Density Functional Theory Investigations of Carbon Nanotube Unzipping on Cu(111)
Abstract
1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Jiang, Z.; Zhang, Y.; Morozov, S.; Stormer, H.; Zeitler, U.; Maan, J.C.; Boebinger, G.S.; Kim, P.; Geim, A.K. Room-temperature quantum Hall effect in graphene. Science 2007, 315, 1379–1389. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Colonna, F.; Los, J.H.; Fasolino, A.; Meijer, E.J. Properties of graphite at melting from multilayer thermodynamic integration. Phys. Rev. 2009, B80, 134103. [Google Scholar] [CrossRef]
- Neto, A.H.C.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. [Google Scholar] [CrossRef]
- Chae, S.H.; Lee, Y.H. Carbon nanotubes and graphene towards soft electronics. Nano Converg. 2014, 1, 15. [Google Scholar] [CrossRef]
- Ouyang, J. Applications of carbon nanotubes and graphene for third-generation solar cells and fuel cells. Nano Mater. Sci. 2019, 1, 77–90. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Rheima, A.M.; Mohammed, M.S.; Kadhim, M.M.; Mohammed, S.H.; Abbas, F.H.; Abed, Z.T.; Mahdi, Z.H.; Abbas, Z.S.; Hachim, S.H.; et al. Application of Carbon Nanotubes and Graphene-Based Nanoadsorbents in Water Treatment. BioNanoScience 2023, 13, 1418–1436. [Google Scholar] [CrossRef]
- Yuan, W.; Cheng, Z.Y.L.; Wu, H.; Zheng, L.; Zhao, D. The applications of carbon nanotubes and graphene in advanced rechargeable lithium batteries. J. Mater. Chem. A 2016, 4, 8932–8951. [Google Scholar] [CrossRef]
- Silva, A.A.; Pinheiro, R.A.; Rodrigues, A.C.; Baldan, M.R.; Trava-Airoldi, V.J.; Corat, E.J. Graphene sheets produced by carbon nanotubes unzipping and their performance as supercapacitor. Appl. Surf. Sci. 2018, 446, 201–208. [Google Scholar] [CrossRef]
- Warbinek, J.; Leimbach, D.; Lu, D.; Wendt, K.; Pegg, D.J.; Yurgens, A.; Hanstorp, D.; Welander, J. A graphene-based neutral particle detector. Appl. Phys. Lett. 2019, 114, 061902. [Google Scholar] [CrossRef]
- Wang, S.Y. Graphene-based detectors for directional dark matter detection. Eur. Phys. J. C 2019, 79, 561. [Google Scholar] [CrossRef]
- Das, A.; Jang, J.; Min, H. Sub-MeV dark matter detection with bilayer graphene. Phys. Rev. D 2024, 110, 043020. [Google Scholar] [CrossRef]
- Radsar, T.; Khalesi, H.; Ghods, V. Graphene nanoribbon field effect transistors analysis and applications. Superlattices Microstruct. 2024, 153, 106869. [Google Scholar] [CrossRef]
- Rashid, M.H.; Koel, A.; Rang, T. Simulations of Graphene Nanoribbon Field Effect Transistor for the Detection of Propane and Butane Gases: A First Principles Study. Nanomaterials 2022, 10, 98. [Google Scholar] [CrossRef]
- Owens, F.J. Electronic and magnetic properties of armchair and zigzag graphene nanoribbons. J. Chem. Phys. 2008, 128, 194701. [Google Scholar] [CrossRef]
- Son, Y.-W.; Cohen, M.L.; Louie, S.G. Energy Gaps in Graphene Nanoribbons. Phys. Rev. Lett. 2006, 97, 216803. [Google Scholar] [CrossRef]
- Li, G.; Guest, J.R.; Guisinger, N.P. Epitaxial graphene on Cu(111). Nano Lett. 2010, 10, 3512–3516. [Google Scholar] [CrossRef]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef]
- Mclellan, R.B. The solubility of carbon in solid gold, copper, and silver. Scr. Metall. 1969, 3, 389–391. [Google Scholar] [CrossRef]
- Ishihara, M.; Koga, Y.; Kim, J.; Tsugawa, K.; Hasegawa, M. Direct evidence of advantage of Cu(111) for graphene synthesis by using Raman mapping and electron backscatter diffraction. Mat. Let. 2011, 65, 2864–2867. [Google Scholar] [CrossRef]
- Lyding, J.; Wood, J.; Pop, E. Growing better graphene by finding the best copper surface. SPIE Newsroom 2012, 10, 004110. [Google Scholar] [CrossRef]
- Wood, J.D.; Schmucker, S.W.; Lyons, A.S.; Pop, E.; Lyding, J.W. Effects of Polycrystalline Cu Substrate on Graphene Growth by Chemical Vapor Deposition. Nano Lett. 2011, 11, 4547–4554. [Google Scholar] [CrossRef] [PubMed]
- Kosynkin, D.V.; Higginbotham, A.L.; Sinitskii, A.; Lomeda, J.R.; Dimiev, A.; Price, B.K.; Tour, J.M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872–876. [Google Scholar] [CrossRef]
- Salah, L.S.; Ouslimani, N.; Bousba, D.; Huynen, I.; Danlée, Y.; Aksas, H. Carbon Nanotubes (CNTs) from Synthesis to Functionalized (CNTs) Using Conventional and New Chemical Approaches. J. Nanomater. 2021, 2021, 4972770. [Google Scholar] [CrossRef]
- Saini, D. Synthesis and functionalization of graphene and application in electrochemical biosensing. Nanotechnol. Rev. 2016, 5, 393–416. [Google Scholar] [CrossRef]
- Khalil, I.; Julkapli, N.M.; Yehye, W.A.; Basirun, W.J.; Bhargava, S.K. Graphene–Gold Nanoparticles Hybrid—Synthesis, Functionalization, and Application in a Electrochemical and Surface-Enhanced Raman Scattering Biosensor. Materials 2016, 9, 406. [Google Scholar] [CrossRef]
- Shinde, D.B.; Debgupta, J.; Kushwaha, A.; Aslam, M.; Pillai, V.K. Electrochemical Unzipping of Multi-walled Carbon Nanotubes for Facile Synthesis of High-Quality Graphene Nanoribbons. J. Am. Chem. Soc. 2011, 133, 4168. [Google Scholar] [CrossRef]
- Kim, K.; Sussman, A.; Zettl, A. Graphene Nanoribbons Obtained by Electrically Unwrapping Carbon Nanotubes. ACS Nano 2010, 4, 1362. [Google Scholar] [CrossRef]
- Jiao, L.; Wang, X.; Diankov, G.; Wang, H.; Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 2010, 5, 321–325. [Google Scholar] [CrossRef]
- Wang, J.; Ma, L.; Yuan, Q.; Zhu, L.; Ding, F. Transition-Metal-Catalyzed Unzipping of Single-Walled Carbon Nanotubes into Narrow Graphene Nanoribbons at Low Temperature. Angew. Chem. Int. Ed. 2011, 50, 8041–8045. [Google Scholar] [CrossRef] [PubMed]
- Tiwary, C.S.; Javvaji, B.; Kumar, C.; Mahapatra, D.R.; Ozden, S.; Ajayan, P.M.; Chattopadhyay, K. Chemical-free graphene by unzipping carbon nanotubes using cryo-milling. Carbon 2015, 89, 217–224. [Google Scholar] [CrossRef]
- Dong, W.; Li, X.; Lu, S.; Li, J.; Wang, Y.; Zhong, M.; Dong, X.; Xu, Z.; Shen, Q.; Gao, S.; et al. Unzipping Carbon Nanotubes to Sub-5-nm Graphene Nanoribbons on Cu(111) by Surface Catalysis. Small 2024, 20, 2308430. [Google Scholar] [CrossRef]
- Goto, Y.; Ando, S.; Kakugawa, K.; Takahara, S.; Yamada, T.K. Unzipping Process of Wet Carbon Nanotubes Adsorbed on Cu(111) in Ultra-High Vacuum: An STM/STS study. Vac. Surf. Sci. 2021, 64, 40–46. [Google Scholar] [CrossRef]
- Lu, J.; Yeo, P.S.E.; Gan, C.K.; Loh, W.P.K.P. Transforming C60 molecules into graphene quantum dots. Nat. Nanotechnol. 2011, 6, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Tatti, R.; Aversa, L.; Verucchi, R.; Cavaliere, E.; Garberoglio, G.; Pugno, N.M.; Speranza, G.; Taioli, S. Synthesis of single layer graphene on Cu(111) by C60 supersonic molecular beam epitaxy. RSC Adv. 2016, 6, 37982–37993. [Google Scholar] [CrossRef]
- Blum, V.; Gehrke, R.; Hanke, F.; Havu, P.; Havu, V.; Ren, X.; Reuter, K.; Scheffler, M. Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals. Comput. Phys. Commun. 2009, 180, 2175–2196. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Tkatchenko, A.; Scheffler, M. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009, 102, 073005. [Google Scholar] [CrossRef]
- Ruiz, V.G.; Liu, W.; Tkatchenko, A. Density-functional theory with screened van der Waals interactions applied to atomic and molecular adsorbates on close-packed and non-close-packed surfaces. Phys. Rev. B 2016, 93, 035118. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Straimanis, M.E.; Yu, L.S. Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu-In phase. Acta Cryst. 1969, A25, 676–682. [Google Scholar] [CrossRef]
- Sun, W.; Ceder, G. Efficient creation and convergence of surface slabs. Surf. Sci. 2013, 617, 53–59. [Google Scholar] [CrossRef]
- Artyukhov, V.I.; Liu, Y.Y.; Yakobson, B.I. Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl. Acad. Sci. USA 2012, 109, 15136–15140. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zhao, J.; Ding, F. Transition Metal Surface Passivation Induced Graphene Edge Reconstruction. J. Am. Chem. Soc. 2012, 134, 6204–6209. [Google Scholar] [CrossRef]
- Shu, H.; Chen, X.; Tao, X.; Ding, F. Edge Structural Stability and Kinetics of Graphene Chemical Vapor Deposition Growth. ACS Nano 2012, 6, 3243–3250. [Google Scholar] [CrossRef]
- Shu, H.; Chen, X.; Ding, F. The Edge Termination Controlled Kinetics in Graphene Chemical Vapor Deposition Growth. Chem. Sci. 2014, 5, 4639–4645. [Google Scholar] [CrossRef]
d, nm | Type | , eV |
---|---|---|
0.3 | ZZ | 0.26 |
0.4 | AC | 0.06 |
ZZ | −0.08 | |
0.5 | AC | −0.06 |
ZZ | −0.16 | |
0.7 | AC | −0.11 |
d, nm | Type | , eV | |||
---|---|---|---|---|---|
CNT | S1 | S2 | GNR | ||
0.4 | AC | −0.11 | −0.20 | −0.31 | |
ZZ | −0.10 | −0.13 | −0.24 | −0.36 | |
0.5 | AC | −0.05 | −0.06 | −0.12 | −0.14 |
ZZ | −0.05 | −0.04 | −0.15 | −0.20 | |
0.7 | AC | −0.04 | −0.02 | −0.05 | −0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexeev, A.; Filimonov, S.N. Density Functional Theory Investigations of Carbon Nanotube Unzipping on Cu(111). Surfaces 2024, 7, 1052-1059. https://doi.org/10.3390/surfaces7040069
Alexeev A, Filimonov SN. Density Functional Theory Investigations of Carbon Nanotube Unzipping on Cu(111). Surfaces. 2024; 7(4):1052-1059. https://doi.org/10.3390/surfaces7040069
Chicago/Turabian StyleAlexeev, Alexandr, and Sergey N. Filimonov. 2024. "Density Functional Theory Investigations of Carbon Nanotube Unzipping on Cu(111)" Surfaces 7, no. 4: 1052-1059. https://doi.org/10.3390/surfaces7040069
APA StyleAlexeev, A., & Filimonov, S. N. (2024). Density Functional Theory Investigations of Carbon Nanotube Unzipping on Cu(111). Surfaces, 7(4), 1052-1059. https://doi.org/10.3390/surfaces7040069