Predicting Phenoconversion in Isolated RBD: Machine Learning and Explainable AI Approach
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. Clinical and Demographic Characteristics
2.3. Phenoconversion Time Prediction
2.4. Phenoconversion Subtype Prediction
2.5. Web Deployment
3. Discussion
4. Materials and Methods
4.1. Study Population and Data Collection
4.2. Clinical Evaluation
4.3. Data Preparation and Imputation for Model Predictors
4.4. Model Development—Prediction of Phenoconversion Time
4.5. Model Development—Prediction of Phenoconversion Subtype
4.6. Model Explanation and Deployment
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
C-index | concordance index |
CV | cross-validation |
DLB | dementia with Lewy bodies |
EEG | electroencephalography |
ESS | Epworth Sleepiness Scale |
GDS | Geriatric Depression Scale |
HR | hazard ratio |
IBS | integrated Brier score |
iRBD | isolated REM sleep behavior disorder |
ISI | Insomnia Severity Index |
LPOCV | leave-pair-out cross-validation |
MCC | Matthews correlation coefficient |
MDS-UPDRS III | Movement Disorders Society–Unified Parkinson’s Disease Rating Scale part III |
ML | machine learning |
MMSE | Mini-Mental State Examination |
MoCA | Montreal Cognitive Assessment |
MSA | multiple system atrophy |
PD | Parkinson’s disease |
PSG | polysomnography |
PSQI | Pittsburgh Sleep Quality Index |
RBDQ-KR | Korean version of the REM Sleep Behavior Disorder Questionnaire–Hong Kong |
RFE | recursive feature elimination |
SCOPA-AUT | Scales for Outcomes in Parkinson’s Disease-Autonomic Dysfunction |
SHAP | SHapley Additive exPlanations |
SMOTE | Synthetic Minority Over-sampling Technique |
XGBSE-KN | extreme gradient boosting survival embeddings–Kaplan neighbors |
References
- Schenck, C.H.; Boeve, B.F.; Mahowald, M.W. Delayed Emergence of a Parkinsonian Disorder or Dementia in 81% of Older Men Initially Diagnosed with Idiopathic Rapid Eye Movement Sleep Behavior Disorder: A 16-Year Update on a Previously Reported Series. Sleep Med. 2013, 14, 744–748. [Google Scholar] [CrossRef] [PubMed]
- Iranzo, A.; Fernández-Arcos, A.; Tolosa, E.; Serradell, M.; Molinuevo, J.L.; Valldeoriola, F.; Gelpi, E.; Vilaseca, I.; Sánchez-Valle, R.; Lladó, A.; et al. Neurodegenerative Disorder Risk in Idiopathic REM Sleep Behavior Disorder: Study in 174 Patients. PLoS ONE 2014, 9, e89741. [Google Scholar] [CrossRef] [PubMed]
- Högl, B.; Stefani, A.; Videnovic, A. Idiopathic REM Sleep Behaviour Disorder and Neurodegeneration—An Update. Nat. Rev. Neurol. 2018, 14, 40–55. [Google Scholar] [CrossRef]
- Postuma, R.B.; Gagnon, J.-F.; Bertrand, J.-A.; Génier Marchand, D.; Montplaisir, J.Y. Parkinson Risk in Idiopathic REM Sleep Behavior Disorder. Neurology 2015, 84, 1104–1113. [Google Scholar] [CrossRef]
- Galbiati, A.; Verga, L.; Giora, E.; Zucconi, M.; Ferini-Strambi, L. The Risk of Neurodegeneration in REM Sleep Behavior Disorder: A Systematic Review and Meta-Analysis of Longitudinal Studies. Sleep Med. Rev. 2019, 43, 37–46. [Google Scholar] [CrossRef]
- Postuma, R.B.; Iranzo, A.; Hu, M.; Högl, B.; Boeve, B.F.; Manni, R.; Oertel, W.H.; Arnulf, I.; Ferini-Strambi, L.; Puligheddu, M.; et al. Risk and Predictors of Dementia and Parkinsonism in Idiopathic REM Sleep Behaviour Disorder: A Multicentre Study. Brain 2019, 142, 744–759. [Google Scholar] [CrossRef]
- Wang, C.; Chen, F.; Li, Y.; Liu, J. Possible Predictors of Phenoconversion in Isolated REM Sleep Behaviour Disorder: A Systematic Review and Meta-Analysis. J. Neurol. Neurosurg. Psychiatry 2022, 93, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wu, J.; Xie, C.; Wang, L.; Li, H.; Zhang, M.; Fu, Z.; Lin, Y.; Qian, B.; Zhu, L.; et al. Risk Factors for Rapid Eye-Movement Sleep-Related Behavioral Disorders (RBDs): A Systematic Review and a Meta-Analysis. Gen. Hosp. Psychiatry 2022, 79, 118–127. [Google Scholar] [CrossRef]
- Gossard, T.R.; Teigen, L.N.; Yoo, S.; Timm, P.C.; Jagielski, J.; Bibi, N.; Feemster, J.C.; Steele, T.; Carvalho, D.Z.; Junna, M.R.; et al. Patient Values and Preferences Regarding Prognostic Counseling in Isolated REM Sleep Behavior Disorder. Sleep 2023, 46, zsac244. [Google Scholar] [CrossRef]
- Feinstein, M.A.; Sharp, R.R.; Sandness, D.J.; Junna, M.; Kotagal, S.; Lipford, M.C.; Tippmann-Peikert, M.; Boeve, B.F.; Silber, M.H.; St. Louis, E.K. Physician and Patient Determinants of Prognostic Counseling in Idiopathic REM Sleep-Behavior Disorder. Sleep Med. 2019, 62, 80–85. [Google Scholar] [CrossRef]
- Malkani, R.G.; Wenger, N.S. REM Sleep Behavior Disorder as a Pathway to Dementia: If, When, How, What, and Why Should Physicians Disclose the Diagnosis and Risk for Dementia. Curr. Sleep Med. Rep. 2021, 7, 57–64. [Google Scholar] [CrossRef]
- Jeong, E.; Woo Shin, Y.; Byun, J.-I.; Sunwoo, J.-S.; Roascio, M.; Mattioli, P.; Giorgetti, L.; Famà, F.; Arnulfo, G.; Arnaldi, D.; et al. EEG-Based Machine Learning Models for the Prediction of Phenoconversion Time and Subtype in Isolated Rapid Eye Movement Sleep Behavior Disorder. Sleep 2024, 47, zsae031. [Google Scholar] [CrossRef] [PubMed]
- Cesari, M.; Portscher, A.; Stefani, A.; Angerbauer, R.; Ibrahim, A.; Brandauer, E.; Feuerstein, S.; Egger, K.; Högl, B.; Rodriguez-Sanchez, A. Machine Learning Predicts Phenoconversion from Polysomnography in Isolated REM Sleep Behavior Disorder. Brain Sci. 2024, 14, 871. [Google Scholar] [CrossRef]
- Vieira, D.; Gimenez, G.; Marmorela, G.; Estima, V. XGBoost Survival Embeddings: Improving Statistical Properties of XGBoost Survival Analysis Implementation. 2024. Available online: https://github.com/loft-br/xgboost-survival-embeddings/ (accessed on 7 January 2025).
- Ishwaran, H.; Kogalur, U.B.; Blackstone, E.H.; Lauer, M.S. Random Survival Forests. Ann. Appl. Stat. 2008, 2, 841–860. [Google Scholar] [CrossRef]
- Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection for Cancer Classification Using Support Vector Machines. Mach. Learn. 2002, 46, 389–422. [Google Scholar] [CrossRef]
- Hernán, M.A.; Takkouche, B.; Caamaño-Isorna, F.; Gestal-Otero, J.J. A Meta-Analysis of Coffee Drinking, Cigarette Smoking, and the Risk of Parkinson’s Disease. Ann. Neurol. 2002, 52, 276–284. [Google Scholar] [CrossRef]
- Pezzoli, G.; Cereda, E. Exposure to Pesticides or Solvents and Risk of Parkinson Disease. Neurology 2013, 80, 2035–2041. [Google Scholar] [CrossRef]
- Hanna, P.A.; Jankovic, J.; Kirkpatrick, J.B. Multiple System Atrophy: The Putative Causative Role of Environmental Toxins. Arch. Neurol. 1999, 56, 90–94. [Google Scholar] [CrossRef]
- Vidal, J.-S.; Vidailhet, M.; Elbaz, A.; Derkinderen, P.; Tzourio, C.; Alpérovitch, A. Risk Factors of Multiple System Atrophy: A Case-Control Study in French Patients. Mov. Disord. 2008, 23, 797–803. [Google Scholar] [CrossRef]
- Seo, J.-H.; Yong, S.W.; Song, S.K.; Lee, J.E.; Sohn, Y.H.; Lee, P.H. A Case–Control Study of Multiple System Atrophy in Korean Patients. Mov. Disord. 2010, 25, 1953–1959. [Google Scholar] [CrossRef]
- Boot, B.P.; Orr, C.F.; Ahlskog, J.E.; Ferman, T.J.; Roberts, R.; Pankratz, V.S.; Dickson, D.W.; Parisi, J.; Aakre, J.A.; Geda, Y.E.; et al. Risk Factors for Dementia with Lewy Bodies. Neurology 2013, 81, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, M.C.; Bennett, D.A.; Weintraub, S.; Schneider, J.A.; Morris, M.C. Caffeine Consumption and Dementia: Are Lewy Bodies the Link? Ann. Neurol. 2022, 91, 834–846. [Google Scholar] [CrossRef]
- Wing, Y.K.; Lam, S.P.; Zhang, J.; Leung, E.; Ho, C.L.; Chen, S.; Cheung, M.K.; Li, S.X.; Chan, J.W.Y.; Mok, V.; et al. Reduced Striatal Dopamine Transmission in REM Sleep Behavior Disorder Comorbid with Depression. Neurology 2015, 84, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, E.; Compta, Y.; Gaig, C. The Premotor Phase of Parkinson’s Disease. Park. Relat. Disord. 2007, 13, S2–S7. [Google Scholar] [CrossRef] [PubMed]
- Schuurman, A.G.; van den Akker, M.; Ensinck, K.T.J.L.; Metsemakers, J.F.M.; Knottnerus, J.A.; Leentjens, A.F.G.; Buntinx, F. Increased Risk of Parkinson’s Disease after Depression. Neurology 2002, 58, 1501–1504. [Google Scholar] [CrossRef]
- Bugalho, P.; Salavisa, M.; Marto, J.P.; Borbinha, C.; Alves, L. Polysomnographic Data in Dementia with Lewy Bodies: Correlation with Clinical Symptoms and Comparison with Other α-Synucleinopathies. Sleep Med. 2019, 55, 62–68. [Google Scholar] [CrossRef]
- Lehrer, H.M.; Yao, Z.; Krafty, R.T.; Evans, M.A.; Buysse, D.J.; Kravitz, H.M.; Matthews, K.A.; Gold, E.B.; Harlow, S.D.; Samuelsson, L.B.; et al. Comparing Polysomnography, Actigraphy, and Sleep Diary in the Home Environment: The Study of Women’s Health Across the Nation (SWAN) Sleep Study. Sleep Adv. 2022, 3, zpac001. [Google Scholar] [CrossRef]
- Xu, W.; Tan, C.-C.; Zou, J.-J.; Cao, X.-P.; Tan, L. Sleep Problems and Risk of All-Cause Cognitive Decline or Dementia: An Updated Systematic Review and Meta-Analysis. J. Neurol. Neurosurg. Psychiatry 2020, 91, 236–244. [Google Scholar] [CrossRef]
- Van Den Eeden, S.K.; Tanner, C.M.; Bernstein, A.L.; Fross, R.D.; Leimpeter, A.; Bloch, D.A.; Nelson, L.M. Incidence of Parkinson’s Disease: Variation by Age, Gender, and Race/Ethnicity. Am. J. Epidemiol. 2003, 157, 1015–1022. [Google Scholar] [CrossRef]
- Wenning, G.K.; Geser, F.; Krismer, F.; Seppi, K.; Duerr, S.; Boesch, S.; Köllensperger, M.; Goebel, G.; Pfeiffer, K.P.; Barone, P.; et al. The Natural History of Multiple System Atrophy: A Prospective European Cohort Study. Lancet Neurol. 2013, 12, 264–274. [Google Scholar] [CrossRef]
- Ben-Shlomo, Y.; Wenning, G.K.; Tison, F.; Quinn, N.P. Survival of Patients with Pathologically Proven Multiple System Atrophy. Neurology 1997, 48, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Köllensperger, M.; Geser, F.; Ndayisaba, J.-P.; Boesch, S.; Seppi, K.; Ostergaard, K.; Dupont, E.; Cardozo, A.; Tolosa, E.; Abele, M.; et al. Presentation, Diagnosis, and Management of Multiple System Atrophy in Europe: Final Analysis of the European Multiple System Atrophy Registry. Mov. Disord. 2010, 25, 2604–2612. [Google Scholar] [CrossRef] [PubMed]
- Savica, R.; Grossardt, B.R.; Bower, J.H.; Boeve, B.F.; Ahlskog, J.E.; Rocca, W.A. Incidence of Dementia With Lewy Bodies and Parkinson Disease Dementia. JAMA Neurol. 2013, 70, 1396–1402. [Google Scholar] [CrossRef] [PubMed]
- Hogan, D.B.; Fiest, K.M.; Roberts, J.I.; Maxwell, C.J.; Dykeman, J.; Pringsheim, T.; Steeves, T.; Smith, E.E.; Pearson, D.; Jetté, N. The Prevalence and Incidence of Dementia with Lewy Bodies: A Systematic Review. Can. J. Neurol. Sci. 2016, 43, S83–S95. [Google Scholar] [CrossRef]
- Cho, J.H.; Jeong, Y.S.; Lee, Y.J.; Hong, S.-C.; Yoon, J.-H.; Kim, J.K. The Korean Version of the Sniffin’ Stick (KVSS) Test and Its Validity in Comparison with the Cross-Cultural Smell Identification Test (CC-SIT). Auris Nasus Larynx 2009, 36, 280–286. [Google Scholar] [CrossRef]
- You, S.; Moon, H.-J.; Do, S.Y.; Wing, Y.-K.; Sunwoo, J.-S.; Jung, K.-Y.; Cho, Y.W. The REM Sleep Behavior Disorder Screening Questionnaire: Validation Study of the Korean Version (RBDQ-KR). J. Clin. Sleep Med. 2017, 13, 1429–1433. [Google Scholar] [CrossRef]
- Kang, Y.W.; Na, D.L.; Hahn, S.H. A Validity Study on the Korean Mini-Mental State Examination (K-MMSE) in Dementia Patients. J. Korean Neurol. Assoc. 1997, 15, 300–308. [Google Scholar]
- Lee, J.-Y.; Lee, D.W.; Cho, S.-J.; Na, D.L.; Jeon, H.J.; Kim, S.-K.; Lee, Y.R.; Youn, J.-H.; Kwon, M.; Lee, J.-H.; et al. Brief Screening for Mild Cognitive Impairment in Elderly Outpatient Clinic: Validation of the Korean Version of the Montreal Cognitive Assessment. J. Geriatr. Psychiatry Neurol. 2008, 21, 104–110. [Google Scholar] [CrossRef]
- Johns, M.W. A New Method for Measuring Daytime Sleepiness: The Epworth Sleepiness Scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A New Instrument for Psychiatric Practice and Research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Bastien, C.H.; Vallières, A.; Morin, C.M. Validation of the Insomnia Severity Index as an Outcome Measure for Insomnia Research. Sleep Med. 2001, 2, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Yesavage, J.A.; Brink, T.L.; Rose, T.L.; Lum, O.; Huang, V.; Adey, M.; Leirer, V.O. Development and Validation of a Geriatric Depression Screening Scale: A Preliminary Report. J. Psychiatr. Res. 1982, 17, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.; Marinus, J.; Stiggelbout, A.M.; Van Hilten, J.J. Assessment of Autonomic Dysfunction in Parkinson’s Disease: The SCOPA-AUT. Mov. Disord. 2004, 19, 1306–1312. [Google Scholar] [CrossRef] [PubMed]
- Ramaker, C.; Marinus, J.; Stiggelbout, A.M.; Van Hilten, B.J. Systematic Evaluation of Rating Scales for Impairment and Disability in Parkinson’s Disease. Mov. Disord. 2002, 17, 867–876. [Google Scholar] [CrossRef]
- Hughes, A.J.; Daniel, S.E.; Kilford, L.; Lees, A.J. Accuracy of Clinical Diagnosis of Idiopathic Parkinson’s Disease: A Clinico-Pathological Study of 100 Cases. J. Neurol. Neurosurg. Psychiatry 1992, 55, 181–184. [Google Scholar] [CrossRef]
- McKeith, I.G.; Dickson, D.W.; Lowe, J.; Emre, M.; O’Brien, J.T.; Feldman, H.; Cummings, J.; Duda, J.E.; Lippa, C.; Perry, E.K.; et al. Diagnosis and Management of Dementia with Lewy Bodies. Neurology 2005, 65, 1863–1872. [Google Scholar] [CrossRef]
- Gilman, S.; Wenning, G.K.; Low, P.A.; Brooks, D.J.; Mathias, C.J.; Trojanowski, J.Q.; Wood, N.W.; Colosimo, C.; Dürr, A.; Fowler, C.J.; et al. Second Consensus Statement on the Diagnosis of Multiple System Atrophy. Neurology 2008, 71, 670–676. [Google Scholar] [CrossRef]
- Harrell, F.E., Jr.; Lee, K.L.; Mark, D.B. Multivariable Prognostic Models: Issues in Developing Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors. Stat. Med. 1996, 15, 361–387. [Google Scholar] [CrossRef]
- Graf, E.; Schmoor, C.; Sauerbrei, W.; Schumacher, M. Assessment and Comparison of Prognostic Classification Schemes for Survival Data. Stat. Med. 1999, 18, 2529–2545. [Google Scholar] [CrossRef]
- LeBlanc, M.; Crowley, J. Survival Trees by Goodness of Split. J. Am. Stat. Assoc. 1993, 88, 457–467. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Friedman, J.H. Stochastic Gradient Boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Hothorn, T.; Bühlmann, P.; Dudoit, S.; Molinaro, A.; Van Der Laan, M.J. Survival Ensembles. Biostatistics 2006, 7, 355–373. [Google Scholar] [CrossRef]
- Vinayak, R.K.; Gilad-Bachrach, R. DART: Dropouts Meet Multiple Additive Regression Trees. In Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, San Diego, CA, USA, 9–12 May 2015; pp. 489–497. [Google Scholar]
- Simon, N.; Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Cox’s Proportional Hazards Model via Coordinate Descent. J. Stat. Softw. 2011, 39, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Curran Associates, Inc.: San Francisco, CA, USA, 2012; Volume 25. [Google Scholar]
- Nadeau, C.; Bengio, Y. Inference for the Generalization Error. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 29 November–4 December 1999; MIT Press: Cambridge, MA, USA, 1999; Volume 12. [Google Scholar]
- Peng, H.; Long, F.; Ding, C. Feature Selection Based on Mutual Information Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [Google Scholar] [CrossRef] [PubMed]
- Reshef, D.N.; Reshef, Y.A.; Finucane, H.K.; Grossman, S.R.; McVean, G.; Turnbaugh, P.J.; Lander, E.S.; Mitzenmacher, M.; Sabeti, P.C. Detecting Novel Associations in Large Data Sets. Science 2011, 334, 1518–1524. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority over-Sampling Technique. J. Artif. Int. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Yarowsky, D. Unsupervised Word Sense Disambiguation Rivaling Supervised Methods. In Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics, Stroudsburg, PA, USA, 26–30 June 1995; Association for Computational Linguistics: Stroudsburg, PA, USA, 1995; pp. 189–196. [Google Scholar]
- Bouckaert, R.R.; Frank, E. Evaluating the Replicability of Significance Tests for Comparing Learning Algorithms. In Advances in Knowledge Discovery and Data Mining; Dai, H., Srikant, R., Zhang, C., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3056, pp. 3–12. ISBN 978-3-540-22064-0. [Google Scholar]
- Henderson, T. correctR: Corrected Test Statistics for Comparing Machine Learning Models on Correlated Samples. 2023. Available online: https://hendersontrent.r-universe.dev/correctR (accessed on 7 January 2025).
- Chicco, D.; Jurman, G. The Matthews Correlation Coefficient (MCC) Should Replace the ROC AUC as the Standard Metric for Assessing Binary Classification. BioData Min. 2023, 16, 4. [Google Scholar] [CrossRef]
- Chicco, D.; Jurman, G. The Advantages of the Matthews Correlation Coefficient (MCC) over F1 Score and Accuracy in Binary Classification Evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef]
- Chicco, D.; Tötsch, N.; Jurman, G. The Matthews Correlation Coefficient (MCC) Is More Reliable than Balanced Accuracy, Bookmaker Informedness, and Markedness in Two-Class Confusion Matrix Evaluation. BioData Min. 2021, 14, 13. [Google Scholar] [CrossRef]
- Airola, A.; Pahikkala, T.; Waegeman, W.; Baets, B.D.; Salakoski, T. A Comparison of AUC Estimators in Small-Sample Studies. In Proceedings of the Third International Workshop on Machine Learning in Systems Biology, Ljubljana, Slovenia, 5–6 September 2009; pp. 3–13. [Google Scholar]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates, Inc.: San Francisco, CA, USA, 2017; Volume 30. [Google Scholar]
- Krzyziński, M.; Spytek, M.; Baniecki, H.; Biecek, P. SurvSHAP(t): Time-Dependent Explanations of Machine Learning Survival Models. Knowl.-Based Syst. 2023, 262, 110234. [Google Scholar] [CrossRef]
Variable | Developed Disease (n = 30) | Still Disease-Free (n = 148) | HR, Unadjusted (95%CI) | HR, Adjusted (95% CI) | |
---|---|---|---|---|---|
Age | 69.5 (65.0–74.0) | 64.0 (60.0–70.25) | 1.09 (1.03–1.15) | 1.09 (1.03–1.15) * | |
Sex, % male | 56.7% | 63.5% | 0.70 (0.34–1.45) | 0.78 (0.38–1.61) * | |
Height, cm | 163.1 (156.8–166.8) | 165.0 (158.0–170.0) | 0.97 (0.94–1.01) | 1.00 (0.94–1.07) | |
Weight, kg | 62.0 (56.2–67.7) | 64.0 (59.0–71.0) | 0.97 (0.94–1.01) | 0.99 (0.94–1.03) | |
BMI, kg/m2 | 23.5 (22.4–24.7) | 24.4 (22.5–25.7) | 0.95 (0.83–1.08) | 0.95 (0.83–1.08) | |
RLS | 6.7% | 6.1% | 0.97 (0.23–4.09) | 1.05 (0.25–4.43) | |
Diabetes | 16.7% | 16.2% | 1.09 (0.42–2.85) | 0.94 (0.36–2.48) | |
Melatonin | 56.7% | 64.9% | 0.59 (0.28–1.23) | 0.47 (0.22–1.00) | |
Antidepressants | 26.7% | 7.4% | 3.60 (1.60–8.11) | 3.69 (1.62–8.44) | |
Alcohol use | 0.74 (0.50–1.10) | 0.75 (0.49–1.15) | |||
Non-drinker | 66.7% | 50.7% | |||
1–2 times/month | 10.0% | 23.0% | |||
1–2 times/week | 20.0% | 17.6% | |||
3–4 times/week | 3.3% | 6.8% | |||
Daily | 0.0% | 2.0% | |||
Smoking | |||||
Never | 66.7% | 51.4% | 1 | 1 | |
Current | 6.7% | 10.1% | 0.47 (0.11–2.03) | 0.68 (0.14–3.25) | |
Former | 26.7% | 38.5% | 0.54 (0.24–1.24) | 0.49 (0.18–1.32) | |
Pesticide exposure | 20.0% | 14.2% | 1.67 (0.68–4.10) | 1.41 (0.56–3.55) | |
Solvent exposure | 30.0% | 14.2% | 2.66 (1.22–5.82) | 2.73 (1.24–5.99) | |
Olfactory loss † | 53.3% | 60.8% | 0.90 (0.44–1.85) | 0.64 (0.29–1.42) | |
Injury | 0.86 (0.47–1.58) | 0.83 (0.45–1.52) | |||
None | 63.3% | 57.4% | |||
Minor | 30.0% | 35.8% | |||
Major | 6.7% | 6.8% | |||
Coffee use ‡ | 63.3% | 83.1% | 0.43 (0.21–0.91) | 0.42 (0.20–0.90) | |
Daily coffee consumption ‡ | 1.0 (0.0–2.0) | 1.0 (1.0–2.0) | 0.83 (0.60–1.15) | 0.91 (0.63–1.32) | |
DEB frequency | 3.0 (2.0–6.5) | 3.0 (1.0–7.0) | 0.99 (0.86–1.14) | 1.00 (0.87–1.16) | |
Low education § | 26.7% | 15.5% | 1.92 (0.85–4.31) | 1.57 (0.58–4.21) | |
Education | 0.73 (0.56–0.96) | 0.80 (0.59–1.09) | |||
No education | 3.3% | 1.4% | |||
Elementary school (6 years) | 23.3% | 14.2% | |||
Middle school (9 years) | 20.0% | 9.5% | |||
High school (12 years) | 26.7% | 26.4% | |||
Bachelor’s degree (16 years) | 20.0% | 39.9% | |||
Above bachelor’s degree (18 years) | 6.7% | 8.8% | |||
First-degree relative with PD | 6.7% | 10.1% | 0.71 (0.17–2.98) | 0.75 (0.17–3.22) | |
RBDQ-KR | 50.0 (38.2–55.8) | 48.0 (36.0–61.0) | 0.99 (0.97–1.01) | 0.99 (0.97–1.01) | |
RBDQ–KR Factor 1 | 10.5 (8.0–19.0) | 13.0 (9.0–16.0) | 0.99 (0.93–1.05) | 0.99 (0.93–1.05) | |
RBDQ–KR Factor 2 | 35.5 (28.5–42.2) | 35.0 (26.0–45.0) | 0.98 (0.96–1.01) | 0.98 (0.96–1.01) | |
MMSE | 27.0 (26.0–28.0) | 28.0 (27.0–29.0) | 0.85 (0.76–0.96) | 0.90 (0.79–1.03) | |
MoCA | 24.0 (22.2–26.8) | 26.0 (24.0–29.0) | 0.93 (0.87–0.99) | 0.95 (0.88–1.03) | |
Epworth Sleepiness Scale | 5.0 (3.2–7.0) | 5.0 (3.0–8.0) | 1.01 (0.92–1.11) | 1.01 (0.92–1.11) | |
K-GDS | 11.0 (4.5–16.0) | 8.0 (4.0–14.0) | 1.02 (0.97–1.07) | 1.01 (0.96–1.06) | |
Insomnia Severity Index | 7.0 (4.5–11.5) | 6.0 (3.0–12.0) | 1.01 (0.96–1.07) | 1.00 (0.94–1.05) | |
PSQI | 5.0 (3.0–7.8) | 6.0 (4.0–9.0) | 0.96 (0.87–1.05) | 0.94 (0.86–1.03) | |
TST | 7.3 (6.5–8.0) | 7.0 (6.3–7.7) | 1.53 (1.12–2.08) | 1.34 (0.98–1.83) | |
C1 | 2.0 (1.0–2.0) | 1.0 (1.0–2.0) | 1.28 (0.86–1.92) | 1.19 (0.78–1.79) | |
C2 | 0.5 (0.0–1.0) | 1.0 (0.0–2.0) | 0.76 (0.50–1.14) | 0.67 (0.44–1.01) | |
C3 | 0.0 (0.0–1.0) | 1.0 (0.0–2.0) | 0.59 (0.38–0.92) | 0.61 (0.40–0.92) | |
C4 | 0.0 (0.0–0.8) | 0.0 (0.0–2.0) | 0.76 (0.52–1.09) | 0.64 (0.44–0.92) | |
C5 | 1.0 (1.0–1.0) | 1.0 (1.0–1.2) | 1.10 (0.55–2.21) | 0.91 (0.45–1.82) | |
C6 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 1.09 (0.80–1.48) | 1.13 (0.82–1.54) | |
C7 | 1.0 (0.0–1.0) | 0.5 (0.0–1.0) | 1.09 (0.73–1.63) | 1.21 (0.82–1.77) | |
SCOPA-AUT total | 12.5 (6.5-19.8) | 10.0 (5.0–16.0) | 1.03 (0.99–1.08) | 1.02 (0.98–1.07) | |
SCOPA-AUT Orthostatic hypotension ¶ | |||||
No | 56.7% | 66.2% | 1 | 1 | |
Borderline | 36.7% | 27.0% | 1.34 (0.64–2.82) | 1.32 (0.63–2.78) | |
Yes | 6.7% | 6.8% | 0.71 (0.17–3.00) | 0.68 (0.16–2.90) | |
SCOPA-AUT Constipation ‖ | |||||
No | 26.7% | 33.8% | 1 | 1 | |
Borderline | 46.7% | 39.2% | 1.57 (0.66–3.75) | 1.45 (0.58–3.62) | |
Yes | 26.7% | 27.0% | 1.29 (0.48–3.43) | 1.13 (0.42–3.07) | |
SCOPA-AUT Urinary ‖ | |||||
No | 3.3% | 14.2% | 1 | 1 | |
Borderline | 50.0% | 52.0% | 4.46 (0.59–33.77) | 4.41 (0.58–33.37) | |
Yes | 46.7% | 33.8% | 5.69 (0.75–43.32) | 4.96 (0.65–37.93) | |
SCOPA-AUT Erectile Dysfunction ‖ | |||||
No | 10.0% | 18.9% | 1 | 1 | |
Borderline | 23.3% | 22.3% | 2.02 (0.52–7.80) | 1.77 (0.46–6.85) ¶ | |
Yes | 23.3% | 22.3% | 1.94 (0.50–7.50) | 1.08 (0.27–4.33) ¶ | |
Female | 43.3% | 36.5% | 2.40 (0.68–8.44) | 1.62 (0.45–5.81) ¶ | |
MDS-UPDRS Part III | 0.0 (0.0-2.8) | 0.0 (0.0–1.0) | 1.21 (1.05–1.40) | 1.14 (0.98–1.33) | |
Excluding Tremor | 0.0 (0.0–2.0) | 0.0 (0.0–0.0) | 1.32 (1.10–1.59) | 1.32 (1.07–1.63) |
Variable | Cognition-First n = 9 | Motor-First n = 21 | p-Value | |
---|---|---|---|---|
Age | 75.0 (72.0–77.0) | 67.0 (64.0–71.0) | 0.02 | |
Sex, % male | 55.6% | 57.1% | 1.00 | |
Height, cm | 160.0 (157.0–165.0) | 165.0 (156.7–167.0) | 0.62 | |
Weight, kg | 60.0 (58.4–67.0) | 65.4 (56.0–67.7) | 0.87 | |
BMI, kg/m2 | 23.6 (22.8–24.6) | 23.2 (22.2–24.7) | 0.80 | |
RLS | 0.0% | 9.5% | 0.87 | |
Diabetes | 11.1% | 19.0% | 1.00 | |
Melatonin | 77.8% | 47.6% | 0.26 | |
Antidepressants | 22.2% | 28.6% | 1.00 | |
Alcohol use | 0.74 | |||
Non-drinker | 66.7% | 66.7% | ||
1–2 times/month | 0.0% | 14.3% | ||
1–2 times/week | 22.2% | 19.0% | ||
3–4 times/week | 11.1% | 0.0% | ||
Daily | 0.0% | 0.0% | ||
Smoking | ||||
Never | 77.8% | 61.9% | 0.67 | |
Current | 11.1% | 4.8% | 1.00 | |
Former | 11.1% | 33.3% | 0.42 | |
Pesticide exposure | 33.3% | 14.3% | 0.49 | |
Solvent exposure | 44.4% | 23.8% | 0.49 | |
Olfactory loss * | 55.6% | 52.4% | 1.00 | |
Injury | 0.71 | |||
None | 66.7% | 61.9% | ||
Minor | 33.3% | 28.6% | ||
Major | 0.0% | 9.5% | ||
Coffee use † | 77.8% | 57.1% | 0.51 | |
Daily coffee consumption (cups) † | 2.0 (1.0–2.0) | 1.0 (0.0–2.0) | 0.26 | |
DEB frequency | 3.0 (3.0–4.0) | 3.0 (0.5–7.0) | 0.66 | |
Low education ‡ | 33.3% | 23.8% | 0.93 | |
Education | 0.35 | |||
No education | 11.1% | 0.0% | ||
Elementary school (6 years) | 22.2% | 23.8% | ||
Middle school (9 years) | 22.2% | 19.0% | ||
High school (12 years) | 33.3% | 23.8% | ||
Bachelor’s degree (16 years) | 0.0% | 28.6% | ||
Above Bachelor’s degree (18 years) | 11.1% | 4.8% | ||
First-degree relative with PD | 11.1% | 4.8% | 1.00 | |
RBDQ-KR | 51.0 (30.0–62.0) | 49.0 (40.0–54.0) | 1.00 | |
RBDQ–KR Factor 1 | 8.0 (4.0–19.0) | 12.0 (9.0–19.0) | 0.43 | |
RBDQ–KR Factor 2 | 34.0 (22.0–43.0) | 36.0 (30.0–37.0) | 0.80 | |
MMSE | 26.0 (23.0–26.0) | 28.0 (26.0–29.0) | 0.01 | |
MoCA | 23.0 (19.0–24.0) | 26.0 (24.0–28.0) | 0.03 | |
Epworth Sleepiness Scale | 5.0 (3.0–7.0) | 5.0 (4.0–7.0) | 0.96 | |
K-GDS | 11.0 (4.0–15.0) | 11.0 (7.0–17.0) | 0.48 | |
Insomnia Severity Index | 7.0 (2.0–8.0) | 7.0 (6.0–13.0) | 0.52 | |
PSQI | 4.0 (3.0–4.0) | 6.0 (4.0–9.0) | 0.09 | |
TST | 8.4 (7.9–8.8) | 7.0 (6.5–7.5) | 0.03 | |
C1 | 2.0 (1.0–3.0) | 2.0 (1.0–2.0) | 0.45 | |
C2 | 0.0 (0.0–0.0) | 1.0 (0.0–1.0) | 0.10 | |
C3 | 0.0 (0.0–1.0) | 1.0 (0.0–1.0) | 0.27 | |
C4 | 0.0 (0.0–0.0) | 0.0 (0.0–1.0) | 0.24 | |
C5 | 1.0 (1.0–1.0) | 1.0 (1.0–2.0) | 0.06 | |
C6 | 0.0 (0.0–0.0) | 0.0 (0.0–1.0) | 0.36 | |
C7 | 0.0 (0.0–1.0) | 1.0 (0.0–1.0) | 0.22 | |
SCOPA-AUT total | 13.0 (9.0–20.0) | 12.0 (6.0–19.0) | 0.95 | |
SCOPA-AUT Orthostatic hypotension § | ||||
No | 66.7% | 52.4% | 0.75 | |
Borderline | 22.2% | 42.9% | 0.51 | |
Yes | 11.1% | 4.8% | 1.00 | |
SCOPA-AUT Constipation § | ||||
No | 44.4% | 19.0% | 0.32 | |
Borderline | 22.2% | 57.1% | 0.17 | |
Yes | 33.3% | 23.8% | 0.93 | |
SCOPA-AUT Urinary § | ||||
No | 66.7% | 52.4% | 1.00 | |
Borderline | 22.2% | 42.9% | ||
Yes | 11.1% | 4.8% | ||
SCOPA-AUT Erectile Dysfunction § | ||||
No | 11.1% | 9.5% | 1.00 | |
Borderline | 22.2% | 23.8% | 1.00 | |
Yes | 22.2% | 23.8% | 1.00 | |
Female | 44.4% | 42.9% | 1.00 | |
MDS-UPDRS Part III | 0.0 (0.0–1.0) | 1.0 (0.0–3.0) | 0.20 | |
Excluding Tremor | 0.0 (0.0–1.0) | 0.0 (0.0-2.0) | 0.45 | |
Conversion time | 3.0 (2.0–4.0) | 3.0 (2.0–3.0) | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, Y.-W.; Byun, J.-I.; Sunwoo, J.-S.; Rhee, C.-S.; Shin, J.-H.; Kim, H.-J.; Jung, K.-Y. Predicting Phenoconversion in Isolated RBD: Machine Learning and Explainable AI Approach. Clocks & Sleep 2025, 7, 19. https://doi.org/10.3390/clockssleep7020019
Shin Y-W, Byun J-I, Sunwoo J-S, Rhee C-S, Shin J-H, Kim H-J, Jung K-Y. Predicting Phenoconversion in Isolated RBD: Machine Learning and Explainable AI Approach. Clocks & Sleep. 2025; 7(2):19. https://doi.org/10.3390/clockssleep7020019
Chicago/Turabian StyleShin, Yong-Woo, Jung-Ick Byun, Jun-Sang Sunwoo, Chae-Seo Rhee, Jung-Hwan Shin, Han-Joon Kim, and Ki-Young Jung. 2025. "Predicting Phenoconversion in Isolated RBD: Machine Learning and Explainable AI Approach" Clocks & Sleep 7, no. 2: 19. https://doi.org/10.3390/clockssleep7020019
APA StyleShin, Y.-W., Byun, J.-I., Sunwoo, J.-S., Rhee, C.-S., Shin, J.-H., Kim, H.-J., & Jung, K.-Y. (2025). Predicting Phenoconversion in Isolated RBD: Machine Learning and Explainable AI Approach. Clocks & Sleep, 7(2), 19. https://doi.org/10.3390/clockssleep7020019