Circadian Regulation for Optimizing Sport and Exercise Performance
Abstract
:1. Introduction
2. Physiological Parameters Modulated by Circadian Rhythms
3. Mechanisms Leading to Diurnal Variations in Performance
3.1. Mechanism I: Temperature
3.1.1. Timing of Training Sessions
3.1.2. Active Muscle Warming and Training Periodization
3.2. Mechanism II: Hormonal Fluctuations
3.2.1. Melatonin and Sleep
3.2.2. Hormonal Signals
3.2.3. Training Implications of Hormonal Signaling Mechanisms
3.3. Mechanism III: Diurnal Chronotype
Training Implications
4. Conclusions
Practical Applications
Author Contributions
Funding
Conflicts of Interest
References
- Chtourou, H.; Ammar, A.; Nikolaidis, P.T.; Abdel Karim, O.; Souissi, N.; Chamari, K.; Chaouachi, A. Post-Resistance Training Detraining: Time-of-Day Effects on Training and Testing Outcomes. Biol. Rhythm Res. 2015, 46, 897–907. [Google Scholar] [CrossRef]
- Augsburger, G.R.; Soloveva, A.; Carr, J.C. Sex and Limb Comparisons of Neuromuscular Function in the Morning versus the Evening. Physiol. Rep. 2022, 10, e15260. [Google Scholar] [CrossRef] [PubMed]
- Vitaterna, M.H.; Takahashi, J.S.; Turek, F.W. Overview of Circadian Rhythms. Alcohol Res. Health 2001, 25, 85–93. [Google Scholar]
- Nobari, H.; Azarian, S.; Saedmocheshi, S.; Valdés-Badilla, P.; García Calvo, T. Narrative Review: The Role of Circadian Rhythm on Sports Performance, Hormonal Regulation, Immune System Function, and Injury Prevention in Athletes. Heliyon 2023, 9, e19636. [Google Scholar] [CrossRef]
- Pullinger, S.A.; Oksa, J.; Clark, L.F.; Guyatt, J.W.F.; Newlove, A.; Burniston, J.G.; Doran, D.A.; Waterhouse, J.M.; Edwards, B.J. Diurnal Variation in Repeated Sprint Performance Cannot Be Offset When Rectal and Muscle Temperatures Are at Optimal Levels (38.5 °C). Chronobiol. Int. 2018, 35, 1054–1065. [Google Scholar] [CrossRef] [PubMed]
- Wolff, C.A.; Esser, K.A. Exercise Timing and Circadian Rhythms. Curr. Opin. Physiol. 2019, 10, 64–69. [Google Scholar] [CrossRef]
- Douglas, C.M.; Hesketh, S.J.; Esser, K.A. Time of Day and Muscle Strength: A Circadian Output? Physiology 2021, 36, 44–51. [Google Scholar] [CrossRef]
- Küüsmaa, M.; Schumann, M.; Sedliak, M.; Kraemer, W.J.; Newton, R.U.; Malinen, J.-P.; Nyman, K.; Häkkinen, A.; Häkkinen, K. Effects of Morning versus Evening Combined Strength and Endurance Training on Physical Performance, Muscle Hypertrophy, and Serum Hormone Concentrations. Appl. Physiol. Nutr. Metab. 2016, 41, 1285–1294. [Google Scholar] [CrossRef]
- Sedliak, M.; Finni, T.; Cheng, S.; Haikarainen, T.; Häkkinen, K. Diurnal Variation in Maximal and Submaximal Strength, Power and Neural Activation of Leg Extensors in Men: Multiple Sampling Across Two Consecutive Days. Int. J. Sports Med. 2008, 29, 217–224. [Google Scholar] [CrossRef]
- Gauthier, A.; Davenne, D.; Martin, A.; Cometti, G.; Hoecke, J.V. Diurnal Rhythm of the Muscular Performance of Elbow Flexors During Isometric Contractions. Chronobiol. Int. 1996, 13, 135–146. [Google Scholar] [CrossRef]
- Guette, M.; Gondin, J.; Martin, A. Time-of-Day Effect on the Torque and Neuromuscular Properties of Dominant and Non-Dominant Quadriceps Femoris. Chronobiol. Int. 2005, 22, 541–558. [Google Scholar] [CrossRef] [PubMed]
- Mirizio, G.G.; Nunes, R.S.M.; Vargas, D.A.; Foster, C.; Vieira, E. Time-of-Day Effects on Short-Duration Maximal Exercise Performance. Sci. Rep. 2020, 10, 9485. [Google Scholar] [CrossRef]
- Dijk, D.-J.; Landolt, H.-P. Sleep Physiology, Circadian Rhythms, Waking Performance and the Development of Sleep-Wake Therapeutics. In Sleep-Wake Neurobiology and Pharmacology; Landolt, H.-P., Dijk, D.-J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 253, pp. 441–481. [Google Scholar] [CrossRef]
- Hammouda, O.; Chtourou, H.; Chahed, H.; Ferchichi, S.; Chaouachi, A.; Kallel, C.; Miled, A.; Chamari, K.; Souissi, N. High Intensity Exercise Affects Diurnal Variation of Some Biological Markers in Trained Subjects. Int. J. Sports Med. 2012, 33, 886–891. [Google Scholar] [CrossRef]
- Souissi, H.; Chaouachi, A.; Chamari, K.; Dogui, M.; Amri, M.; Souissi, N. Time-of-Day Effects on Short-Term Exercise Performances in 10- to 11-Year-Old Boys. Pediatr. Exerc. Sci. 2010, 22, 613–623. [Google Scholar] [CrossRef]
- Hatfield, D.L.; Nicoll, J.X.; Kraemer, W.J. Effects of Circadian Rhythm on Power, Force, and Hormonal Response in Young Men. J. Strength Cond. Res. 2016, 30, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Sedliak, M.; Finni, T.; Cheng, S.; Lind, M.; Häkkinen, K. Effect of Time-of-Day-Specific Strength Training on Muscular Hypertrophy in Men. J. Strength Cond. Res. 2009, 23, 2451–2457. [Google Scholar] [CrossRef] [PubMed]
- Küüsmaa-Schildt, M.; Eklund, D.; Avela, J.; Rytkönen, T.; Newton, R.; Izquierdo, M.; Häkkinen, K. Neuromuscular Adaptations to Combined Strength and Endurance Training: Order and Time-of-Day. Int. J. Sports Med. 2017, 38, 707–716. [Google Scholar] [CrossRef]
- Chtourou, H.; Driss, T.; Souissi, S.; Gam, A.; Chaouachi, A.; Souissi, N. The Effect of Strength Training at the Same Time of the Day on the Diurnal Fluctuations of Muscular Anaerobic Performances. J. Strength Cond. Res. 2012, 26, 217–225. [Google Scholar] [CrossRef]
- Shechter, A.; Boivin, D.B. Sleep, Hormones, and Circadian Rhythms throughout the Menstrual Cycle in Healthy Women and Women with Premenstrual Dysphoric Disorder. Int. J. Endocrinol. 2010, 2010, 259345. [Google Scholar] [CrossRef]
- Edgar, D.M.; Dement, W.C. Regularly Scheduled Voluntary Exercise Synchronizes the Mouse Circadian Clock. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1991, 261, R928–R933. [Google Scholar] [CrossRef]
- Partch, C.L.; Green, C.B.; Takahashi, J.S. Molecular Architecture of the Mammalian Circadian Clock. Trends Cell Biol. 2014, 24, 90–99. [Google Scholar] [CrossRef]
- Racinais, S.; Oksa, J. Temperature and Neuromuscular Function. Scand. J. Med. Sci. Sports 2010, 20, 1–18. [Google Scholar] [CrossRef]
- Facer-Childs, E.; Brandstaetter, R. The Impact of Circadian Phenotype and Time since Awakening on Diurnal Performance in Athletes. Curr. Biol. 2015, 25, 518–522. [Google Scholar] [CrossRef]
- Lok, R.; Zerbini, G.; Gordijn, M.C.M.; Beersma, D.G.M.; Hut, R.A. Gold, Silver or Bronze: Circadian Variation Strongly Affects Performance in Olympic Athletes. Sci. Rep. 2020, 10, 16088. [Google Scholar] [CrossRef]
- Racinais, S.; Cocking, S.; Périard, J.D. Sports and Environmental Temperature: From Warming-Up to Heating-Up. Temperature 2017, 4, 227–257. [Google Scholar] [CrossRef]
- Ranatunga, K. Temperature Effects on Force and Actin–Myosin Interaction in Muscle: A Look Back on Some Experimental Findings. Int. J. Mol. Sci. 2018, 19, 1538. [Google Scholar] [CrossRef]
- Bruggisser, F.; Knaier, R.; Roth, R.; Wang, W.; Qian, J.; Scheer, F.A.J.L. Best Time of Day for Strength and Endurance Training to Improve Health and Performance? A Systematic Review with Meta-Analysis. Sports Med. Open 2023, 9, 34. [Google Scholar] [CrossRef]
- Teo, W.; Newton, M.J.; McGuigan, M.R. Circadian Rhythms in Exercise Performance: Implications for Hormonal and Muscular Adaptation. J. Sports Sci. Med. 2011, 10, 600–606. [Google Scholar]
- Giacomoni, M.; Billaut, F.; Falgairette, G. Effects of the time of day on repeated all-out cycle performance and short-term recovery patterns. Int. J. Sports Med. 2006, 27, 468–474. [Google Scholar]
- Pallarés, J.G.; López-Samanes, Á.; Moreno, J.; Fernández-Elías, V.E.; Ortega, J.F.; Mora-Rodríguez, R. Circadian rhythm effects on neuromuscular and sprint swimming performance. Biol. Rhythm Res. 2013, 45, 51–60. [Google Scholar] [CrossRef]
- Robinson, W.R.; Pullinger, S.A.; Kerry, J.W.; Giacomoni, M.; Robertson, C.M.; Burniston, J.G.; Waterhouse, J.M.; Edwards, B.J. Does lowering evening rectal temperature to morning levels offset the diurnal variation in muscle force production? Chronobiol. Int. 2013, 30, 998–1010. [Google Scholar] [CrossRef]
- Robertson, C.M.; Pullinger, S.A.; Robinson, W.R.; Smith, M.E.; Burniston, J.G.; Waterhouse, J.M.; Edwards, B.J. Is the diurnal variation in muscle force output detected/detectable when multi-joint movements are analysed using the musclelab force-velocity encoder? Chronobiol. Int. 2018, 35, 1391–1401. [Google Scholar] [CrossRef] [PubMed]
- Zbidi, S.; Zinoubi, B.; Vandewalle, H.; Driss, T. Diurnal Rhythm of Muscular Strength Depends on Temporal Specificity of Self-Resistance Training. J. Strength Cond. Res. 2016, 30, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Cowper, G.; Goodall, S.; Hicks, K.; Burnie, L.; Briggs, M. The Impact of Passive Heat Maintenance Strategies between an Active Warm-Up and Performance: A Systematic Review and Meta-Analysis. BMC Sports Sci. Med. Rehabil. 2022, 14, 154. [Google Scholar] [CrossRef]
- Gibson, O.R.; James, C.A.; Mee, J.A.; Willmott, A.G.B.; Turner, G.; Hayes, M.; Maxwell, N.S. Heat Alleviation Strategies for Athletic Performance: A Review and Practitioner Guidelines. Temperature 2020, 7, 3–36. [Google Scholar] [CrossRef]
- Versey, N.G.; Halson, S.L.; Dawson, B.T. Water Immersion Recovery for Athletes: Effect on Exercise Performance and Practical Recommendations. Sports Med. 2013, 43, 1101–1130. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Ramos-Campo, D.J.; Tornero-Aguilera, J.F.; Parraca, J.A.; Batalha, N. The Effect of Periodization on Training Program Adherence. Int. J. Environ. Res. Public Health 2021, 18, 12973. [Google Scholar] [CrossRef]
- Rae, D.E.; Stephenson, K.J.; Rowe, L.C. Factors to Consider When Assessing Diurnal Variation in Sports Performance: The Influence of Chronotype and Habitual Training Time-of-Day. Eur. J. Appl. Physiol. 2015, 115, 1339–1349. [Google Scholar] [CrossRef]
- Bremner, W.J.; Vitiello, M.V.; Prinz, P.N. Loss of Circadian Rhythmicity in Blood Testosterone Levels with Aging in Normal Men. J. Clin. Endocrinol. Metab. 1983, 56, 1278–1281. [Google Scholar] [CrossRef]
- Kuzawa, C.W.; Georgiev, A.V.; McDade, T.W.; Bechayda, S.A.; Gettler, L.T. Is There a Testosterone Awakening Response in Humans? Adapt. Hum. Behav. Physiol. 2016, 2, 166–183. [Google Scholar] [CrossRef]
- Leymarie, P.; Roger, M.; Castanier, M.; Scholler, R. Circadian Variations of Plasma Testosterone and Estrogens in Normal Men. A study by frequent sampling. J. Steroid Biochem. 1974, 5, 167–171. [Google Scholar] [CrossRef]
- Gnocchi, D.; Bruscalupi, G. Circadian Rhythms and Hormonal Homeostasis: Pathophysiological Implications. Biology 2017, 6, 10. [Google Scholar] [CrossRef]
- Mohd Azmi, N.A.S.; Juliana, N.; Azmani, S.; Mohd Effendy, N.; Abu, I.F.; Mohd Fahmi Teng, N.I.; Das, S. Cortisol on Circadian Rhythm and Its Effect on Cardiovascular System. Int. J. Environ. Res. Public Health 2021, 18, 676. [Google Scholar] [CrossRef]
- Karatsoreos, I.N. Circadian Regulation of the Brain and Behavior: A Neuroendocrine Perspective. In Neuroendocrine Regulation of Behavior; Coolen, L.M., Grattan, D.R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 43, pp. 323–351. [Google Scholar] [CrossRef]
- Harden, K.P.; Wrzus, C.; Luong, G.; Grotzinger, A.; Bajbouj, M.; Rauers, A.; Wagner, G.G.; Riediger, M. Diurnal Coupling between Testosterone and Cortisol from Adolescence to Older Adulthood. Psychoneuroendocrinology 2016, 73, 79–90. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Ratamess, N.A.; Hymer, W.C.; Nindl, B.C.; Fragala, M.S. Growth Hormone(s), Testosterone, Test-Like Growth Factors, and Cortisol: Roles and Integration for Cellular Development and Growth with Exercise. Front. Endocrinol. 2020, 11, 33. [Google Scholar] [CrossRef]
- Zouhal, H.; Saeidi, A.; Salhi, A.; Li, H.; Essop, M.F.; Laher, I.; Rhibi, F.; Amani-Shalamzari, S.; Ben Abderrahman, A. Exercise Training and Fasting: Current Insights. Open Access J. Sports Med. 2020, 11, 1–28. [Google Scholar] [CrossRef]
- Spiering, B.A.; Kraemer, W.J.; Vingren, J.L.; Ratamess, N.A.; Anderson, J.M.; Armstrong, L.E.; Nindl, B.C.; Volek, J.S.; Häkkinen, K.; Maresh, C.M. Elevated Endogenous Testosterone Concentrations Potentiate Muscle Androgen Receptor Responses to Resistance Exercise. J. Steroid Biochem. Mol. Biol. 2009, 114, 195–199. [Google Scholar] [CrossRef]
- Willoughby, D.S.; Taylor, L. Effects of Sequential Bouts of Resistance Exercise on Androgen Receptor Expression. Med. Sci. Sports Exerc. 2004, 36, 1499–1506. [Google Scholar] [CrossRef]
- Arendt, J.; Aulinas, A. Physiology of the Pineal Gland and Melatonin. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Bonmati-Carrion, M.; Arguelles-Prieto, R.; Martinez-Madrid, M.; Reiter, R.; Hardeland, R.; Rol, M.; Madrid, J. Protecting the Melatonin Rhythm through Circadian Healthy Light Exposure. Int. J. Mol. Sci. 2014, 15, 23448–23500. [Google Scholar] [CrossRef]
- Costello, R.B.; Lentino, C.V.; Boyd, C.C.; O’Connell, M.L.; Crawford, C.C.; Sprengel, M.L.; Deuster, P.A. The Effectiveness of Melatonin for Promoting Healthy Sleep: A Rapid Evidence Assessment of the Literature. Nutr. J. 2014, 13, 106. [Google Scholar] [CrossRef]
- Vitale, K.C.; Owens, R.; Hopkins, S.R.; Malhotra, A. Sleep Hygiene for Optimizing Recovery in Athletes: Review and Recommendations. Int. J. Sports Med. 2019, 40, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Zisapel, N. New Perspectives on the Role of Melatonin in Human Sleep, Circadian Rhythms and Their Regulation: Melatonin in Human Sleep and Circadian Rhythms. Br. J. Pharmacol. 2018, 175, 3190–3199. [Google Scholar] [CrossRef] [PubMed]
- Janse Van Rensburg, D.C.; Jansen Van Rensburg, A.; Fowler, P.M.; Bender, A.M.; Stevens, D.; Sullivan, K.O.; Fullagar, H.H.K.; Alonso, J.-M.; Biggins, M.; Claassen-Smithers, A.; et al. Managing Travel Fatigue and Jet Lag in Athletes: A Review and Consensus Statement. Sports Med. 2021, 51, 2029–2050. [Google Scholar] [CrossRef]
- Lee, A.; Galvez, J.C. Jet Lag in Athletes. Sports Health 2012, 4, 211–216. [Google Scholar] [CrossRef]
- James, S.M.; Honn, K.A.; Gaddameedhi, S.; Van Dongen, H.P.A. Shift Work: Disrupted Circadian Rhythms and Sleep—Implications for Health and Well-Being. Curr. Sleep Med. Rep. 2017, 3, 104–112. [Google Scholar] [CrossRef]
- Yue, T.; Liu, X.; Gao, Q.; Wang, Y. Different Intensities of Evening Exercise on Sleep in Healthy Adults: A Systematic Review and Network Meta-Analysis. Nat. Sci. Sleep 2022, 14, 2157–2177. [Google Scholar] [CrossRef]
- Alnawwar, M.A.; Alraddadi, M.I.; Algethmi, R.A.; Salem, G.A.; Salem, M.A.; Alharbi, A.A. The Effect of Physical Activity on Sleep Quality and Sleep Disorder: A Systematic Review. Cureus 2023, 15, e43595. [Google Scholar] [CrossRef]
- Model, Z.; Butler, M.P.; LeSauter, J.; Silver, R. Suprachiasmatic Nucleus as the Site of Androgen Action on Circadian Rhythms. Horm. Behav. 2015, 73, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hagenauer, M.H.; Lee, T.M. The Neuroendocrine Control of the Circadian System: Adolescent Chronotype. Front. Neuroendocrinol. 2012, 33, 211–229. [Google Scholar] [CrossRef]
- Sen, A.; Hoffmann, H.M. Role of Core Circadian Clock Genes in Hormone Release and Target Tissue Sensitivity in the Reproductive Axis. Mol. Cell. Endocrinol. 2020, 501, 110655. [Google Scholar] [CrossRef]
- Marques, P.; Skorupskaite, K.; Rozario, K.S.; Anderson, R.A.; George, J.T. Physiology of GnRH and Gonadotropin Secretion. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Gillies, G.E.; McArthur, S. Estrogen Actions in the Brain and the Basis for Differential Action in Men and Women: A Case for Sex-Specific Medicines. Pharmacol. Rev. 2010, 62, 155–198. [Google Scholar] [CrossRef]
- Gamble, K.L.; Berry, R.; Frank, S.J.; Young, M.E. Circadian Clock Control of Endocrine Factors. Nat. Rev. Endocrinol. 2014, 10, 466–475. [Google Scholar] [CrossRef]
- Santhi, N.; Lazar, A.S.; McCabe, P.J.; Lo, J.C.; Groeger, J.A.; Dijk, D.-J. Sex Differences in the Circadian Regulation of Sleep and Waking Cognition in Humans. Proc. Natl. Acad. Sci. USA 2016, 113, E2730–E2739. [Google Scholar] [CrossRef]
- Szadvári, I.; Ostatníková, D.; Babková Durdiaková, J. Sex Differences Matter: Males and Females Are Equal but Not the Same. Physiol. Behav. 2023, 259, 114038. [Google Scholar] [CrossRef]
- Hadžović, A.; Nakaš-Ićindić, E.; Kucukalić-Selimović, E.; Salaka, A.-U. Growth Hormone (GH) Usage and Abuse. Bosn. J. Basic Med. Sci. 2004, 4, 66–70. [Google Scholar] [CrossRef]
- Gupta, S.K.; Lindemulder, E.A.; Sathyan, G. Modeling of Circadian Testosterone in Healthy Men and Hypogonadal Men. J. Clin. Pharmacol. 2000, 40, 731–738. [Google Scholar] [CrossRef]
- Rowe, P.H.; Lincoln, G.A.; Racey, P.A.; Lehane, J.; Stephenson, M.J.; Shenton, J.C.; Glover, T.D. Temporal Variations of Testosterone Levels in the Peripheral Blood Plasma of Men. J. Endocrinol. 1974, 61, 63–73. [Google Scholar] [CrossRef]
- Ambroży, T.; Rydzik, Ł.; Obmiński, Z.; Błach, W.; Serafin, N.; Błach, B.; Jaszczur-Nowicki, J.; Ozimek, M. The Effect of High-Intensity Interval Training Periods on Morning Serum Testosterone and Cortisol Levels and Physical Fitness in Men Aged 35–40 Years. J. Clin. Med. 2021, 10, 2143. [Google Scholar] [CrossRef]
- Smith, R.S.; Efron, B.; Mah, C.D.; Malhotra, A. The Impact of Circadian Misalignment on Athletic Performance in Professional Football Players. Sleep 2013, 36, 1999–2001. [Google Scholar] [CrossRef]
- Horne, J.A.; Ostberg, O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int. J. Chronobiol. 1976, 4, 97–110. [Google Scholar]
- Timmermans, S.; Souffriau, J.; Libert, C.A. General Introduction to Glucocorticoid Biology. Front. Immunol. 2019, 10, 1545. [Google Scholar] [CrossRef]
- Lack, L. Chronotype differences in circadian rhythms of temperature, melatonin, and sleepiness as measured in a modified constant routine protocol. Nat. Sci. Sleep 2009, 1, 1–8. [Google Scholar] [CrossRef]
- Meléndez-Fernández, O.H.; Liu, J.A.; Nelson, R.J. Circadian Rhythms Disrupted by Light at Night and Mistimed Food Intake Alter Hormonal Rhythms and Metabolism. Int. J. Mol. Sci. 2023, 24, 3392. [Google Scholar] [CrossRef]
- Roden, L.; Rudner, T.; Rae, D. Impact of Chronotype on Athletic Performance: Current Perspectives. ChronoPhysiol. Ther. 2017, 7, 1–6. [Google Scholar] [CrossRef]
Study | N | Intervention | Performance Differences by Time-of-Day | Peak Performance Time | Improved Performance Outcome |
---|---|---|---|---|---|
Souissi et al., 2010 [15] | 20 ten- and eleven-year-old boys | Acute performance testing at 08:00 h, 14:00 h, and 18:00 h on separate days | Yes | Afternoon and Evening | Handgrip strength, squat jump, five-jump test, Wingate peak and mean power |
Giacomoni, Billaut and Falgairette 2006 [30] | 12 active males | Acute repeated cycle sprint tests at 08:00–10:00 h and 17:00–19:00 h on separate days | Yes | Morning | Peak efficient torque |
Hatfield et al., 2016 [16] | 7 active males | Acute performance testing at 04:00 h, 10:00 h, 16:00 h, and 22:00 h on separate days | No | None | None |
Chtourou et al., 2015 [1] | 31 young active males | 14 wk resistance training performed at 07:00–08:00 h or 17:00–18:00 h | Yes | Evening | Squat jump, MVC |
Chtourou et al., 2012 [19] | 30 young active males | 8 wk lower-extremity progressive resistance training performed at 07:00–08:00 h or 17:00–18:00 h | No | None | None |
Hammouda et al., 2012 [14] | 15 young male athletes | Acute performance testing at 07:00 h and 17:00 h on separate days | Yes | Evening | Wingate peak power |
Pallarés et al., 2013 [31] | 12 trained swimmers (6 males, 6 female) | Acute performance testing at 10:00 h and 18:00 h on separate days | Yes | Evening | Max bench press, bench press power, CMJ height, 25 m swimming freestyle |
Robinson et al., 2013 [32] | 10 active males | Acute performance testing at 07:30 h, 17:30 h, and 17:30 after cold-water immersion on separate days | Yes | Evening | Handgrip strength, isometric peak power, isokinetic knee flexion and extension for peak torque and peak power, knee extension for peak torque |
Pullinger et al., 2018 [5] | 12 trained males | Acute repeated treadmill sprint tests at 07:30 h and 17:30 h, and three “optimal temperature” trials on separate days | Yes | Evening | Distance covered, sprint mean power and velocity |
Sedliak et al., 2008 [9] | 32 males | Acute performance testing at 07:00–08:00 h, 12:00–13:00 h, 17:00–18:00 h, and 20:30–21:30 h on two consecutive days | Yes | Evening | Squat jump strength and power |
Robertson et al., 2018 [33] | 30 resistance-trained males | Acute performance testing at 07:30 h and 17:30 h on separate days | Yes | Evening | Bench press and back squat mean force, mean velocity, and time-to-peak velocity |
Küüsmaa-Schildt et al., 2017 [18] | 51 young men | 24 wk combined resistance and endurance training performed in the morning or evening | No | None | None |
Zbidi et al., 2016 [34] | 20 active men | 6 wk MIVCC training of the right elbow joint at 07:00–08:00 h or 17:00–18:00 h | No | None | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Augsburger, G.R.; Sobolewski, E.J.; Escalante, G.; Graybeal, A.J. Circadian Regulation for Optimizing Sport and Exercise Performance. Clocks & Sleep 2025, 7, 18. https://doi.org/10.3390/clockssleep7020018
Augsburger GR, Sobolewski EJ, Escalante G, Graybeal AJ. Circadian Regulation for Optimizing Sport and Exercise Performance. Clocks & Sleep. 2025; 7(2):18. https://doi.org/10.3390/clockssleep7020018
Chicago/Turabian StyleAugsburger, Garrett R., Eric J. Sobolewski, Guillermo Escalante, and Austin J. Graybeal. 2025. "Circadian Regulation for Optimizing Sport and Exercise Performance" Clocks & Sleep 7, no. 2: 18. https://doi.org/10.3390/clockssleep7020018
APA StyleAugsburger, G. R., Sobolewski, E. J., Escalante, G., & Graybeal, A. J. (2025). Circadian Regulation for Optimizing Sport and Exercise Performance. Clocks & Sleep, 7(2), 18. https://doi.org/10.3390/clockssleep7020018