Uncorrelated Age-Related Changes in Visuo-Spatial Working Memory Binding and Thermoregulation
Abstract
:1. Introduction
2. Results
2.1. vsWM Task
2.1.1. Identification Performance
2.1.2. Absolute Location Error
2.1.3. Location Error Controlling for Swap Errors
2.2. The 24 H Time Course of DPG Levels
2.3. Link Between DPG Levels and Working Memory Performance
3. Discussion
4. Materials and Methods
4.1. Sample
4.2. Object–Location Binding Task
4.3. Thermometry
4.4. Experimental Procedure
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cajochen, C.; Münch, M.; Knoblauch, V.; Blatter, K.; Wirz-Justice, A. Age-related Changes in the Circadian and Homeostatic Regulation of Human Sleep. Chronobiol. Int. 2006, 23, 461–474. [Google Scholar] [CrossRef] [PubMed]
- Hofman, M.A.; Swaab, D.F. Living by the clock: The circadian pacemaker in older people. Ageing Res. Rev. 2006, 5, 33–51. [Google Scholar] [CrossRef] [PubMed]
- Duffy, J.F.; Zitting, K.-M.; Chinoy, E.D. Aging and Circadian Rhythms. Sleep Med. Clin. 2015, 10, 423–434. [Google Scholar] [CrossRef]
- Degroot, D.W.; Kenney, W.L. Impaired defense of core temperature in aged humans during mild cold stress. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R103–R108. [Google Scholar] [CrossRef]
- Martinez-Nicolas, A.; Madrid, J.A.; García, F.J.; Campos, M.; Moreno-Casbas, M.T.; Almaida-Pagán, P.F.; Lucas-Sánchez, A.; Rol, M.A. Circadian monitoring as an aging predictor. Sci. Rep. 2018, 8, 15027. [Google Scholar] [CrossRef]
- Van Someren, E.J. Thermoregulation and aging. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2007, 292, R99–R102. [Google Scholar] [CrossRef]
- Hasselberg, M.J.; McMahon, J.; Parker, K. The validity, reliability, and utility of the iButton® for measurement of body temperature circadian rhythms in sleep/wake research. Sleep Med. 2013, 14, 5–11. [Google Scholar] [CrossRef]
- Longato, E.; Garrido, M.; Saccardo, D.; Montesinos Guevara, C.; Mani, A.R.; Bolognesi, M.; Amodio, P.; Facchinetti, A.; Sparacino, G.; Montagnese, S. Expected accuracy of proximal and distal temperature estimated by wireless sensors, in relation to their number and position on the skin. PLoS ONE 2017, 12, e0180315. [Google Scholar] [CrossRef]
- Kräuchi, K.; Cajochen, C.; Werth, E.; Wirz-Justice, A. Warm feet promote the rapid onset of sleep. Nature 1999, 401, 36–37. [Google Scholar] [CrossRef]
- van Marken Lichtenbelt, W.D.; Daanen, H.A.M.; Wouters, L.; Fronczek, R.; Raymann, R.J.E.M.; Severens, N.M.W.; Van Someren, E.J.W. Evaluation of wireless determination of skin temperature using iButtons. Physiol. Behav. 2006, 88, 489–497. [Google Scholar] [CrossRef]
- Gradisar, M.; Lack, L. Relationships between the Circadian Rhythms of Finger Temperature, Core Temperature, Sleep Latency, and Subjective Sleepiness. J. Biol. Rhythm. 2004, 19, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Kräuchi, K.; Knoblauch, V.; Wirz-Justice, A.; Cajochen, C. Challenging the sleep homeostat does not influence the thermoregulatory system in men: Evidence from a nap vs. sleep-deprivation study. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2006, 290, R1052–R1061. [Google Scholar] [CrossRef] [PubMed]
- Raymann, R.J.E.M.; Swaab, D.F.; Van Someren, E.J.W. Skin temperature and sleep-onset latency: Changes with age and insomnia. Physiol. Behav. 2007, 90, 257–266. [Google Scholar] [CrossRef]
- Fronczek, R.; Overeem, S.; Lammers, G.J.; van Dijk, J.G.; van Someren, E.J.W. Altered Skin-Temperature Regulation in Narcolepsy Relates to Sleep Propensity. Sleep 2006, 29, 1444–1449. [Google Scholar] [CrossRef]
- Martinez-Nicolas, A.; Guaita, M.; Santamaría, J.; Montserrat, J.M.; Rol, M.Á.; Madrid, J.A. Circadian Impairment of Distal Skin Temperature Rhythm in Patients With Sleep-Disordered Breathing: The Effect of CPAP. Sleep 2017, 40, zsx067. [Google Scholar] [CrossRef]
- Schmidt, C.; Collette, F. Impact of time-of-day and sleep-wake cycles on cognitive performance. Rev. Neuropsychol. 2016, 8, 173–181. [Google Scholar]
- Weinert, D.; Waterhouse, J. The circadian rhythm of core temperature: Effects of physical activity and aging. Physiol. Behav. 2007, 90, 246–256. [Google Scholar] [CrossRef]
- Babcock, R.L.; Salthouse, T.A. Effects of increased processing demands on age differences in working memory. Psychol. Aging 1990, 5, 421–428. [Google Scholar] [CrossRef]
- Gazzaley, A.; Cooney, J.W.; Rissman, J.; D’Esposito, M. Top-down suppression deficit underlies working memory impairment in normal aging. Nat. Neurosci. 2005, 8, 1298–1300. [Google Scholar] [CrossRef]
- Johnson, W.; Logie, R.H.; Brockmole, J.R. Working memory tasks differ in factor structure across age cohorts: Implications for dedifferentiation. Intelligence 2010, 38, 513–528. [Google Scholar] [CrossRef]
- Jost, K.; Bryck, R.L.; Vogel, E.K.; Mayr, U. Are old adults just like low working memory young adults? Filtering efficiency and age differences in visual working memory. Cereb. Cortex 2011, 21, 1147–1154. [Google Scholar] [CrossRef]
- Reuter-Lorenz, P.A.; Sylvester, C.-Y.C. The Cognitive Neuroscience of Working Memory and Aging. In Cognitive Neuroscience of Aging: Linking Cognitive and Cerebral Aging; Oxford University Press: New York, NY, USA, 2005; pp. 186–217. [Google Scholar]
- Murman, D.L. The Impact of Age on Cognition. Semin. Hear. 2015, 36, 111–121. [Google Scholar] [CrossRef]
- Sala, J.B.; Courtney, S.M. Flexible working memory representation of the relationship between an object and its location as revealed by interactions with attention. Atten. Percept. Psychophys. 2009, 71, 1525–1533. [Google Scholar] [CrossRef]
- Wood, J.N. When do spatial and visual working memory interact? Atten. Percept. Psychophys. 2011, 73, 420–439. [Google Scholar] [CrossRef]
- Della Sala, S.; Parra, M.A.; Fabi, K.; Luzzi, S.; Abrahams, S. Short-term memory binding is impaired in AD but not in non-AD dementias. Neuropsychologia 2012, 50, 833–840. [Google Scholar] [CrossRef]
- Parra, M.; Abrahams, S.; Fabi, K.; Logie, R.; Luzzi, S.; Sala, S. Short-term memory binding deficits in Alzheimers disease. Brain J. Neurol. 2009, 132, 1057–1066. [Google Scholar] [CrossRef]
- Parra, M.A.; Abrahams, S.; Logie, R.H.; Méndez, L.G.; Lopera, F.; Della Sala, S. Visual short-term memory binding deficits in familial Alzheimer’s disease. Brain 2010, 133, 2702–2713. [Google Scholar] [CrossRef]
- Pertzov, Y.; Heider, M.; Liang, Y.; Husain, M. Effects of healthy ageing on precision and binding of object location in visual short term memory. Psychol. Aging 2015, 30, 26–35. [Google Scholar] [CrossRef]
- Burke, T.M.; Scheer, F.A.J.L.; Ronda, J.M.; Czeisler, C.A.; Wright, K.P. Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions. J. Sleep Res. 2015, 24, 364–371. [Google Scholar] [CrossRef]
- Johnson, M.P.; Duffy, J.F.; Dijk, D.J.; Ronda, J.M.; Dyal, C.M.; Czeisler, C.A. Short-term memory, alertness and performance: A reappraisal of their relationship to body temperature. J. Sleep Res. 1992, 1, 24–29. [Google Scholar] [CrossRef]
- Lewandowska, K.; Wachowicz, B.; Marek, T.; Oginska, H.; Fafrowicz, M. Would you say “yes” in the evening? Time-of-day effect on response bias in four types of working memory recognition tasks. Chronobiol. Int. 2018, 35, 80–89. [Google Scholar] [CrossRef]
- Lo, J.C.; Groeger, J.A.; Santhi, N.; Arbon, E.L.; Lazar, A.S.; Hasan, S.; von Schantz, M.; Archer, S.N.; Dijk, D.-J. Effects of Partial and Acute Total Sleep Deprivation on Performance across Cognitive Domains, Individuals and Circadian Phase. PLoS ONE 2012, 7, e45987. [Google Scholar] [CrossRef]
- Schmidt, C.; Peigneux, P.; Cajochen, C. Age-Related Changes in Sleep and Circadian Rhythms: Impact on Cognitive Performance and Underlying Neuroanatomical Networks. Front. Neurol. 2012, 3, 118. [Google Scholar] [CrossRef]
- West, R.; Murphy, K.J.; Armilio, M.L.; Craik, F.I.M.; Stuss, D.T. Effects of Time of Day on Age Differences in Working Memory. J. Gerontol. Ser. B 2002, 57, P3–P10. [Google Scholar] [CrossRef]
- Heyde, I.; Kiehn, J.-T.; Oster, H. Mutual influence of sleep and circadian clocks on physiology and cognition. Free Radic. Biol. Med. 2018, 119, 8–16. [Google Scholar] [CrossRef]
- Reichert, C.F.; Maire, M.; Gabel, V.; Viola, A.U.; Götz, T.; Scheffler, K.; Klarhöfer, M.; Berthomier, C.; Strobel, W.; Phillips, C.; et al. Cognitive brain responses during circadian wake-promotion: Evidence for sleep-pressure-dependent hypothalamic activations. Sci. Rep. 2017, 7, 5620. [Google Scholar] [CrossRef]
- Santhi, N.; Lazar, A.S.; McCabe, P.J.; Lo, J.C.; Groeger, J.A.; Dijk, D.-J. Sex differences in the circadian regulation of sleep and waking cognition in humans. Proc. Natl. Acad. Sci. USA 2016, 113, E2730–E2739. [Google Scholar] [CrossRef]
- Wright, K.P.; Hull, J.T.; Czeisler, C.A. Relationship between alertness, performance, and body temperature in humans. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2002, 283, R1370–R1377. [Google Scholar] [CrossRef]
- Batinga, H.; Martinez-Nicolas, A.; Zornoza-Moreno, M.; Sánchez-Solis, M.; Larqué, E.; Mondéjar, M.T.; Moreno-Casbas, M.; García, F.J.; Campos, M.; Rol, M.A.; et al. Ontogeny and aging of the distal skin temperature rhythm in humans. AGE 2015, 37, 29. [Google Scholar] [CrossRef]
- Kräuchi, K.; Deboer, T. The interrelationship between sleep regulation and thermoregulation. Front. Biosci. 2010, 15, 604. [Google Scholar] [CrossRef]
- Kräuchi, K.; Wirz-Justice, A. Circadian rhythm of heat production, heart rate, and skin and core temperature under unmasking conditions in men. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1994, 267, R819–R829. [Google Scholar] [CrossRef]
- Harper, D.G.; Volicer, L.; Stopa, E.G.; McKee, A.C.; Nitta, M.; Satlin, A. Disturbance of endogenous circadian rhythm in aging and Alzheimer disease. Am. J. Geriatr. Psychiatry 2005, 13, 359–368. [Google Scholar] [CrossRef]
- Van Someren, E.J.; Swaab, D.F.; Colenda, C.C.; Cohen, W.; McCall, W.V.; Rosenquist, P.B. Bright light therapy: Improved sensitivity to its effects on rest-activity rhythms in Alzheimer patients by application of nonparametric methods. Chronobiol. Int. 1999, 16, 505–518. [Google Scholar] [CrossRef]
- Martinez-Nicolas, A.; Ortiz-Tudela, E.; Rol, M.A.; Madrid, J.A. Uncovering Different Masking Factors on Wrist Skin Temperature Rhythm in Free-Living Subjects. PLoS ONE 2013, 8, e61142. [Google Scholar] [CrossRef]
- Rowe, J.W.; Kahn, R.L. Human aging: Usual and successful. Science 1987, 237, 143–149. [Google Scholar] [CrossRef]
- Lupien, S.J.; Wan, N. Successful ageing: From cell to self. Philos. Trans. R. Soc. B Biol. Sci. 2004, 359, 1413–1426. [Google Scholar] [CrossRef]
- Hicks, H.; Meyer, K.; Watts, A. Differential effects of chronotype on physical activity and cognitive performance in older adults. Front. Epidemiol. 2023, 3, 1029221. [Google Scholar] [CrossRef]
- Schmidt, C.; Collette, F.; Cajochen, C.; Peigneux, P. A time to think: Circadian rhythms in human cognition. Cogn. Neuropsychol. 2007, 24, 755–789. [Google Scholar] [CrossRef]
- Silva, E.J.; Wang, W.; Ronda, J.M.; Wyatt, J.K.; Duffy, J.F. Circadian and Wake-Dependent Influences on Subjective Sleepiness, Cognitive Throughput, and Reaction Time Performance in Older and Young Adults. Sleep 2010, 33, 481–490. [Google Scholar] [CrossRef]
- Blatter, K.; Graw, P.; Münch, M.; Knoblauch, V.; Wirz-Justice, A.; Cajochen, C. Gender and age differences in psychomotor vigilance performance under differential sleep pressure conditions. Behav. Brain Res. 2006, 168, 312–317. [Google Scholar] [CrossRef]
- Harrison, Y.; Horne, J.A. Sleep loss impairs short and novel language tasks having a prefrontal focus. J. Sleep Res. 1998, 7, 95–100. [Google Scholar] [CrossRef]
- Schmidt, C.; Peigneux, P.; Cajochen, C.; Collette, F. Adapting Test Timing to the Sleep-Wake Schedule: Effects on Diurnal Neurobehavioral Performance Changes in Young Evening and Older Morning Chronotypes. Chronobiol. Int. 2012, 29, 482–490. [Google Scholar] [CrossRef]
- Boon, M.R.; Bakker, L.E.H.; Van Der Linden, R.A.D.; Pereira Arias-Bouda, L.; Smit, F.; Verberne, H.J.; Van Marken Lichtenbelt, W.D.; Jazet, I.M.; Rensen, P.C.N. Supraclavicular Skin Temperature as a Measure of 18F-FDG Uptake by BAT in Human Subjects. PLoS ONE 2014, 9, e98822. [Google Scholar] [CrossRef]
- Kräuchi, K. The thermophysiological cascade leading to sleep initiation in relation to phase of entrainment. Sleep Med. Rev. 2007, 11, 439–451. [Google Scholar] [CrossRef]
- Hoof, J.V.; Hensen, J.L.M. Thermal comfort and older adults. Gerontechnology 2006, 4, 223–228. [Google Scholar] [CrossRef]
- Martinez-Nicolas, A.; Madrid, J.A.; Rol, M.A. Day–night contrast as source of health for the human circadian system. Chronobiol. Int. 2014, 31, 382–393. [Google Scholar] [CrossRef]
- Horne, J.A.; Ostberg, O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int. J. Chronobiol. 1976, 4, 97–110. [Google Scholar]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health 2015, 1, 40–43. [Google Scholar] [CrossRef]
- Baker, F.C.; Sattari, N.; de Zambotti, M.; Goldstone, A.; Alaynick, W.A.; Mednick, S.C. Impact of sex steroids and reproductive stage on sleep-dependent memory consolidation in women. Neurobiol. Learn. Mem. 2019, 160, 118–131. [Google Scholar] [CrossRef]
- Baker, F.C.; Driver, H.S. Circadian rhythms, sleep, and the menstrual cycle. Sleep Med. 2007, 8, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Pertzov, Y.; Dong, M.Y.; Peich, M.-C.; Husain, M. Forgetting what was where: The fragility of object-location binding. PLoS ONE 2012, 7, e48214. [Google Scholar] [CrossRef]
- Wobbrock, J.O.; Findlater, L.; Gergle, D.; Higgins, J.J. The aligned rank transform for nonparametric factorial analyses using only anova procedures. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; Association for Computing Machinery: New York, NY, USA, 2011; pp. 143–146. [Google Scholar] [CrossRef]
Young (n = 18) | Old (n = 23) | Statistics | |
---|---|---|---|
Age | 23.9 ± 3.96 | 72.5 ± 6.14 | W = 418, p < 0.001 |
Sex | 13 women, 6 men | 13 women, 9 men | X2 = 0.086, p = 0.769 |
BMI | 21.3 ± 5.63 | 26.6 ± 3.19 | W = 357, p < 0.001 |
Sleep quality (PSQI) | 4.37 ± 1.64 | 3.96 ± 1.73 | W = 184.5, p = 0.523 |
Chronotype (MEQ) | 51.5 ± 9.32 | 63 ± 7.13 | W = 348, p < 0.001 |
Wake-up time | 07 h 53 ± 01 h 05 | 07 h 44 ± 01 h 01 | W = 176, p = 0.817 |
Sleep onset time | 23 h 47 ± 01 h 47 | 22 h 43 ± 00 h 26 | W = 47.5, p < 0.001 |
Total sleep time | 08 h 06 ± 01 h 27 | 09 h 01 ± 01 h 06 | W = 258, p = 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dourte, M.; Hammad, G.; Schmidt, C.; Peigneux, P. Uncorrelated Age-Related Changes in Visuo-Spatial Working Memory Binding and Thermoregulation. Clocks & Sleep 2025, 7, 17. https://doi.org/10.3390/clockssleep7020017
Dourte M, Hammad G, Schmidt C, Peigneux P. Uncorrelated Age-Related Changes in Visuo-Spatial Working Memory Binding and Thermoregulation. Clocks & Sleep. 2025; 7(2):17. https://doi.org/10.3390/clockssleep7020017
Chicago/Turabian StyleDourte, Marine, Gregory Hammad, Christina Schmidt, and Philippe Peigneux. 2025. "Uncorrelated Age-Related Changes in Visuo-Spatial Working Memory Binding and Thermoregulation" Clocks & Sleep 7, no. 2: 17. https://doi.org/10.3390/clockssleep7020017
APA StyleDourte, M., Hammad, G., Schmidt, C., & Peigneux, P. (2025). Uncorrelated Age-Related Changes in Visuo-Spatial Working Memory Binding and Thermoregulation. Clocks & Sleep, 7(2), 17. https://doi.org/10.3390/clockssleep7020017