty, S.A. Synthesis of ultrahydrophobic and thermally stable inorganic–organic nanocomposites for self-cleaning foul release coatings. Chem. Eng. J. 2017, 320, 653–666. [Google Scholar] [CrossRef]
- Maitz, M.F. Applications of synthetic polymers in clinical medicine. Biosurface Biotribol. 2015, 1, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Shatpalkar, S. Self polishing coatings. Paintindia 2009, 59, 59. [Google Scholar]
- Monfared, H.; Sharif, F. Design guidelines for development of tin-free antifouling self-polishing coatings using simulation. Prog. Org. Coat. 2008, 63, 79–86. [Google Scholar] [CrossRef]
- Xu, G.; Liu, P.; Pranantyo, D.; Neoh, K.G.; Kang, E.T. Dextran- and Chitosan-Based Antifouling, Antimicrobial Adhesion, and Self-Polishing Multilayer Coatings from pH-Responsive Linkages-Enabled Layer-by-Layer Assembly. ACS Sustain. Chem. Eng. 2018, 6, 3916–3926. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Han, S.; Han, J.; Jiang, D. Poly(propylene carbonate) polyurethane self-polishing coating for marine antifouling application. J. Appl. Polym. Sci. 2016, 133, 43667. [Google Scholar] [CrossRef]
- Coneski, P.N.; Weise, N.K.; Fulmer, P.A.; Wynne, J. Development and evaluation of self-polishing urethane coatings with tethered quaternary ammonium biocides. Prog. Org. Coat. 2013, 76, 1376–1386. [Google Scholar] [CrossRef]
- Bartels, J.W.; Imbesi, P.M.; Finlay, J.A.; Fidge, C.; Ma, J.; Seppala, J.E.; Nystrom, A.M.; Mackay, M.E.; Callow, J.A.; Callow, M.E. Antibiofouling hybrid dendritic Boltorn/star PEG thiol-ene cross-linked networks. ACS Appl. Mater. Interfaces 2011, 3, 2118. [Google Scholar] [CrossRef]
- Yang, W.J.; Pranantyo, D.; Neoh, K.G.; Kang, E.T.; Teo, L.M.; Rittschof, D. Layer-by-Layer Click Deposition of Functional Polymer Coatings for Combating Marine Biofouling. Biomacromolecules 2012, 13, 2769–2780. [Google Scholar] [CrossRef]
- Xue, C.H.; Bai, X.; Jia, S. Robust, Self-Healing Superhydrophobic Fabrics Prepared by One-Step Coating of PDMS and Octadecylamine. Sci. Rep. 2016, 6, 27262. [Google Scholar] [CrossRef] [Green Version]
- Lowe, R.A. Putting Material Science to Work. Use of a Self Polishing Universal Nanohybrid Composite. Dent. Today 2016, 35, 96–98. [Google Scholar] [PubMed]
- Kim, S.M.; Kim, A.Y.; Lee, I.; Park, H.; Hwang, D.H. Synthesis and Characterization of Self-Polishing Copolymers Containing a New Zinc Acrylate Monomer. J. Nanosci. Nanotechnol. 2016, 16, 10903–10907. [Google Scholar] [CrossRef]
- Bai, L.; Tan, L.; Chen, L.; Liu, S.; Wang, Y. Preparation and characterizations of poly(2-methyl-2-oxazoline) based antifouling coating by thermally induced immobilization. J. Mater. Chem. B 2014, 2, 7785–7794. [Google Scholar] [CrossRef] [PubMed]
- Chai, C.L.L.; Teo, S.L.M.; Jameson, F.K.M.; Lee, S.S.C.; Likhitsup, A.; Chen, C.L.; Dan, R. Loperamide-based compounds as additives for biofouling management. Int. Biodeterior. Biodegrad. 2014, 89, 82–87. [Google Scholar] [CrossRef]
- Tasso, M.; Conlan, S.L.; Clare, A.S.; Werner, C. Active Enzyme Nanocoatings Affect Settlement of Balanus amphitrite Barnacle Cyprids. Adv. Funct. Mater. 2012, 22, 39–47. [Google Scholar] [CrossRef]
- Regina, V.R.; Søhoel, H.; Lokanathan, A.R.; Bischoff, C.; Kingshott, P.; Revsbech, N.P.; Meyer, R.L. Entrapment of Subtilisin in Ceramic Sol-Gel Coating for Antifouling Applications. ACS Appl. Mater. Interfaces 2012, 4, 5915–5921. [Google Scholar] [CrossRef]
- Emilsson, G.; Schoch, R.L.; Feuz, L.; Fredrik, H.k.; Dahlin, A.B. Strongly Stretched Protein Resistant Poly(ethylene glycol) Brushes Prepared by Grafting-To. ACS Appl. Mater. Interfaces 2015, 7, 7505–7515. [Google Scholar] [CrossRef]
- Martinelli, E.; Del Moro, I.; Galli, G.; Barbaglia, M.; Bibbiani, C.; Mennillo, E.; Oliva, M.; Pretti, C.; Antonioli, D.; Laus, M. Photo-polymerized Network Polysiloxane Films with Dangling Hydrophilic/Hydrophobic Chains for the Biofouling Release of Invasive Marine Serpulid Ficopomatus enigmaticus. ACS Appl. Mater. Interfaces 2015, 7, 8293. [Google Scholar] [CrossRef]
- Sundaram, H.S.; Han, X.; Nowinski, A.K.; Ella-Menye, J.R.; Wimbish, C.; Marek, P.; Senecal, K.; Jiang, S. One-Step Dip Coating of Zwitterionic Sulfobetaine Polymers on Hydrophobic and Hydrophilic Surfaces. ACS Appl. Mater. Interfaces 2014, 6, 6664–6671. [Google Scholar] [CrossRef]
- Sun, Q.H.; Li, H.Q.; Xian, C.; Yang, Y.; Song, Y.; Cong, P. Mimetic marine antifouling films based on fluorine-containing polymethacrylates. Appl. Surf. Sci. 2015, 344, 17–26. [Google Scholar] [CrossRef]
- Zhang, Z.; Finlay, J.A.; Wang, L.; Gao, Y.; Callow, J.A.; Callow, M.E.; Jiang, S.Y. Polysulfobetaine-grafted surfaces as environmentally benign ultralow fouling marine coatings. Langmuir 2009, 25, 13516–13521. [Google Scholar] [CrossRef] [PubMed]
- Imbrogno, J.; Williams, M.D.; Belfort, G. A New Combinatorial Method for Synthesizing, Screening, and Discovering Antifouling Surface Chemistries. ACS Appl. Mater. Interfaces 2015, 7, 2385–2392. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhang, F.; Chen, Y.; Cheng, Z.; Su, Y.; Hang, J.; Jin, L.; Li, N.; Shang, D.; Shi, L. Preparation and properties of crosslinked network coatings based on perfluoropolyether/poly(dimethyl siloxane)/acrylic polyols for marine fouling-release applications. J. Appl. Polym. Sci. 2015, 132, 41860. [Google Scholar] [CrossRef]
- Wouters, M.; Corné, R.; Willemsen, P. Surface structuring and coating performance: Novel biocidefree nanocomposite coatings with anti-fouling and fouling-release properties. Progr. Org. Coat. 2010, 68, 4–11. [Google Scholar] [CrossRef]
- Robert, F.; Brady, J.; Irwin, L. Singer Mechanical factors favoring release from fouling release coatings. Biofouling 2000, 15, 73–81. [Google Scholar]
- Duong, T.H.; Briand, J.F.; Margaillan, A.; Bressy, C. Polysiloxane-Based Block Copolymers with Marine Bacterial Anti-Adhesion Properties. ACS Appl. Mater. Interfaces 2015, 7, 15578–15586. [Google Scholar] [CrossRef]
- Gittens, J.E.; Smith, T.J.; Suleiman, R.; Akid, R. Current and emerging environmentally-friendly systems for fouling control in the marine environment. Biotechnol. Adv. 2013, 31, 1738–1753. [Google Scholar] [CrossRef]
- Szleifer, I. Protein Adsorption on Surfaces with Grafted Polymers: A Theoretical Approach. Biophys. J. 1997, 72, 595–612. [Google Scholar] [CrossRef] [Green Version]
- Flavel, B.S.; Jasieniak, M.; Velleman, L.; Ciampi, S.; Gooding, J.J. Grafting of poly(ethylene glycol) on click chemistry modified Si(100) surfaces. Langmuir 2013, 29, 8355–8362. [Google Scholar] [CrossRef]
- Li, L.; Yan, B.; Zhang, L.; Tianb, Y.; Zeng, H.B. Mussel-inspired antifouling coatings bearing polymer loops. Chem. Commun. 2015, 51, 15780–15783. [Google Scholar] [CrossRef]
- Khalil, F.; Franzmann, E.; Ramcke, J.; Dakischew, O.; Lips, K.S.; Reinhardt, A.; Heisig, P.; Maison, W. Biomimetic PEG-catecholates for stabile antifouling coatings on metal surfaces: Applications on TiO2 and stainless steel. Colloids Surfaces B 2014, 117, 185–192. [Google Scholar] [CrossRef]
- Huang, C.J.; Brault, N.D.; Li, Y.; Yu, Q.; Jiang, S. Controlled Hierarchical Architecture in Surface-initiated Zwitterionic Polymer Brushes with Structurally Regulated Functionalities. Adv. Mater. 2012, 24, 1834–1837. [Google Scholar] [CrossRef]
- Jiang, S.; Cao, Z. Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Adv. Mater. 2010, 22, 920–932. [Google Scholar] [CrossRef]
- Shao, Q.; Jiang, S. Molecular understanding and design of zwitterionic materials. Adv. Mater. 2015, 27, 15–26. [Google Scholar] [CrossRef]
- Huang, C.J.; Chu, S.H.; Wang, L.C.; Li, C.H.; Lee, T.R. Bioinspired Zwitterionic Surface Coatings with Robust Photostability and Fouling Resistance. ACS Appl. Mater. Interfaces 2015, 7, 23776–23786. [Google Scholar] [CrossRef]
- Gao, G.; Lange, D.; Kai, H.; Kindrachuk, J.; Zou, Y.; Cheng, J.T.J.; Kazemzadeh-Narbat, M.; Kai, Y.; Wang, R.; Straus, S.K. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 2011, 32, 3899–3909. [Google Scholar] [CrossRef]
- Wang, W.; Lu, Y.; Xie, J.; Hui, Z.; Cao, Z. A zwitterionic macro-crosslinker for durable non-fouling coatings. Chem. Commun. 2016, 52, 4671–4674. [Google Scholar] [CrossRef]
- Zhao, W.; Ye, Q.; Hu, H.; Wang, X.; Zhou, F. Grafting zwitterionic polymer brushes via electrochemical surface-initiated atomic-transfer radical polymerization for anti-fouling applications. J. Mater. Chem. B 2014, 2, 5352–5357. [Google Scholar] [CrossRef]
- Krishnamoorthy, M.; Hakobyan, S.; Ramstedt, M.; Gautrot, J.E. Surface-initiated polymer brushes in the biomedical field: Applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chem. Rev. 2014, 114, 10976–11026. [Google Scholar] [CrossRef]
- Carpenter, A.W.; Worley, B.V.; Slomberg, D.L.; Schoenfisch, M.H. Dual Action Antimicrobials: Nitric Oxide Release from Quaternary Ammonium-Functionalized Silica Nanoparticles. Biomacromolecules 2012, 13, 3334–3342. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Kang, H.; Lee, C.; Hwang, S.H.; Jang, J. Aqueous Synthesis of Silver Nanoparticle Embedded Cationic Polymer Nanofibers and Their Antibacterial Activity. ACS Appl. Mater. Interfaces 2012, 4, 460–465. [Google Scholar] [CrossRef]
- Yuan, H.; Yu, B.; Fan, L.H.; Wang, M.; Zhu, Y.; Ding, X.; Xu, F.J. Multiple types of hydroxyl-rich cationic derivatives of PGMA for broad-spectrum antibacterial and antifouling coatings. Polym. Chem. 2016, 10, 1039. [Google Scholar] [CrossRef]
- Youngblood, J.P.; Andruzzi, L.; Ober, C.K.; Hexemer, A.; Kramer, E.J.; Callow, J.A.; Finlay, J.A.; Callow, M.E. Coatings based on side-chain ether-linked poly(ethylene glycol) and fluorocarbon polymers for the control of marine biofouling. Biofouling 2003, 19, 91–98. [Google Scholar] [CrossRef]
- Bhatt, S.; Pulpytel, J.; Ceccone, G.; Lisboa, P.; Rossi, F.; Kumar, V.; Arefi-Khonsari, F. Nanostructure protein repellant amphiphilic copolymer coatings with optimized surface energy by Inductively Excited Low Pressure Plasma. Langmuir 2011, 27, 14570–14580. [Google Scholar] [CrossRef]
- Bodkhe, R.B.; Stafslien, S.J.; Cilz, N.; Daniels, J.; Thompson, S.E.M.; Callow, M.E.; Callow, J.A.; Webster, D.C. Polyurethanes with amphiphilic surfaces made using telechelic functional PDMS having orthogonal acid functional groups. Prog. Org. Coat. 2012, 75, 38–48. [Google Scholar] [CrossRef]
- Sundaram, H.S.; Cho, Y.; Dimitriou, M.D.; Finlay, J.A.; Cone, G.; Williams, S.; Handlin, D.; Gatto, J.; Callow, M.E.; Callow, J.A. Fluorinated Amphiphilic Polymers and Their Blends for Fouling-Release Applications: The Benefits of a Triblock Copolymer Surface. ACS Appl. Mater. Interfaces 2011, 3, 3366. [Google Scholar] [CrossRef]
- Zhu, X.; Loh, X.J. Layer-by-layer assemblies for antibacterial applications. Biomater. Sci. 2015, 3, 1505–1518. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, G.; Zhang, Q.; Zhan, X.; Chen, F. Preparation and Performance of Amphiphilic Polyurethane Copolymers with Capsaicin-Mimic and PEG Moieties for Protein Resistance and Antibacteria. Ind. Eng. Chem. Res. 2015, 54, 3813–3820. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Li, Y.; Sun, J. Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 2015, 9, 4070–4076. [Google Scholar] [CrossRef]
- Ionov, L.; Synytska, A. Self-healing superhydrophobic materials. Phys. Chem. Chem. Phys. 2012, 14, 10497. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Sun, J. Bioinspired Self-Healing Superhydrophobic Coatings. Angew. Chem. Int. Ed. 2010, 49, 6129–6133. [Google Scholar] [CrossRef]
- Wang, H.; Xue, Y.; Ding, J.; Feng, L.; Wang, X.; Lin, T. Durable, Self-Healing Superhydrophobic and Superoleophobic Surfaces from Fluorinated-Decyl Polyhedral Oligomeric Silsesquioxane and Hydrolyzed Fluorinated Alkyl Silane. Angew. Chem. Int. Ed. 2011, 50, 11433–11436. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, H.; Gestos, A.; Jian, F.; Lin, T. Robust, Superamphiphobic Fabric with Multiple Self-HealingAbility against Both Physical and Chemical Damages. ACS Appl. Mater. Interfaces 2013, 5, 10221–10226. [Google Scholar] [CrossRef]
- Yin, X.; Liu, Z.; Wang, D.; Pei, X.; Bo, Y.; Feng, Z. Bioinspired Self-Healing Organic Materials: Chemical Mechanisms and Fabrications. J. Bionic Eng. 2015, 12, 1–16. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, H.; Niu, H.; Gestos, A.; Lin, T. Robust, Self-Healing Superamphiphobic Fabrics Prepared by Two-Step Coating of Fluoro-Containing Polymer, Fluoroalkyl Silane, and Modified Silica Nanoparticles. Adv. Funct. Mater. 2013, 23, 1664–1670. [Google Scholar] [CrossRef]
- Kiil, S.; Dam-Johansen, K.; Weinell, C.E.; Pedersen, M.S.; Codolar, S.A. Estimation of Polishing and Leaching Behaviour of Antifouling Paints Using Mathematical Modelling: A Literature Review. Biofouling 2003, 19, 37–43. [Google Scholar] [CrossRef]
- Irani, F.; Jannesari, A.; Bastani, S. Effect of fluorination of multiwalled carbon nanotubes (MWCNTs) on the surface properties of fouling-release silicone/MWCNTs coatings. Prog. Org. Coat. 2013, 76, 375–383. [Google Scholar] [CrossRef]
- Cho, J.H.; Shanmuganathan, K.; Ellison, C.J. Bioinspired Catecholic Copolymers for Antifouling Surface Coatings. ACS Appl. Mater. Interfaces 2013, 5, 3794–3802. [Google Scholar] [CrossRef]
- Rath, S.K.; Chavan, J.G.; Sasane, S.; Jagannath; Patri, M.; Samui, A.B.; Chakraborty, B.C. Two component silicone modified epoxy foul release coatings: Effect of modulus, surface energy and surface restructuring on pseudobarnacle and macrofouling behavior. Appl. Surf. Sci. 2010, 256, 2440–2446. [Google Scholar] [CrossRef]
- Lv, J.L.; Liang, T.X.; Wang, C. Comparison of corrosion behavior between coarse grained and nanocrystalline NiFe alloys in chloride solutions and proton exchange membrane fuel cell environment by EIS, XPS and Raman spectra techniques. Energy 2016, 112, 67–74. [Google Scholar]
- Fang, C.; Zhou, X.; Yu, Q.; Liu, S.; Guo, D.; Yu, R.; Hu, J. Synthesis and characterization of low crystalline waterborne polyurethane for potential application in water-based ink binder. Prog. Org. Coat. 2014, 77, 61–71. [Google Scholar] [CrossRef]
- Ngo, S.; Lowe, C.; Lewis, O.; Greenfield, D. Development and optimisation of focused ion beam/scanning electron microscopy as a technique to investigate cross-sections of organic coatings. Prog. Org. Coat. 2017, 106, 33–40. [Google Scholar] [CrossRef]
- Scheerder, J.; Breur, R.; Slaghek, T.; Holtman, W.; Ferrari, G. Exopolysaccharides (EPS) as anti-corrosive additives for coatings. Prog. Org. Coat. 2012, 75, 224–230. [Google Scholar] [CrossRef]
- Murase, H.; Nanishi, K. Polymers and Environment II. Studies on the Adhesion Control of Marine Organisms by Means of a Heterogeneous Polymer Surface. Kobunshi Kagaku 1993, 50, 837–845. [Google Scholar]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Ping, L.V.; Yanzhu, F.; Weibo, H.; Xiaoli, Z.A.; Yanxuan, M.A. Anti-corrosion Performance of Qtech-413 Viscoelastic Protective Materials Used as Coating for Light Rail Concrete Beam. Corros. Sci. Protect. Technol. 2017, 3, 261–264. [Google Scholar]
- Ruixia, Y.; Hui, L.; Peng, Y.; Wang, H.; Liu, J. Enhancement of adhesion, mechanical strength and anti-corrosion by multilayer superhydrophobic coating embedded electroactive PANI/CNF nanocomposite. J. Polym. Res. 2018, 25, 151. [Google Scholar]
- Haghdadeh, P.; Ghaffari, M.; Ramezanzadeh, B.; Bahlakeh, G.; Saeb, M.R. The role of functionalized graphene oxide on the mechanical and anti-corrosion properties of polyurethane coating. J. Taiwan Inst. Chem. Eng. 2018, 86, 199–212. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, C.; Wang, L.; Zheng, J.; Xu, F.; Sun, Z. Study on the correlation of lab assay and field test for fouling-release coatings. Prog. Org. Coat. 2013, 76, 1430–1434. [Google Scholar] [CrossRef]
- Sisoev, G.M.; Matar, O.K.; Lawrence, C.J. Modelling of film flow over a spinning disk. J. Chem. Technol. Biotechnol. 2010, 78, 151–155. [Google Scholar] [CrossRef]
- Bowen, W.R.; Fenton, A.S.; Lovitt, R.W.; Wright, C.J. The measurement of Bacillus mycoides spore adhesion using atomic force microscopy, simple counting methods, and a spinning disk technique. Biotechnol. Bioeng. 2010, 79, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Alles, M.; Rosenhahn, A. Microfluidic detachment assay to probe the adhesion strength of diatoms. Biofouling 2015, 31, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Christophis, C.; Grunze, M.; Rosenhahn, A. Quantification of the adhesion strength of fibroblast cells on ethylene glycol terminated self-assembled monolayers by a microfluidic shear force assay. Phys. Chem. Chem. Phys. 2010, 12, 4498–4504. [Google Scholar] [CrossRef] [PubMed]
- Yiapanis, G.; Maclaughlin, S.; Evans, E.J.; Yarovsky, I. Nanoscale wetting and fouling resistance of functionalized surfaces: A computational approach. Langmuir 2014, 30, 10617–10625. [Google Scholar] [CrossRef]
- Demirel, Y.K.; Khorasanchi, M.; Turan, O.; Incecik, A.; Schultz, M.P. A CFD model for the frictional resistance prediction of antifouling coatings. Ocean Eng. 2014, 89, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Demirel, Y.K.; Khorasanchi, M.; Turan, O.; Incecik, A. A parametric study: Hull roughness effect on ship frictional resistance. In Proceedings of the Marine Coatings Conference, London, UK, 18 April 2013. [Google Scholar]
- Song, G.L. Recent Progress in Corrosion and Protection of Magnesium Alloys. Adv. Eng. Mater. 2010, 7, 563–586. [Google Scholar] [CrossRef]
- Cole, G.S. Summary of Ldquo & Magnesium Vision 2020: A North American Automotive Strategic Vision for Magnesium & Rdquo; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Gaines, L.; Cuenca, R.; Wu, S.; Stodolsky, F. Potential Automotive Uses of Wrought Magnesium Alloys; Argonne National Lab.: Lemont, IL, USA, 1996.
- Ghali, E.; Dietzel, W.; Kainer, K.U. Testing of general and localized corrosion of magnesium alloys: A critical review. J. Mater. Eng. Perform. 2004, 13, 517–529. [Google Scholar] [CrossRef]
- Song, G.L.; Song, S. A Possible Biodegradable Magnesium Implant Material. Adv. Eng. Mater. 2010, 9, 298–302. [Google Scholar] [CrossRef]
- Song, G.L. Control of biodegradation of biocompatable magnesium alloys. Corros. Sci. 2007, 49, 1696–1701. [Google Scholar] [CrossRef]
- Song, G.L.; Mishra, R.; Xu, Z.Q. Crystallographic orientation and electrochemical activity of AZ31 Mg alloy. Electrochem. Commun. 2010, 12, 1009–1012. [Google Scholar] [CrossRef]
- Song, G.L. Effect of tin modification on corrosion of AM70 magnesium alloy. Corros. Sci. 2009, 51, 2063–2070. [Google Scholar] [CrossRef]
- Song, G.L. An irreversible dipping sealing technique for anodized ZE41 Mg alloy. Surf. Coat. Technol. 2009, 203, 3618–3625. [Google Scholar] [CrossRef]
- Song, G.L. “Electroless” deposition of a pre-film of electrophoresis coating and its corrosion resistance on a Mg alloy. Electrochim. Acta 2010, 55, 2258–2268. [Google Scholar] [CrossRef]
- Verdier, S.; Laak, N.V.D.; Delalande, S.; Metson, J.; Dalard, F. The surface reactivity of a magnesium-aluminium alloy in acidic fluoride solutions studied by electrochemical techniques and XPS. Appl. Surf. Sci. 2009, 235, 513–524. [Google Scholar] [CrossRef]
- Tang, J.; Azumi, K. Influence of zincate pretreatment on adhesion strength of a copper electroplating layer on AZ91 D magnesium alloy. Surf. Coat. Technol. 2011, 205, 3050–3057. [Google Scholar] [CrossRef] [Green Version]
- Song, G.L. “Electroless” E-Coating: An Innovative Surface Treatment for Magnesium Alloys. Electrochem. Solid-State Lett. 2009, 12, D77. [Google Scholar] [CrossRef]
- Maddela, S.; O’Keefe, M.J.; Wang, Y.M.; Kuo, H.H. Influence of Surface Pretreatment on Coating Morphology and Corrosion Performance of Cerium-Based Conversion Coatings on AZ91D Alloy. Corrosion 2010, 66, 1–8. [Google Scholar] [CrossRef]
- Chung, H.J.; Rhee, K.Y.; Kim, M.T.; Jung, Y.C. Surface treatment of stainless steel to improve coating strength of ZrO2 coated stainless steel needle. Surf. Eng. 2013, 27, 145–148. [Google Scholar] [CrossRef]
- Banerjee, P.C.; Raman, R.K.S. Electrochemical impedance spectroscopic investigation of the role of alkaline pre-treatment in corrosion resistance of a silane coating on magnesium alloy, ZE41. Electrochim. Acta 2011, 56, 3790–3798. [Google Scholar] [CrossRef]
- Uttaravalli, A.N.; Dinda, S. Studies on synthesis of environment-friendly products for paint and coating applications. Ind. Chem. Eng. 2019, 62, 1–14. [Google Scholar] [CrossRef]
- Selim, M.S.; Yang, H.; El-Safty, S.A.; Fatthallah, N.A.; Shenashen, M.A.; Wang, F.Q.; Huang, Y. Superhydrophobic coating of silicone/β–MnO2 nanorod composite for marine antifouling. Colloids Surf. A 2019, 570, 518–530. [Google Scholar] [CrossRef]
- Selim, M.S.; El-Safty, S.A.; Fatthallah, N.A.; Shenashen, M.A. Silicone/graphene oxide sheet-alumina nanorod ternary composite for superhydrophobic antifouling coating. Prog. Org. Coat. 2018, 121, 160–172. [Google Scholar] [CrossRef]
- Shi, Y.; Zhou, P.; Jerome, V.; Freitag, R.; Agarwal, S. Enzymatically Degradable Polyester Based Adhesives. ACS Biomater. Sci. Eng. 2017, 1, 971–977. [Google Scholar] [CrossRef]
- Agnihotri, S.; Bajaj, G.; Mukherji, S.; Mukherji, S. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: An enhanced and reusable antibacterial substrate without human cell cytotoxicity. Nanoscale 2015, 7, 7415–7429. [Google Scholar] [CrossRef] [Green Version]
- Haider, M.S.; Shao, G.N.; Imran, S.M.; Park, S.S.; Abbas, N.; Tahir, M.S.; Hussain, M.; Bae, W.; Kim, H.T. Aminated polyethersulfone-silver nanoparticles (AgNPs-APES) composite membranes with controlled silver ion release for antibacterial and water treatment applications. Mater. Sci. Eng. C-Mater. 2016, 62, 732–745. [Google Scholar] [CrossRef]
- Aradmehr, A.; Javanbakht, V. A novel biofilm based on lignocellulosic compounds and chitosan modified with silver nanoparticles with multifunctional properties: Synthesis and characterization. Colloids Surf. A 2020, 600, 124952. [Google Scholar] [CrossRef]
- Tian, S.; Jiang, D.; Pu, J.; Sun, X.; Li, Z.; Wu, B.; Zheng, W.R.; Liu, W.Q.; Liu, Z.X. A new hybrid silicone-based antifouling coating with nanocomposite hydrogel for durable antifouling properties. Chem. Eng. J. 2019, 370, 1–9. [Google Scholar] [CrossRef]
- Firouzjaei, M.D.; Shamsabadi, A.A.; Aktij, S.A.; Seyedpour, S.F.; Sharifian Gh, M.; Rahimpour, A.; Esfahani, M.R.; Ulbricht, M.; Soroush, M. Exploiting Synergetic Effects of Graphene Oxide and a Silver-Based Metal-Organic Framework To Enhance Antifouling and Anti-Biofouling Properties of Thin-Film Nanocomposite Membranes. ACS Appl. Mater. Int. 2018, 10, 42967–49278. [Google Scholar] [CrossRef]
- Pounraj, S.; Somu, P.; Paul, S. Chitosan and graphene oxide hybrid nanocomposite film doped with silver nanoparticles efficiently prevents biofouling. Appl. Surf. Sci. 2018, 452, 487–497. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Wang, X.H.; Liu, X.M.; Cui, Z.; Wu, S. Tannic Acid/Fe3+/Ag Nanofilm Exhibiting Superior Photodynamic and Physical Antibacterial Activity. ACS Appl. Mater. Int. 2017, 9, 39657–39671. [Google Scholar] [CrossRef]
- Sileika, T.S.; Barrett, D.G.; Zhang, R.; Lau, K.H.; Messersmith, P.B. Colorless Multifunctional Coatings Inspired by Polyphenols Found in Tea, Chocolate, and Wine. Angew. Chem. Int. Ed. 2013, 52, 10766–10770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bethencourt, M.; Botana, F.J.; Cano, M.J.; Osuna, R.M.; Marcos, M. Lifetime prediction of waterborne acrylic paints with the AC-DC-AC method. Prog. Org. Coat. 2004, 49, 275–281. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, G.-L.; Feng, Z. Modification, Degradation and Evaluation of a Few Organic Coatings for Some Marine Applications. Corros. Mater. Degrad. 2020, 1, 408-442. https://doi.org/10.3390/cmd1030019
Song G-L, Feng Z. Modification, Degradation and Evaluation of a Few Organic Coatings for Some Marine Applications. Corrosion and Materials Degradation. 2020; 1(3):408-442. https://doi.org/10.3390/cmd1030019
Chicago/Turabian StyleSong, Guang-Ling, and Zhenliang Feng. 2020. "Modification, Degradation and Evaluation of a Few Organic Coatings for Some Marine Applications" Corrosion and Materials Degradation 1, no. 3: 408-442. https://doi.org/10.3390/cmd1030019
APA StyleSong, G. -L., & Feng, Z. (2020). Modification, Degradation and Evaluation of a Few Organic Coatings for Some Marine Applications. Corrosion and Materials Degradation, 1(3), 408-442. https://doi.org/10.3390/cmd1030019