A Benchmark Study of Classical and U-Net ResNet34 Methods for Binarization of Balinese Palm Leaf Manuscripts
Abstract
1. Introduction
2. Materials and Methods
2.1. Binarization
2.1.1. Classical Binarization Techniques
- Niblack
- 2.
- Li’s Minimum Cross-Entropy
- 3.
- Iterative Self-Organizing Data Analysis Technique (ISODATA)
- 4.
- K-Means
- 5.
- Adaptive Mean
- 6.
- Adaptive Gaussian
- 7.
- Otsu
- 8.
- Global Otsu
- 9.
- Otsu Morph
- 10.
- Sauvola
2.1.2. Deep Learning Binarization Techniques
2.2. Quantitative Evaluation Metrics
2.2.1. Confusion Matrix-Based Metrics
- Intersection over Union
- 2.
- Dice Coefficient
- 3.
- Accuracy
- 4.
- Recall
2.2.2. Structure-Based Similarity Metrics
- Structural Similarity Index Measure
- 2.
- Feature Similarity Index Measure
- 3.
- Multiscale Structural Similarity Index Measure
- 4.
- Gradient Magnitude Similarity Deviation
2.2.3. Pixel-Wise Error-Based Metrics
- Root Mean Square Error
- 2.
- Peak Signal-to-Noise Ratio
3. Results
3.1. Experiment 1: Classical Binarization
3.2. Experiment 2: Deep Learning-Based Binarization
3.3. Evaluation of Binarization Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IoU | Intersection over Union |
SSIM | Structural Similarity Index Measure |
MS-SSIM | Multiscale Structural Similarity Index Measure |
FSIM | Feature Similarity Index Measure |
ISODATA | Iterative Self-Organizing Data Analysis Technique |
GMSD | Gradient Magnitude Similarity Deviation |
PSNR | Peak Signal-to-Noise Ratio |
RMSE | Root Mean Squared Error |
MSE | Mean Squared Error |
PLM | Palm Leaf Manuscript |
ICFHR | The International Conference on Frontiers of Handwriting Recognition |
DIA | Document Image Analysis |
References
- Wilson, E.B.; Rice, J.M. Palm Leaf Manuscripts in South Asia [Post-doc and Student Scholarship]. Syracuse University. 2019. Available online: https://surface.syr.edu/cgi/viewcontent.cgi?article=1013&context=ischoolstudents (accessed on 15 May 2025).
- Khadijah, U.L.S.; Winoto, Y.; Shuhidan, S.M.; Anwar, R.K.; Lusiana, E. Community Participation in Preserving the History of Heritage Tourism Sites. J. Law Sustain. Dev. 2024, 12, e2504. [Google Scholar] [CrossRef]
- Sudarsan, D.; Sankar, D. An Overview of Character Recognition from Palm Leaf Manuscripts. In Proceedings of the 2023 3rd International Conference on Smart Data Intelligence (ICSMDI), Trichy, India, 30–31 March 2023; pp. 265–272. [Google Scholar]
- Krithiga, R.; Varsini, S.R.; Joshua, R.G.; Om Kumar, C.U. Ancient Character Recognition: A Comprehensive Review. IEEE Access 2025, 13, 88847–88857. [Google Scholar] [CrossRef]
- Dewi, D.A.S.; Arsa, D.M.S.; Putri, G.A.A.; Setiawati, N.L.P.L.S. Ensembling Deep Convolutional Neural Neworks For Balinese Handwritten Character Recognition. ASEAN Eng. J. 2023, 13, 133–139. [Google Scholar] [CrossRef]
- Khafidlin, K. Ancient Manuscript Preservation of Museum Ranggawarsita Library Collection Semarang Central Java. Daluang J. Libr. Inf. Sci. 2021, 1, 52. [Google Scholar] [CrossRef]
- Bannigidad, P.; Sajjan, S.P. Restoration of Ancient Kannada Handwritten Palm Leaf Manuscripts Using Image Enhancement Techniques. In Proceedings of the International Conference on Big Data Innovation for Sustainable Cognitive Computing, Coimbatore, India, 16–17 December 2022; Springer: Cham, Switzerland, 2023; pp. 101–109. [Google Scholar]
- Maheswari, S.U.; Maheswari, P.U.; Aakaash, G.R.S. An intelligent character segmentation system coupled with deep learning based recognition for the digitization of ancient Tamil palm leaf manuscripts. Herit. Sci. 2024, 12, 342. [Google Scholar] [CrossRef]
- Lian, X.; Yu, C.; Han, W.; Li, B.; Zhang, M.; Wang, Y.; Li, L. Revealing the Mechanism of Ink Flaking from Surfaces of Palm Leaves (Corypha umbraculifera). Langmuir 2024, 40, 6375–6383. [Google Scholar] [CrossRef]
- Yuadi, I.; Halim, Y.A.; Asyhari, A.T.; Nisa’, K.; Nazikhah, N.U.; Nihaya, U. Image Enhancement and Thresholding for Ancient Inscriptions in Trowulan Museum’s Collection Mojokerto, Indonesia. In Proceedings of the 2024 7th International Conference of Computer and Informatics Engineering (IC2IE), Mojokerto, Indonesia, 12–13 September 2024; pp. 1–6. [Google Scholar]
- Sudarsan, D.; Sankar, D. Enhancing Malayalam Palm Leaf Character Segmentation: An Improved Simplified Approach. SN Comput. Sci. 2024, 5, 577. [Google Scholar] [CrossRef]
- Sudarsan, D.; Sankar, D. A Novel Complete Denoising Solution for Old Malayalam Palm Leaf Manuscripts. Pattern Recognit. Image Anal. 2022, 32, 187–204. [Google Scholar] [CrossRef]
- Chamchong, R.; Jareanpon, C.; Fung, C.C. Generation of optimal binarisation output from ancient Thai manuscripts on palm leaves. In Proceedings of the 2013 International Conference on Machine Learning and Cybernetics, Tianjin, China, 14–17 July 2013; pp. 1643–1648. [Google Scholar]
- Trier, O.D.; Jain, A.K. Goal-directed evaluation of binarization methods. IEEE Trans Pattern Anal. Mach. Intell. 1995, 17, 1191–1201. [Google Scholar] [CrossRef]
- Jyothi, R.L.; Rahiman, M.A. Document image binarization using difference of concatenated convolutions. J. Intell. Fuzzy Syst. 2021, 41, 2939–2952. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man. Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Sauvola, J.; Pietikäinen, M. Adaptive document image binarization. Pattern Recognit. 2000, 33, 225–236. [Google Scholar] [CrossRef]
- Li, C.H.; Lee, C.K. Minimum cross entropy thresholding. Pattern Recognit. 1993, 26, 617–625. [Google Scholar] [CrossRef]
- Antara Kesiman, M.W.; Burie, J.C.; Ogier, J.M.; Grangé, P. Knowledge Representation and Phonological Rules for the Automatic Transliteration of Balinese Script on Palm Leaf Manuscript. Comput. Sist. 2018, 21, 739–747. [Google Scholar] [CrossRef]
- Niblack, W. An Introduction to Digital Image Processing; Birkeroed Strandberg Publishing Company: Copenhagen, Denmark, 1985. [Google Scholar]
- Torres-Monsalve, A.F.; Velasco-Medina, J. Hardware implementation of ISODATA and Otsu thresholding algorithms. In Proceedings of the 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), Bucaramanga, Colombia, 31 August–2 September 2016; pp. 1–5. [Google Scholar]
- Jailingeswari, I.; Gopinathan, S. Tamil handwritten palm leaf manuscript dataset (THPLMD). Data Brief 2024, 53, 110100. [Google Scholar] [CrossRef]
- Sudarsan, D.; Sankar, D. A Novel approach for Denoising palm leaf manuscripts using Image Gradient approximations. In Proceedings of the 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 12–14 June 2019; pp. 506–511. [Google Scholar]
- Fred, A.L.; Kumar, S.N.; Kumar, H.A.; Daniel, A.V.; Abisha, W. Evaluation of local thresholding techniques in Palm-leaf Manuscript images. Int. J. Comput. Sci. Eng. 2018, 6, 124–131. [Google Scholar] [CrossRef]
- Jayanthi, N.; Indu, S. Application of Gaussian as Edge Detector for Image Enhancement of Ancient Manuscripts. IOP Conf. Ser. Mater. Sci. Eng. 2017, 225, 012149. [Google Scholar] [CrossRef]
- Jayanthi, J.; Maheswari, P.U. Comparative Study: Enhancing Legibility of Ancient Indian Script Images from Diverse Stone Background Structures Using 34 Different Pre-Processing Methods. Herit. Sci. 2024, 12, 63. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Boyina, K.; Swetchana, D.; Reddy, G.M.; Sushrutha, K.; Pati, P.B.; Sivan, R. Layout Analysis of Malayalam Palm Leaf Images with Fully Convolutional Networks. In Proceedings of the 2023 IEEE Fifth International Conference on Advances in Electronics, Computers and Communications (ICAECC), Bengaluru, India, 7–8 September 2023; pp. 1–7. [Google Scholar]
- Bipin Nair, B.J.; Rani, N.S. A modified deep semantic binarization network for degradation removal in palm leaf manuscripts. Multimed. Tools Appl. 2024, 83, 62937–62969. [Google Scholar]
- He, S.; Schomaker, L. DeepOtsu: Document enhancement and binarization using iterative deep learning. Pattern Recognit. 2019, 91, 379–390. [Google Scholar] [CrossRef]
- ICFHR2016 Competition on the Analysis of Handwritten Text in Images of Balinese Palm Leaf Manuscripts. 2016. Available online: http://amadi.univ-lr.fr/ICFHR2016_Contest/index.php (accessed on 21 July 2025).
- Pratikakis, I.; Gatos, B.; Ntirogiannis, K. ICDAR 2013 Document Image Binarization Contest (DIBCO 2013). In Proceedings of the 2013 12th International Conference on Document Analysis and Recognition, Washington, DC, USA, 25–28 August 2013; pp. 1471–1476. [Google Scholar]
- Kesiman, M.W.A.; Burie, J.C.; Wibawantara, G.N.M.A.; Sunarya, I.M.G.; Ogier, J.M. AMADI_LontarSet: The First Handwritten Balinese Palm Leaf Manuscripts Dataset. In Proceedings of the 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), Shenzhen, China, 23–26 October 2016; pp. 168–173. [Google Scholar]
- Kesiman, M.W.A.; Maysanjaya, I.M.D. A model for posttransliteration suggestion for balinese palm leaf manuscript with text generation and lstm model. J. Phys. Conf. Ser. 2021, 1810, 012011. [Google Scholar] [CrossRef]
- Burie, J.C.; Coustaty, M.; Hadi, S.; Kesiman, M.W.A.; Ogier, J.M.; Paulus, E.; Sok, K.; Sunarya, I.M.G.; Valy, D. ICFHR2016 Competition on the Analysis of Handwritten Text in Images of Balinese Palm Leaf Manuscripts. In Proceedings of the 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), Shenzhen, China, 23–26 October 2016; pp. 596–601. [Google Scholar]
- Siountri, K.; Anagnostopoulos, C.N. The Classification of Cultural Heritage Buildings in Athens Using Deep Learning Techniques. Heritage 2023, 6, 3673–3705. [Google Scholar] [CrossRef]
- Xu, H.; Huang, Q.; Liao, H.; Nong, G.; Wei, W. MFFP-Net: Building Segmentation in Remote Sensing Images via Multi-Scale Feature Fusion and Foreground Perception Enhancement. Remote Sens. 2025, 17, 1875. [Google Scholar] [CrossRef]
- Kaneko, H.; Ishibashi, R.; Meng, L. Deteriorated Characters Restoration for Early Japanese Books Using Enhanced CycleGAN. Heritage 2023, 6, 4345–4361. [Google Scholar] [CrossRef]
- Lontar Terumbalan. National Library of Indonesia. Available online: https://khastara.perpusnas.go.id/koleksi-digital/detail/?catId=1290335 (accessed on 21 July 2025).
- Davies, E.R. The Role of Thresholding. In Computer Vision; Academic Press: Cambridge, MA, USA, 2018; pp. 93–118. [Google Scholar]
- Kesiman, M.W.A.; Valy, D.; Burie, J.C.; Paulus, E.; Suryani, M.; Hadi, S.; Verleysen, M.; Chhun, S.; Ogier, J.M. Benchmarking of Document Image Analysis Tasks for Palm Leaf Manuscripts from Southeast Asia. J. Imaging 2018, 4, 43. [Google Scholar] [CrossRef]
- Khurshid, K.; Siddiqi, I.; Faure, C.; Vincent, N. Comparison of Niblack Inspired Binarization Methods for Ancient Documents. In Document Recognition and Retrieval XVI; Berkner, K., Likforman-Sulem, L., Eds.; SPIE: Bellingham, WA, USA, 2009; p. 72470U. [Google Scholar]
- Farid, S.; Ahmed, F. Application of Niblack’s method on images. In Proceedings of the 2009 International Conference on Emerging Technologies, Islamabad, Pakistan, 19–20 October 2009; pp. 280–286. [Google Scholar]
- Li, C.H.; Tam, P.K.S. An iterative algorithm for minimum cross entropy thresholding. Pattern Recognit. Lett. 1998, 19, 771–776. [Google Scholar] [CrossRef]
- Abbas, A.; HCadenbach, A.; Salimi, E. A Kullback–Leibler View of Maximum Entropy and Maximum Log-Probability Methods. Entropy 2017, 19, 232. [Google Scholar] [CrossRef]
- Feng, X.; Lv, J. Minimum Cross-Entropy Transform of Risk Analysis. In Proceedings of the 2011 International Conference on Management and Service Science, Wuhan, China, 12–14 August 2011; pp. 1–4. [Google Scholar]
- Magid, A.; Rotman, S.R.; Weiss, A.M. Comments on Picture thresholding using an iterative selection method. IEEE Trans. Syst. Man. Cybern. 1990, 20, 1238–1239. [Google Scholar] [CrossRef]
- Song, J.; Li, F.; Li, R. Improved K-means Algorithm Based on Threshold Value Radius. IOP Conf. Ser. Earth Environ. Sci. 2020, 428, 012001. [Google Scholar] [CrossRef]
- Roy, P.; Dutta, S.; Dey, N.; Dey, G.; Chakraborty, S.; Ray, R. Adaptive thresholding: A comparative study. In Proceedings of the 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kanyakumari, India, 10–11 July 2014; pp. 1182–1186. [Google Scholar]
- Yazid, H.; Arof, H. Gradient based adaptive thresholding. J. Vis. Commun. Image Represent. 2013, 24, 926–936. [Google Scholar] [CrossRef]
- Rehman, N.A.; Haroon, F. Adaptive Gaussian and Double Thresholding for Contour Detection and Character Recognition of Two-Dimensional Area Using Computer Vision. Eng. Proc. 2023, 32, 23. [Google Scholar]
- Noorfizir, A.; Rachmatullah, M.N.; Sulong, G. Hybrid Multilevel Thresholding-Otsu and Morphology Operation for Retinal Blood Vessel Segmentation. Eng. Lett. 2020, 28, 180–191. [Google Scholar]
- Wang, Y.; Tian, S.; Wen, M.; Ruan, Y.; Tao, Q.; Zhou, X.; Gao, F.; Lu, H.; Zhang, Z. An end-to-end method for palm-leaf manuscript segmentation based on U-Net. J. Cult. Herit. 2023, 63, 169–178. [Google Scholar] [CrossRef]
- Seidenthal, K.; Panjvani, K.; Chandnani, R.; Kochian, L.; Eramian, M. Iterative image segmentation of plant roots for high-throughput phenotyping. Sci. Rep. 2022, 12, 16563. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Lin, L.; Chen, H.; Kuruoglu, E.E.; Zhou, W. Robust structural similarity index measure for images with non-Gaussian distortions. Pattern Recognit. Lett. 2022, 163, 10–16. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Y.; Meng, K.; Zhu, Z. Otsu Multi-Threshold Image Segmentation Based on Adaptive Double-Mutation Differential Evolution. Biomimetics 2023, 8, 418. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef]
- Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multi-scale structural similarity for image quality assessment. In Proceedings of the Conference Record of the Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 9–12 November 2003; pp. 1398–1402. [Google Scholar]
- Xue, W.; Zhang, L.; Mou, X.; Bovik, A.C. Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index. IEEE Trans. Image Process. 2014, 23, 684–695. [Google Scholar] [CrossRef] [PubMed]
- Nair, B.J.B.; Nair, A.S. Ancient Horoscopic Palm Leaf Binarization Using A Deep Binarization Model—RESNET. In Proceedings of the 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 8–10 April 2021; pp. 1524–1529. [Google Scholar]
- Bipin Nair, B.J.; Govind, N. A Comparative Deep Learning Approaches to Binarize South Indian Manuscripts. In Proceedings of the 2022 IEEE North Karnataka Subsection Flagship International Conference (NKCon), Vijaypur, India, 20–21 November 2022; pp. 1–6. [Google Scholar]
- Rani, N.S.; Akhilesh, T.M.; Bipin Nair, B.J.; Koushik, K.S.; Smith, E.B. PLM-Res-U-Net: A light weight binarization model for enhancement of multi-textured palm leaf manuscript images. Digit. Appl. Archaeol. Cult. Herit. 2024, 34, e00360. [Google Scholar] [CrossRef]
Dataset | Number of Samples | Number of Cropped Blocks | Number of Train Samples | Number of Validation Samples | Number of Test Samples |
---|---|---|---|---|---|
Lontar_Terumbalan | 19 | 608 | 486 | 61 | 61 |
AMADI_Lontarset | 100 | 4120 | 3296 | 412 | 412 |
Layer | Output Size | Filters | Key Operations |
---|---|---|---|
Input | 256 × 256 × 3 | - | - |
Conv0 | 128 × 128 × 64 | 64 | Conv2D + Batch Normalization + ReLU |
MaxPool | 64 × 64 × 64 | - | - |
Encoder1 | 64 × 64 × 64 | 64 | 3× Residual Blocks |
Encoder2 | 32 × 32 × 128 | 128 | 4× Residual Blocks |
Encoder3 | 16 × 16 × 256 | 256 | 6× Residual Blocks |
Encoder4 | 8 × 8 × 512 | 512 | 3× Residual Blocks |
Decoder1 | 16 × 16 × 256 | 256 | UpSample + [Encoder4, Encoder3] |
Decoder2 | 32 × 32 × 128 | 128 | UpSample + [Decoder1, Encoder2] |
Decoder3 | 64 × 64 × 64 | 64 | UpSample + [Decoder2, Encoder1] |
Decoder4 | 128 × 128 × 32 | 32 | UpSample + [Decoder3, Conv0] |
Decoder5 | 256 × 256 × 16 | 16 | UpSample |
Output | 256 × 256 × 1 | 1 | Sigmoid |
Parameter | Description |
---|---|
Model Type | U-Net with ResNet34 Encoder |
Input Shape | 256 × 256 × 3 (RGB) |
Output Shape | 256 × 256 × 1 (Binary Mask) |
Total Parameters | 24,456,154 |
Trainable Parameters | 24,438,804 |
Batch Size | 4 |
Epochs | 25 |
Training Device | CPU Processor AMD Ryzen 7 3700X 8-Core |
Output Activation | Sigmoid |
Metric | Value Range | High Value Interpretation |
---|---|---|
IoU | 0–1 | Higher values indicate more accurate binarization |
Dice | 0–1 | Higher values indicate greater overlap |
Recall | 0–1 | Higher values indicate fewer false negatives |
Accuracy | 0–1 | Higher values indicate better pixel classification |
RMSE | 0–∞ (typically < 1) | Lower is better—indicates fewer pixel-wise errors |
PSNR | 0–∞ (in dB) | Higher values indicate less noise/better quality |
SSIM | −1 to 1 (typically 0–1) | Higher values indicate better structural similarity |
FSIM | 0–1 | Higher values reflect better preservation of features |
MS-SSIM | 0–1 | Higher values reflect better multiscale structural similarity |
GMSD | 0–∞ (typically < 1) | Lower is better—indicates higher gradient similarity |
Method | IoU | Dice | Recall | Accuracy | |
---|---|---|---|---|---|
Classic | Adaptive Gaussian | 0.575 | 0.730 | 0.839 | 0.604 |
Adaptive Mean | 0.581 | 0.735 | 0.835 | 0.616 | |
Global Otsu | 0.900 | 0.947 | 0.944 | 0.933 | |
ISODATA | 0.900 | 0.947 | 0.946 | 0.933 | |
K-means | 0.900 | 0.947 | 0.944 | 0.933 | |
Li’s Minimum Cross Entropy | 0.898 | 0.946 | 0.975 | 0.930 | |
Niblack | 0.516 | 0.681 | 0.730 | 0.563 | |
Otsu | 0.900 | 0.947 | 0.945 | 0.933 | |
Otsu Morph | 0.897 | 0.945 | 0.949 | 0.930 | |
Sauvola | 0.653 | 0.790 | 0.924 | 0.687 | |
Deep Learning | U-Net Based Resnet34 | 0.972 | 0.986 | 0.983 | 0.983 |
Method | IoU | Dice | Recall | Accuracy | |
---|---|---|---|---|---|
Classic | Adaptive Gaussian | 0.862 | 0.925 | 0.968 | 0.867 |
Adaptive Mean | 0.853 | 0.920 | 0.943 | 0.861 | |
Global Otsu | 0.749 | 0.802 | 0.792 | 0.770 | |
ISODATA | 0.925 | 0.957 | 0.977 | 0.932 | |
K-means | 0.750 | 0.801 | 0.794 | 0.771 | |
Li’s Minimum Cross Entropy | 0.799 | 0.851 | 0.851 | 0.814 | |
Niblack | 0.623 | 0.767 | 0.678 | 0.648 | |
Otsu | 0.750 | 0.802 | 0.793 | 0.771 | |
Otsu Morph | 0.747 | 0.800 | 0.791 | 0.768 | |
Sauvola | 0.879 | 0.935 | 0.978 | 0.885 | |
Deep Learning | U-Net Based Resnet34 | 0.971 | 0.985 | 0.986 | 0.975 |
Method | SSIM | FSIM | MS-SSIM | GMSD | |
---|---|---|---|---|---|
Classic | Adaptive Gaussian | 0.180 | 0.479 | 0.380 | 0.457 |
Adaptive Mean | 0.210 | 0.502 | 0.419 | 0.460 | |
Global Otsu | 0.745 | 0.777 | 0.726 | 0.336 | |
ISODATA | 0.746 | 0.779 | 0.726 | 0.335 | |
K-means | 0.745 | 0.778 | 0.726 | 0.336 | |
Li’s Minimum Cross Entropy | 0.761 | 0.769 | 0.682 | 0.341 | |
Niblack | 0.174 | 0.447 | 0.349 | 0.464 | |
Otsu | 0.746 | 0.778 | 0.726 | 0.335 | |
Otsu Morph | 0.767 | 0.776 | 0.708 | 0.343 | |
Sauvola | 0.408 | 0.651 | 0.577 | 0.399 | |
Deep Learning | U-Net Based Resnet34 | 0.938 | 0.941 | 0.998 | 0.195 |
Method | SSIM | FSIM | MS-SSIM | GMSD | |
---|---|---|---|---|---|
Classic | Adaptive Gaussian | 0.696 | 0.710 | 0.660 | 0.330 |
Adaptive Mean | 0.662 | 0.689 | 0.626 | 0.356 | |
Global Otsu | 0.661 | 0.749 | 0.515 | 0.327 | |
ISODATA | 0.823 | 0.770 | 0.605 | 0.308 | |
K-means | 0.663 | 0.749 | 0.513 | 0.327 | |
Li’s Minimum Cross Entropy | 0.692 | 0.697 | 0.470 | 0.349 | |
Niblack | 0.143 | 0.340 | 0.229 | 0.419 | |
Otsu | 0.662 | 0.748 | 0.513 | 0.328 | |
Otsu Morph | 0.661 | 0.730 | 0.497 | 0.337 | |
Sauvola | 0.765 | 0.761 | 0.705 | 0.299 | |
Deep Learning | U-Net Based Resnet34 | 0.883 | 0.930 | 0.996 | 0.206 |
Method | Lontar Terumbalan | AMADI Lontarset | |||
---|---|---|---|---|---|
RMSE | PSNR | RMSE | PSNR | ||
Classic | Adaptive Gaussian | 0.629 | 4.042 | 0.356 | 9.169 |
Adaptive Mean | 0.619 | 4.171 | 0.367 | 8.849 | |
Global Otsu | 0.258 | 11.848 | 0.396 | 9.741 | |
ISODATA | 0.257 | 11.868 | 0.244 | 12.723 | |
K-means | 0.258 | 11.850 | 0.394 | 9.783 | |
Li’s Minimum Cross Entropy | 0.264 | 11.654 | 0.361 | 10.313 | |
Niblack | 0.660 | 3.613 | 0.593 | 4.554 | |
Otsu | 0.257 | 11.864 | 0.395 | 9.756 | |
Otsu Morph | 0.263 | 11.653 | 0.400 | 9.581 | |
Sauvola | 0.559 | 5.066 | 0.332 | 9.799 | |
Deep Learning | U-Net Based Resnet34 | 0.143 | 17.059 | 0.161 | 16.400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuadi, I.; Nisa’, K.; Nazikhah, N.U.; Halim, Y.A.; Asyhari, A.T.; Hu, C.-C. A Benchmark Study of Classical and U-Net ResNet34 Methods for Binarization of Balinese Palm Leaf Manuscripts. Heritage 2025, 8, 337. https://doi.org/10.3390/heritage8080337
Yuadi I, Nisa’ K, Nazikhah NU, Halim YA, Asyhari AT, Hu C-C. A Benchmark Study of Classical and U-Net ResNet34 Methods for Binarization of Balinese Palm Leaf Manuscripts. Heritage. 2025; 8(8):337. https://doi.org/10.3390/heritage8080337
Chicago/Turabian StyleYuadi, Imam, Khoirun Nisa’, Nisak Ummi Nazikhah, Yunus Abdul Halim, A. Taufiq Asyhari, and Chih-Chien Hu. 2025. "A Benchmark Study of Classical and U-Net ResNet34 Methods for Binarization of Balinese Palm Leaf Manuscripts" Heritage 8, no. 8: 337. https://doi.org/10.3390/heritage8080337
APA StyleYuadi, I., Nisa’, K., Nazikhah, N. U., Halim, Y. A., Asyhari, A. T., & Hu, C.-C. (2025). A Benchmark Study of Classical and U-Net ResNet34 Methods for Binarization of Balinese Palm Leaf Manuscripts. Heritage, 8(8), 337. https://doi.org/10.3390/heritage8080337