HBIM and Information Management for Knowledge and Conservation of Architectural Heritage: A Review
Abstract
1. Introduction
2. Materials and Methods
- Integrated analysis of publication year and document type (conference paper, article, book chapter, review), to assess, quantitatively and qualitatively, the temporal evolution of the research (Section 3.1);
- Geographical distribution, to identify regions leading in research, based on the location of case studies or authors’ affiliations for methodological studies (Section 3.2);
- Software packages, distinguishing between commercial and open-source solutions, and highlighting where specific software or plug-ins were developed to increase functionalities of existing tools (Section 3.3).
- Model: Definition of entities: focuses on how BIM objects are identified and defined, both geometrically and semantically, including segmentation, classification, modeling, and ontology definition;
- Information: Data enrichment: involves information and data management, encompassing overall database design and the identification of information to be included in the model (such as decay, structural deformations and cracks, monitoring data, interventions, etc.);
- Return to Building: Data sharing and usage: highlights the purposes for which the HBIM model is developed and addresses data interoperability across different software and methods for querying and accessing data.
3. Bibliometric and Statistical Analysis
3.1. Publication Year and Document Type
3.2. Geographical Distribution
3.3. Software Packages
4. HBIM Main Research Topics
4.1. Model: Definition of Entities
4.1.1. Semantic Definition
Approach | Reference Scheme | Related Papers | Pros | Cons |
---|---|---|---|---|
CSS Case study specific (development from scratch) | none | [15,16] | Major adherence to the real building and to the project’s needs | Poor interoperability |
GP General purpose (extension of existing ontologies and standards) | CIDOC-CRM | [17,18,21,22,24,25] | Better interoperability. Possibility to be further developed by others | Starting point distant from the needs of historic buildings. Fixed scheme. Top-down standards |
IFC | [19,30,31,32] | |||
mixed | [23,28,29] |
4.1.2. Geometric Definition
Approach | Sub-Approach | Related Papers | Good in Case of | Pros | Cons |
---|---|---|---|---|---|
RM Reverse modeling | Mesh | [35,36,37,38,39] | Very complex shapes and need of accuracy | Extreme accuracy. Automatization of the process | Heavy model Poor interoperability and semantic significance |
DM Direct modeling | From point cloud | [42,44] | Non repetitive building | Good accuracy | Time consuming. Need of good hardware. No possibility to adapt to similar objects |
From 2D drawings | [41] | Necessity of a simplified modeling for interoperability issues | Fast process. Light and manageable model | High simplification | |
PM Parametric modeling | Generative | [40,45,46] | Repetitive objects with complex shape | Fast adaptability to similar objects Makes the best of BIM logic | Time consuming for the first object |
Object oriented (in BIM software) | [47,48,49] | Repetitive objects | |||
Mixed modeling | - | [50,51,52,53] | Buildings with parts having different features | Accuracy, time spent, complexity that fit the needs of the project | Necessity to use various software |
4.1.3. Development of Libraries of Parametric Objects for Historic Buildings
4.2. Information: Data Enrichment
4.2.1. Characterization of the Element
Approach | Related Papers | Good in Case of | Pros | Cons |
---|---|---|---|---|
PoE Property of Elements | [41,82,85,86,88,89] | Investigations conducted on large surfaces | Correlations between test’s result and mechanical properties of structural element. | No precise location of the test (unless written indication among the properties). |
SMO Symbolic Modeled Objects | [90,91,92] | Punctual investigations | Precise location of the test. | Poor interoperability and semantic connection with the structural element. |
RMO Realistic Modeled Objects (geometry that reproduces the tested area) | [47,93] | Tests on large areas | Possibility to map the precise surface on which the test is conducted. Reconstruction of 3D tomography in case of GPR tests. | Poor interoperability and semantic connection with the structural element. |
Mixed approach | [37] | Representation strategy depending on the type of investigation. | Precise location when needed. | Poor semantic significance since different strategies are adopted for same topic. |
Projection on the surface | [94] | Tests that provide images of the surface (thermography, GRP, etc.) | Possibility to compare with decay mapping and orthophotos. | Difficulties in projecting on curved surfaces. Need to use also other strategies for information enrichment. |
4.2.2. State of Conservation
Approach | Related Papers | Good in Case of | Pros | Cons |
---|---|---|---|---|
PoE Property of the construction Element | [41,50,88,97] | In case of a planned conservation process. Decay on small objects Decay that affects the structural behavior. | Connection between component and decay. Properties for suggested intervention. Possibility to link 2D drawings for further detail. | Decay extended to the entire object and not to the part really affected to the pathology |
(with external database) | [96] | Synthetic risk assessment and graphic queries. | ||
(with specifically developed tool) | [95] | Load past situations, enter maintenance activities. | ||
RMO Realistic Modeled Objects (which reproduces the area affected by the decay) | [42,43,90,99,102,103,104] | Decay that does not affect the structure but only the surface. Large building components with different kinds of decays | Possibility to map the precise area and to insert specific properties. Possibility to compare decay information from different surveys. | Time consuming. Difficulty in linking decay and substrate. Difficult semantic significance and interoperability. Difficulty in mapping on curved and irregular surface |
(with external database) | [116] | |||
(with software implementation) | [76,88,91,100] | Depending on the experimentation, possibility to calculate area with decay, or to map on curved surface | Poor interoperability | |
(with specifically developed tool) | [109,111,112] | Appropriate information are preset. | Still under development solutions | |
SMO Symbolic Modeled Objects (with no real shape) | [107,108] | Need for fast and light model for interoperability issue | High Level of Information | Low Level of (geometric) Detail |
As modification of the external layer | [106] | Decay on wall objects. Decays that do not affect the structure | Connection between decay and substrate | Difficult semantic significance. Difficulty in mapping on curved and irregular surface. Allowed only with some software |
(with software implementation) | [54] | 3D mapping retracing orthoimages | ||
As subtraction of part | [106] | Decay resulting in a loss of material | High accuracy | Time consuming process, heavy model |
Automatic mapping | [90,113,114,115] | - | No time consuming for modelers | Poor control |
Approach | Related Papers | Pros | Cons |
---|---|---|---|
RMO Realistic modeled object (path that retrace the crack) | [89,92,105] | Detailed representation useful for crack interpretation. Possibility to add customized properties. | Time consuming. Poor interoperability. No semantic connection with the structural element. |
(with specifically developed tool) | [109,121] | Realistic representation in elevation, symbolic in plan. Appropriate properties for critical analysis. | Still under development solutions |
SMO Symbolic modeled object (no real shape) | [120] | High Level of Information. Properties for critical analysis of crack pattern. | Low Level of (geometric) Detail (but possibility to attach more detailed 2D surveys). |
As solids/voids | [118,119] | High accuracy (modeling of crack width) | Time consuming process, heavy model, interoperability issues. |
With linked datasheets | [30] | Possibility to have detailed representation and correlation with possible collapse mechanisms. | No real BIM representation |
4.2.3. Time Management
Approach | Sub-Approach | Related Papers | Good in Case of | Pros | Cons |
---|---|---|---|---|---|
MO Adding Modeled objects | ‘as found’ and ‘as design’ -models with object for new elements | [76,85,105,121,146] | Project with a strong impact on the geometry, also structural strengthening intervention and previous intervention | Use of ‘filters’ to compare different phases or project proposals. Precise location and accuracy of the representation. | Poor visibility of interventions with small impact on geometry |
with ‘yellow’ and ‘red’ | [63,147] | ||||
PoE Property of Elements | of the construction element | [41,88,95,96,105,149] | Planned conservation process (almost no influence on geometry). For intervention on elements of small dimension. | Connection between decay, risk, priority index and intervention. | No precise location of the intervention, extended to the entire element |
of the decay object | [90,102] | Surface conservation activity | Precise location of the intervention. | Poor correlation between construction entity and intervention |
4.3. Return to Building: Data Sharing and Use
4.3.1. On Site Use
4.3.2. Interoperability
5. Discussion on Research Gaps and Future Trends
5.1. Modeling: Not Only a Geometric Issue
5.2. Information Framework: An Open Issue
5.3. Possible Return to Building
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BIM | Building Information Modeling |
HBIM | Historic (or Heritage) Building Information Modeling |
PRISMA | Preferred Reporting Items for Systematic reviews and Meta-Analyses |
GIS | Geographic Information System |
CH | Cultural Heritage |
IFC | Industry Foundation Classes |
CPM | Conservation Process Model |
OWL | Ontology Web Language |
RM | Reverse Modeling |
DM | Direct Modeling |
PM | Parametric Modeling |
VPL | Visual Programming Language |
MQI | Masonry Quality Index |
PoE | Property of Elements |
SMO | Symbolic Modeled Objects |
RMO | Realistic Modeled Objects |
GPR | Ground Penetrating Radar |
SU | Stratigraphic Unit |
SHM | Structural Health Monitoring |
EM | Environmental Monitoring |
DT | Digital Twin |
IoT | Internet of Things |
VR | Virtual Reality |
AR | Augmented Realirt |
FEM | Finite Element Model |
bSDD | buildingSMART Data Dictionary |
UNI | Ente Italiano di Normazione |
ISO | International Organization for Standardization |
AI | Artificial Intelligence |
References
- Lovell, L.J.; Davies, R.J.; Hunt, D.V.L. The Application of Historic Building Information Modelling (HBIM) to Cultural Heritage: A Review. Heritage 2023, 6, 6691–6717. [Google Scholar] [CrossRef]
- López, F.; Lerones, P.; Llamas, J.; Gómez-García-Bermejo, J.; Zalama, E. A Review of Heritage Building Information Modeling (H-BIM). MTI 2018, 2, 21. [Google Scholar] [CrossRef]
- Dore, C.; Murphy, M. Current State of the Art Historic Building Information Modelling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W5, 185–192. [Google Scholar] [CrossRef]
- Fattore, C.; Buldo, M.; Priore, A.; Porcari, S.; Porcari, V.D.; Fino, M.D. A Comprehensive Overview of Heritage BIM Frameworks: Platforms and Technologies Integrating Multi-Scale Analyses, Data Repositories, and Sensor Systems. Heritage 2025, 8, 247. [Google Scholar] [CrossRef]
- Siewczyński, B.; Szot, J. BIM Goals and Uses in the Management, Maintenance, and Preservation of Historic Buildings: An Open Access Perspective. Implementation Characteristics of HBIM for Improved Documentation and Lifecycle Management. npj Herit. Sci. 2025, 13, 103. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Murphy, M.; McGovern, E.; Pavia, S. Historic Building Information Modelling (HBIM). Struct. Surv. 2009, 27, 311–327. [Google Scholar] [CrossRef]
- Arayici, Y. Towards Building Information Modelling for Existing Structures. Struct. Surv. 2008, 26, 210–222. [Google Scholar] [CrossRef]
- Available online: https://whc.unesco.org/en/list/stat (accessed on 18 July 2025).
- Di Biase, C.; Albani, F. (Eds.) The Teaching of Architectural Conservation in Europe; Maggioli editore: Santarcangelo di Romagna (RN), Italy, 2019; ISBN 978-88-916-1837-5. [Google Scholar]
- ISO 12006-2:2015; Building Construction—Organization of Information About Construction Works. International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 16739-1:2024; Industry Foundation Classes (IFC) for Data Sharing in the Construction and Facility Management Industries. Part 1: Data Schema. International Organization for Standardization: Geneva, Switzerland, 2024.
- Della Torre, S.; Pili, A. Built Heritage Information Modelling/Management. Research Perspectives. In Digital Transformation of the Design, Construction and Management Processes of the Built Environment; Daniotti, B., Gianinetto, M., Della Torre, S., Eds.; Research for Development; Springer International Publishing: Cham, Germany, 2020; pp. 231–241. ISBN 978-3-030-33569-4. [Google Scholar]
- Previtali, M.; Brumana, R.; Stanga, C.; Banfi, F. An Ontology-Based Representation of Vaulted System for HBIM. Appl. Sci. 2020, 10, 1377. [Google Scholar] [CrossRef]
- Quattrini, R.; Sacco, G.L.S.; De Angelis, G.; Battini, C. Knowledge-Based Modelling for Automatizing HBIM Objects. the Vaulted Ceilings of Palazzo Ducale in Urbino. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-2-2023, 1271–1278. [Google Scholar] [CrossRef]
- Fiorani, D.; Acierno, M. Conservation Process Model (CPM): A Twofold Scientific Research Scope in the Information Modelling for Cultural Heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-5/W1, 283–290. [Google Scholar] [CrossRef]
- Di Stefano, F.; Gorreja, A.; Malinverni, E.S.; Mariotti, C. Knowledge Modeling for Heritage Conservation Process: From Survey to HBIM Implementation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIV-4/W1-2020, 19–26. [Google Scholar] [CrossRef]
- Diara, F.; Rinaudo, F. Building Archaeology Documentation and Analysis through Open Source HBIM Solutions via NURBS Modelling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B2-2020, 1381–1388. [Google Scholar] [CrossRef]
- Pili, A. BIM Process, Ontologies and Interchange Platform for Cultural Architectural Heritage Management: State of Art and Development Perspectives. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W11, 969–973. [Google Scholar] [CrossRef]
- Acierno, M.; Cursi, S.; Simeone, D.; Fiorani, D. Architectural Heritage Knowledge Modelling: An Ontology-Based Framework for Conservation Process. J. Cult. Herit. 2017, 24, 124–133. [Google Scholar] [CrossRef]
- Simeone, D.; Cursi, S.; Acierno, M. BIM Semantic-Enrichment for Built Heritage Representation. Autom. Constr. 2019, 97, 122–137. [Google Scholar] [CrossRef]
- Guerra De Oliveira, S.; Biancardo, S.A.; Tibaut, A. Optimizing H-BIM Workflow for Interventions on Historical Building Elements. Sustainability 2022, 14, 9703. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.-C.; Murtiyoso, A.; Koehl, M.; Grussenmeyer, P. HBIM Modeling from the Surface Mesh and Its Extended Capability of Knowledge Representation. ISPRS Int. J. Geo-Inf. 2019, 8, 301. [Google Scholar] [CrossRef]
- Cheng, Y.-M.; Kuo, C.-L.; Mou, C.-C. Ontology-Based HBIM for Historic Buildings with Traditional Woodwork in Taiwan. J. Civ. Eng. Manag. 2021, 27, 27–44. [Google Scholar] [CrossRef]
- Lu, Y.C.; Shih, T.Y.; Yen, Y.N. Research on Historic BIM of Built Heritage in Taiwan—A Case Study of Huangxi Academy. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-2, 615–622. [Google Scholar] [CrossRef]
- Garozzo, R.; Murabito, F.; Santagati, C.; Pino, C.; Spampinato, C. CULTO: An Ontology-Based Annotation Tool for Data Curation in Cultural Heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W5, 267–274. [Google Scholar] [CrossRef]
- Colucci, E.; Xing, X.; Kokla, M.; Mostafavi, M.A.; Noardo, F.; Spanò, A. Ontology-Based Semantic Conceptualisation of Historical Built Heritage to Generate Parametric Structured Models from Point Clouds. Appl. Sci. 2021, 11, 2813. [Google Scholar] [CrossRef]
- Maietti, F.; Di Giulio, R.; Piaia, E.; Medici, M.; Ferrari, F. Enhancing Heritage Fruition through 3D Semantic Modelling and Digital Tools: The INCEPTION Project. IOP Conf. Ser. Mater. Sci. Eng. 2018, 364, 012089. [Google Scholar] [CrossRef]
- Quattrini, R.; Pierdicca, R.; Morbidoni, C.; Malinverni, E.S. Conservation-Oriented HBIM. The BIMEXPLORER Web Tool. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-5/W1, 275–281. [Google Scholar] [CrossRef]
- Diara, F.; Rinaudo, F. Open Source HBIM for Cultural Heritage: A Project Proposal. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-2, 303–309. [Google Scholar] [CrossRef]
- Diara, F.; Rinaudo, F. ARK-BIM: Open-Source Cloud-Based HBIM Platform for Archaeology. Appl. Sci. 2021, 11, 8770. [Google Scholar] [CrossRef]
- Tommasi, C.; Achille, C.; Fassi, F. From Point Cloud to BIM: A Modelling Challenge in the Cultural Heritage Field. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B5, 429–436. [Google Scholar] [CrossRef]
- Sampaio, A.Z.; Gomes, A.M.; Sánchez-Lite, A.; Zulueta, P.; González-Gaya, C. Analysis of BIM Methodology Applied to Practical Cases in the Preservation of Heritage Buildings. Sustainability 2021, 13, 3129. [Google Scholar] [CrossRef]
- Fregonese, L.; Taffurelli, L.; Adami, A. BIM Application for the Basilica of San Marco in Venice: Procedures and Methodologies for the Study of Complex Architectures. In Latest Developments in Reality-Based 3D Surveying and Modelling; MDPI: Basel, Switzerland, 2018; ISBN 978-3-03842-685-1. [Google Scholar]
- Giuliani, F.; Gaglio, F.; Martino, M.; De Falco, A. A HBIM Pipeline for the Conservation of Large-Scale Architectural Heritage: The City Walls of Pisa. Herit. Sci. 2024, 12, 35. [Google Scholar] [CrossRef]
- Mandelli, A.; Achille, C.; Tommasi, C.; Fassi, F. Integration of 3D Models and Diagnostic Analyses through a Conservation-Oriented Information System. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W5, 497–504. [Google Scholar] [CrossRef]
- Barrile, V.; Bernardo, E.; Bilotta, G. An Experimental HBIM Processing: Innovative Tool for 3D Model Reconstruction of Morpho-Typological Phases for the Cultural Heritage. Remote Sens. 2022, 14, 1288. [Google Scholar] [CrossRef]
- Colosi, F.; Malinverni, E.S.; Leon Trujillo, F.J.; Pierdicca, R.; Orazi, R.; Di Stefano, F. Exploiting HBIM for Historical Mud Architecture: The Huaca Arco Iris in Chan Chan (Peru). Heritage 2022, 5, 2062–2082. [Google Scholar] [CrossRef]
- Croce, V.; Caroti, G.; Piemonte, A.; De Luca, L.; Véron, P. H-BIM and Artificial Intelligence: Classification of Architectural Heritage for Semi-Automatic Scan-to-BIM Reconstruction. Sensors 2023, 23, 2497. [Google Scholar] [CrossRef] [PubMed]
- Celli, S.; Ottoni, F. Managing Information to Improve Conservation: The HBIM of the Wooden Chain of Santa Maria Del Fiore. Sensors 2023, 23, 4860. [Google Scholar] [CrossRef] [PubMed]
- Conti, A.; Fiorini, L.; Massaro, R.; Santoni, C.; Tucci, G. HBIM for the Preservation of a Historic Infrastructure: The Carlo III Bridge of the Carolino Aqueduct. Appl. Geomat. 2022, 14, 41–51. [Google Scholar] [CrossRef]
- Malinverni, E.S.; Mariano, F.; Di Stefano, F.; Petetta, L.; Onori, F. Modelling in HBIM to Document Materials Decay by a Thematic Mapping to Manage the Cultural Heritage: The Case of “Chiesa Della Pietà” in Fermo. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W11, 777–784. [Google Scholar] [CrossRef]
- Rajabzadeh, S.; Esponda, M.; Cordero Espinosa, L. Photogrammetry, HBIM, and Damage Analysis of Cosmic Rays Pavilion for Raising Awareness to Its Cultural Heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLVI-M-1-2021, 601–608. [Google Scholar] [CrossRef]
- Liberotti, R.; Gusella, V. Parametric Modeling and Heritage: A Design Process Sustainable for Restoration. Sustainability 2023, 15, 1371. [Google Scholar] [CrossRef]
- Capone, M.; Lanzara, E. Parametric Library for Ribbed Vaults Indexing. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLVI-M-1-2021, 107–115. [Google Scholar] [CrossRef]
- Cardinali, V.; Ciuffreda, A.L.; Coli, M.; De Stefano, M.; Meli, F.; Tanganelli, M.; Trovatelli, F. An Oriented H-BIM Approach for the Seismic Assessment of Cultural Heritage Buildings: Palazzo Vecchio in Florence. Buildings 2023, 13, 913. [Google Scholar] [CrossRef]
- Santagati, C.; Lo Turco, M.; D’Agostino, G. Populating a Library of Reusable H-BOMS: Assessment of a Feasible Image Based Modeling Workflow. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W5, 627–634. [Google Scholar] [CrossRef]
- Daniels, L.; Georgopoulos, A. Doric Temple HBIM Library for Cultural Heritage Management. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, X-M-1-2023, 55–62. [Google Scholar] [CrossRef]
- Aricò, M.; Lo Brutto, M.; Maltese, A. A Scan-to-BIM Approach for the Management of Two Arab-Norman Churches in Palermo (Italy). Heritage 2023, 6, 1622–1644. [Google Scholar] [CrossRef]
- Garramone, M.; Jovanovic, D.; Oreni, D.; Barazzetti, L.; Previtali, M.; Roncoroni, F.; Mandelli, A.; Scaioni, M. Basilica Di San Giacomo in Como (Italy): Drawings and HBIM to Manage Archeological, Conservative and Structural Activities. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-2-2023, 653–660. [Google Scholar] [CrossRef]
- Fiorillo, F.; Bolognesi, C.M. Cultural Heritage Dissemination: BIM Modelling and AR Application for a Diachronic Tale. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-2-2023, 563–570. [Google Scholar] [CrossRef]
- Barazzetti, L.; Banfi, F.; Brumana, R.; Oreni, D.; Previtali, M.; Roncoroni, F. HBIM and Augmented Information: Towards a Wider User Community of Image and Range-Based Reconstructions. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-5/W7, 35–42. [Google Scholar] [CrossRef]
- Bruno, N.; Roncella, R. A Restoration Oriented HBIM System for Cultural Heritage Documentation: The Case Study of Parma Cathedral. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-2, 171–178. [Google Scholar] [CrossRef]
- Currà, E.; D’Amico, A.; Angelosanti, M. HBIM between Antiquity and Industrial Archaeology: Former Segrè Papermill and Sanctuary of Hercules in Tivoli. Sustainability 2022, 14, 1329. [Google Scholar] [CrossRef]
- Banfi, F. BIM Orientation: Grades of Generation and Information for Different Type of Analysis and Management Process. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W5, 57–64. [Google Scholar] [CrossRef]
- Brumana, R.; Stanga, C.; Banfi, F. Models and Scales for Quality Control: Toward the Definition of Specifications (GOA-LOG) for the Generation and Re-Use of HBIM Object Libraries in a Common Data Environment. Appl. Geomat. 2022, 14, 151–179. [Google Scholar] [CrossRef]
- Delpozzo, D.; Appolonia, L.; Scala, B.; Adami, A. Federated HBIM Models for Cultural Heritage: Survey Model and Conceptual Model. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLVI-2/W1-2022, 191–197. [Google Scholar] [CrossRef]
- Adami, A.; Scala, B.; Spezzoni, A. Modelling and Accuracy in a BIM Environment for Planned Conservation: The Apartment of Troia of Giulio Romano. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W3, 17–23. [Google Scholar] [CrossRef]
- Attenni, M.; Bianchini, C.; Griffo, M.; Senatore, L.J. HBIM Meta-Modelling: 50 (and More) Shades of Grey. ISPRS Int. J. Geo-Inf. 2022, 11, 468. [Google Scholar] [CrossRef]
- Murphy, M.; McGovern, E.; Pavia, S. Historic Building Information Modelling—Adding Intelligence to Laser and Image Based Surveys of European Classical Architecture. ISPRS J. Photogramm. Remote Sens. 2013, 76, 89–102. [Google Scholar] [CrossRef]
- Brumana, R.; Banfi, F.; Cantini, L.; Previtali, M.; Della Torre, S. HBIM Level of Detail-Geometry-Accuracy and Survey Analysis for Architectural Preservation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W11, 293–299. [Google Scholar] [CrossRef]
- Sampaio, A.Z.; Pinto, A.M.; Gomes, A.M.; Sanchez-Lite, A. Generation of an HBIM Library Regarding a Palace of the 19th Century in Lisbon. Appl. Sci. 2021, 11, 7020. [Google Scholar] [CrossRef]
- Capone, M.; Lanzara, E. Scan-to-BIM vs 3D Ideal Model HBIM: Parametric Tools to Study Domes Geometry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W9, 219–226. [Google Scholar] [CrossRef]
- Kontoudaki, A.; Georgopoulos, A. HBIM Library Development for a Doric Temple Column. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B2-2022, 1153–1158. [Google Scholar] [CrossRef]
- Murphy, M.; Meegan, E.; Keenaghan, G.; Chenaux, A.; Corns, A.; Fai, S.; Chow, L.; Zheng, Y.; Dore, C.; Scandurra, S.; et al. Shape Grammar Libraries of European Classical Architectural Elements for Historic BIM. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLVI-M-1-2021, 479–486. [Google Scholar] [CrossRef]
- Quattrini, R.; Battini, C.; Mammoli, R. HBIM to VR. Semantic Awareness and Data Enrichment Interoperability for Parametric Libraries of Historical Architecture. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-2, 937–943. [Google Scholar] [CrossRef]
- Bagnolo, V.; Argiolas, R.; Cuccu, A. Digital Survey and Algorithmic Modeling in HBIM. Towards a Library of Complex Construction Elements. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-4/W12, 25–31. [Google Scholar] [CrossRef]
- Aburamadan, R.; Trillo, C.; Cotella, V.A.; Di Perna, E.; Ncube, C.; Moustaka, A.; Udeaja, C.; Awuah, K.G.B. Developing a Heritage BIM Shared Library for Two Case Studies in Jordan’s Heritage: The House of Art in Amman and the Qaqish House in the World Heritage City of As-Salt. Herit. Sci. 2022, 10, 196. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, Y.; Sun, X.; Ali, N.; Zhou, Q. Digital Documentation and Conservation of Architectural Heritage Information: An Application in Modern Chinese Architecture. Sustainability 2023, 15, 7276. [Google Scholar] [CrossRef]
- Oreni, D.; Brumana, R.; Georgopoulos, A.; Cuca, B. HBIM for Conservation and Management of Built Heritage: Towards a Library of Vaults and Wooden Bean Floors. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, II-5/W1, 215–221. [Google Scholar] [CrossRef]
- López, F.J.; Lerones, P.M.; Llamas, J.; Gómez-García-Bermejo, J.; Zalama, E. Linking HBIM Graphical and Semantic Information through the Getty AAT: Practical Application to the Castle of Torrelobatón. IOP Conf. Ser. Mater. Sci. Eng. 2018, 364, 012100. [Google Scholar] [CrossRef]
- Lanzara, E.; Scandurra, S.; Musella, C.; Pulcrano, M.; Asprone, D.; di Luggo, A. Parametric modelling of vaults and shared implementation in HBIM systems. In Digital Twin—3D Modeling & BIM; Empler, T., Caldarone, A., Fusinetti, A., Eds.; DEI s.r.l. Tipografia del Genio Civile: Roma, Italy, 2021; pp. 322–341. [Google Scholar]
- Guzzetti, F.; Anyabolu, K.L.N.; Biolo, F.; Dell’Orto, R. BIM and Castello Sforzesco in Milan. a Particular Approach to Digitization of the Architectural and Information Heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLVI-5/W1-2022, 115–122. [Google Scholar] [CrossRef]
- Banfi, F.; Brumana, R.; Stanga, C. A Content-Based Immersive Experience of Basilica of Sant’Ambrogio in Milan: From 3D Survey to Virtual Reality. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W11, 159–166. [Google Scholar] [CrossRef]
- Adami, A.; Scala, B.; Treccani, D.; Dufour, N.; Papandrea, K. HBIM Approach for Heritage Protection: First Experiences for a Dedicated Training. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-2-2023, 11–18. [Google Scholar] [CrossRef]
- Banfi, F.; Brumana, R.; Landi, A.G.; Previtali, M.; Roncoroni, F.; Stanga, C. Building Archaeology Informative Modelling Turned into 3D Volume Stratigraphy and Extended Reality Time-Lapse Communication. Virtual Archaeol. Rev. 2022, 13, 1–21. [Google Scholar] [CrossRef]
- Trani, M.L.; Ruschi, M.; Ripamonti, F. Cross Information and BIM Interoperability Tools for Energy Retrofit Analysis. IOP Conf. Ser. Earth Environ. Sci. 2021, 863, 012049. [Google Scholar] [CrossRef]
- Thravalou, S.; Michopoulos, A.; Alexandrou, K.; Artopoulos, G. Energy Retrofit Strategies of Built Heritage: Using Building Information Modelling Tools for Streamlined Energy and Economic Analysis. IOP Conf. Ser. Earth Environ. Sci. 2023, 1196, 012115. [Google Scholar] [CrossRef]
- Attico, D.; Turrina, A.; Banfi, F.; Grimoldi, A.; Landi, A.; Condoleo, P.; Brumana, R. The HBIM Analysis of the Geometry to Understand the Constructive Technique: The Use of the Trompe Volume in a Brick Vault. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W11, 107–114. [Google Scholar] [CrossRef]
- Brumana, R.; Condoleo, P.; Grimoldi, A.; Banfi, F.; Landi, A.G.; Previtali, M. HR LOD Based HBIM to Detect Influences on Geometry and Shape by Stereotomic Construction Techniques of Brick Vaults. Appl. Geomat. 2018, 10, 529–543. [Google Scholar] [CrossRef]
- Croce, P.; Landi, F.; Puccini, B.; Martino, M.; Maneo, A. Parametric HBIM Procedure for the Structural Evaluation of Heritage Masonry Buildings. Buildings 2022, 12, 194. [Google Scholar] [CrossRef]
- Santos, D.; Cabaleiro, M.; Sousa, H.S.; Branco, J.M. Apparent and Resistant Section Parametric Modelling of Timber Structures in HBIM. J. Build. Eng. 2022, 49, 103990. [Google Scholar] [CrossRef]
- UNI 11119:2004; Beni culturali—Manufatti lignei—Strutture portanti degli edifici—Ispezione in situ per la diagnosi degli elementi in opera. UNI, Ente Italiano di Normazione: Milan, Italy, 2004.
- Moyano, J.; Carreño, E.; Nieto-Julián, J.E.; Gil-Arizón, I.; Bruno, S. Systematic Approach to Generate Historical Building Information Modelling (HBIM) in Architectural Restoration Project. Autom. Constr. 2022, 143, 104551. [Google Scholar] [CrossRef]
- Bruno, S.; Fatiguso, F. Building Conditions Assessment of Built Heritage in Historic Building Information Modeling. Int. J. SDP 2018, 13, 36–48. [Google Scholar] [CrossRef]
- Calvano, M.; Martinelli, L.; Calcerano, F.; Gigliarelli, E. Parametric Processes for the Implementation of HBIM—Visual Programming Language for the Digitisation of the Index of Masonry Quality. ISPRS Int. J. Geo-Inf. 2022, 11, 93. [Google Scholar] [CrossRef]
- Delpozzo, D.; Treccani, D.; Appolonia, L.; Adami, A.; Scala, B. HBIM and Thematic Mapping: Preliminary Results. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLVI-2/W1-2022, 199–206. [Google Scholar] [CrossRef]
- Spanò, A.; Patrucco, G.; Sammartano, G.; Perri, S.; Avena, M.; Fillia, E.; Milan, S. Digital Twinning for 20th Century Concrete Heritage: HBIM Cognitive Model for Torino Esposizioni Halls. Sensors 2023, 23, 4791. [Google Scholar] [CrossRef]
- Garcia-Gago, J.; Sánchez-Aparicio, L.J.; Soilán, M.; González-Aguilera, D. HBIM for Supporting the Diagnosis of Historical Buildings: Case Study of the Master Gate of San Francisco in Portugal. Autom. Constr. 2022, 141, 104453. [Google Scholar] [CrossRef]
- Pocobelli, D.P.; Boehm, J.; Bryan, P.; Still, J.; Grau-Bové, J. Building Information Models for Monitoring and Simulation Data in Heritage Buildings. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-2, 909–916. [Google Scholar] [CrossRef]
- De Falco, A.; Gaglio, F.; Giuliani, F.; Martino, M.; Messina, V. An HBIM Approach for Structural Diagnosis and Intervention Design in Heritage Constructions: The Case of the Certosa Di Pisa. Heritage 2024, 7, 1850–1869. [Google Scholar] [CrossRef]
- Coli, M.; Ciuffreda, A.L.; Marchetti, E.; Morandi, D.; Luceretti, G.; Lippi, Z. 3D HBIM Model and Full Contactless GPR Tomography: An Experimental Application on the Historic Walls That Support Giotto’s Mural Paintings, Santa Croce Basilica, Florence—Italy. Heritage 2022, 5, 2534–2546. [Google Scholar] [CrossRef]
- Solla, M.; Gonçalves, L.M.S.; Gonçalves, G.; Francisco, C.; Puente, I.; Providência, P.; Gaspar, F.; Rodrigues, H. A Building Information Modeling Approach to Integrate Geomatic Data for the Documentation and Preservation of Cultural Heritage. Remote Sens. 2020, 12, 4028. [Google Scholar] [CrossRef]
- Fassi, F.; Achille, C.; Mandelli, A.; Rechichi, F.; Parri, S. A New Idea of BIM System for Visualization, Web Sharing and Using Huge Complex 3D Models for Facility Management. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-5/W4, 359–366. [Google Scholar] [CrossRef]
- Bruno, N.; Roncella, R. HBIM for Conservation: A New Proposal for Information Modeling. Remote Sens. 2019, 11, 1751. [Google Scholar] [CrossRef]
- Celli, S.; Ottoni, F. An Informative Tool for the Preservation of the Wooden Encircling Tie Rod of the Dome of Santa Maria Del Fiore in Florence. In Proceedings of the ARQUEOLÓGICA 2.0—9th International Congress & 3rd GEORES—GEOmatics and pREServation, Valencia, Spain, 26–28 April 2021; Editorial Universitat Politécnica de Valéncia: Valencia, Spain, 2021. [Google Scholar]
- Castellano-Román, M.; Pinto-Puerto, F. HBIM Oriented towards the Master Plan of the Charterhouse of Jerez (Cádiz, Spain). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W15, 285–290. [Google Scholar] [CrossRef]
- Chiabrando, F.; Lo Turco, M.; Rinaudo, F. Modeling the Decay in an HBIM Starting from 3D Point Clouds. A Followed Approach for Cultural Heritage Knowledge. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W5, 605–612. [Google Scholar] [CrossRef]
- Santagati, C.; Laurini, C.R.; Sanfilippo, G.; Bakirtzis, N.; Papacharalambous, D.; Hermon, S. HBIM for the Surveying, Analysis and Restoration of the Saint John the Theologian Cathedral in Nicosia (Cyprus). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W11, 1039–1046. [Google Scholar] [CrossRef]
- Angulo-Fornos, R.; Castellano-Román, M. HBIM as Support of Preventive Conservation Actions in Heritage Architecture. Experience of the Renaissance Quadrant Façade of the Cathedral of Seville. Appl. Sci. 2020, 10, 2428. [Google Scholar] [CrossRef]
- Ferro, A.; Lo Brutto, M.; Ventimiglia, G.M. A Scan-to-BIM Process for the Monitoring and Conservation of the Architectural Heritage: Integration of Thematic Information in a HBIM Model. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-2-2023, 549–556. [Google Scholar] [CrossRef]
- Lo Turco, M.; Mattone, M.; Rinaudo, F. Metric Survey and BIM Technologies to Record Decay Conditions. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-5/W1, 261–268. [Google Scholar] [CrossRef]
- Acampa, G.; Grasso, M. Heritage Evaluation: Restoration Plan through HBIM and MCDA. IOP Conf. Ser. Mater. Sci. Eng. 2020, 949, 012061. [Google Scholar] [CrossRef]
- Brumana, R.; Della Torre, S.; Previtali, M.; Barazzetti, L.; Cantini, L.; Oreni, D.; Banfi, F. Generative HBIM Modelling to Embody Complexity (LOD, LOG, LOA, LOI): Surveying, Preservation, Site Intervention—The Basilica Di Collemaggio (L’Aquila). Appl. Geomat. 2018, 10, 545–567. [Google Scholar] [CrossRef]
- D’Agostino, P.; Antuono, G.; Elefante, E.; Amore, R. Digital Management for the Restoration Project. the Case of the Temple of Venus in Baia. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-2-2023, 461–471. [Google Scholar] [CrossRef]
- Mora, R.; Sánchez-Aparicio, L.J.; Maté-González, M.Á.; García-Álvarez, J.; Sánchez-Aparicio, M.; González-Aguilera, D. An Historical Building Information Modelling Approach for the Preventive Conservation of Historical Constructions: Application to the Historical Library of Salamanca. Autom. Constr. 2021, 121, 103449. [Google Scholar] [CrossRef]
- Chelaru, B.; Onuțu, C.; Ungureanu, G.; Șerbănoiu, A.A. Integration of Point Cloud, Historical Records, and Condition Assessment Data in HBIM. Autom. Constr. 2024, 161, 105347. [Google Scholar] [CrossRef]
- Lanzara, E.; Scandurra, S.; Musella, C.; Palomba, D.; Di Luggo, A.; Asprone, D. Documentation of Structural Damage and Material Decay Phenomena in H-BIM Systems. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLVI-M-1-2021, 375–382. [Google Scholar] [CrossRef]
- UNI 11182:2006; Beni culturali—Materiali lapidei naturali ed artificiali—Descrizione della forma di alterazione—Termini e definizioni. Ente Italiano di Normazione: Milan, Italy, 2006.
- Scandurra, S.; Di Luggo, A. bSDD to Document State of Preservation of Architectural Heritage in Open-HBIM Systems. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-2-2023, 1427–1434. [Google Scholar] [CrossRef]
- Scandurra, S.; Lanzara, E.; Improta, I.; Pilato, A.L.; Itri, F. bSDD for Artworks in HBIM Open and Standard-Oriented Documentation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, 48, 397–404. [Google Scholar] [CrossRef]
- Giovannini, E.C.; Tomalini, A.; Pristeri, E.; Bergamasco, L.; Lo Turco, M. Decay Classification Using Artificial Intelligence. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLIII-B2-2021, 847–854. [Google Scholar] [CrossRef]
- Croce, V.; Caroti, G.; Piemonte, A. Propagation of Semantic Information between Orthophoto and 3D Replica: A H-BIM System for the North Transept of Pisa Cathedral. Geomat. Nat. Hazards Risk 2021, 12, 2225–2252. [Google Scholar] [CrossRef]
- Rodrigues, F.; Cotella, V.; Rodrigues, H.; Rocha, E.; Freitas, F.; Matos, R. Application of Deep Learning Approach for the Classification of Buildings’ Degradation State in a BIM Methodology. Appl. Sci. 2022, 12, 7403. [Google Scholar] [CrossRef]
- Brumana, R.; Della Torre, S.; Oreni, D.; Previtali, M.; Cantini, L.; Barazzetti, L.; Franchi, A.; Banfi, F. HBIM Challenge among the Paradigm of Complexity, Tools and Preservation: The Basilica Di Collemaggio 8 Years after the Earthquake (L’Aquila). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W5, 97–104. [Google Scholar] [CrossRef]
- D.P.C.M. 9 February 2011. Valutazione e riduzione del rischio sismico del patrimonio culturale con riferimento alle Norme tecniche per le costruzioni di cui al decreto del Ministero delle infrastrutture e dei trasporti del 14 gennaio 2008; Direttiva del Presidente del Consiglio dei Ministri; Istituto Poligrafico e Zecca dello Stato S.p.A. (IPZS): Rome, Italy, 2011.
- Tsilimantou, E.; Delegou, E.T.; Nikitakos, I.A.; Ioannidis, C.; Moropoulou, A. GIS and BIM as Integrated Digital Environments for Modeling and Monitoring of Historic Buildings. Appl. Sci. 2020, 10, 1078. [Google Scholar] [CrossRef]
- Martín-Lerones, P.; Olmedo, D.; López-Vidal, A.; Gómez-García-Bermejo, J.; Zalama, E. BIM Supported Surveying and Imaging Combination for Heritage Conservation. Remote Sens. 2021, 13, 1584. [Google Scholar] [CrossRef]
- Barontini, A.; Alarcon, C.; Sousa, H.S.; Oliveira, D.V.; Masciotta, M.G.; Azenha, M. Development and Demonstration of an HBIM Framework for the Preventive Conservation of Cultural Heritage. Int. J. Archit. Herit. 2022, 16, 1451–1473. [Google Scholar] [CrossRef]
- Marra, A.; Fabbrocino, G.; Trizio, I. On the Interoperability Performance of HBIM Models for Structural Conservation and Upgrading of Building Aggregates in the Italian Minor Centres. VITRUVIO 2023, 8, 140–151. [Google Scholar] [CrossRef]
- Ciuffreda, A.L.; Trovatelli, F.; Meli, F.; Caselli, G.; Stramaccioni, C.; Coli, M.; Tanganelli, M. Historic Building Information Modeling for Conservation and Maintenance: San Niccolo’s Tower Gate, Florence. Heritage 2024, 7, 1334–1356. [Google Scholar] [CrossRef]
- Castellazzi, G.; Cardillo, E.; Lo Presti, N.; D’Altri, A.M.; De Miranda, S.; Bertani, G.; Ferretti, F.; Mazzotti, C. Advancing Cultural Heritage Structures Conservation: Integrating BIM and Cloud-Based Solutions for Enhanced Management and Visualization. Heritage 2023, 6, 7316–7342. [Google Scholar] [CrossRef]
- Nieto-Julián, J.E.; Antón, D.; Moyano, J.J. Implementation and Management of Structural Deformations into Historic Building Information Models. Int. J. Archit. Herit. 2020, 14, 1384–1397. [Google Scholar] [CrossRef]
- Rubens, T.; Ribeiro, G.; Paulo, R.; Bessa, M.; Moreira, E.; Vieira, M.; Mesquita, E. Digitalization Based on High-Resolution Scanning and HBIM Tools for Damage Assessment of the José de Alencar House. J. Build. Rehabil. 2023, 8, 30. [Google Scholar] [CrossRef]
- Sammartano, G.; Avena, M.; Fillia, E.; Spanò, A. Integrated HBIM-GIS Models for Multi-Scale Seismic Vulnerability Assessment of Historical Buildings. Remote Sens. 2023, 15, 833. [Google Scholar] [CrossRef]
- Massafra, A.; Prati, D.; Predari, G.; Gulli, R. Wooden Truss Analysis, Preservation Strategies, and Digital Documentation through Parametric 3D Modeling and HBIM Workflow. Sustainability 2020, 12, 4975. [Google Scholar] [CrossRef]
- Cernaro, A.; Fiandaca, O.; Lione, R.; Minutoli, F. The Analysis of the Maintained/Disowned Relationship among Firmitas, Utilitas, and Venustas to Preserve the Cultural Heritage: An H-BIM Approach for the Management of Historic Buildings. Buildings 2023, 13, 1045. [Google Scholar] [CrossRef]
- Palestini, C.; Basso, A.; Graziani, L. Integrated Photogrammetric Survey and BIM Modelling for the Protection of School Heritage, Applications on a Case Study. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-2, 821–828. [Google Scholar] [CrossRef]
- Barazzetti, L.; Banfi, F.; Brumana, R.; Gusmeroli, G.; Oreni, D.; Previtali, M.; Roncoroni, F.; Schiantarelli, G. BIM from Laser Clouds and Finite Element Analysis: Combining Structural Analysis and Geometric Complexity. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-5/W4, 345–350. [Google Scholar] [CrossRef]
- Banfi, F. The Evolution of Interactivity, Immersion and Interoperability in HBIM: Digital Model Uses, VR and AR for Built Cultural Heritage. ISPRS Int. J. Geo-Inf. 2021, 10, 685. [Google Scholar] [CrossRef]
- Fazion, B.; Treccani, D.; Fregonese, L.; Lombardini, N. HBIM Structural Model to Evaluate Building Evolution and Construction Hypotheses: Preliminary Results. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, XLVIII-2/W4-2024, 213–219. [Google Scholar] [CrossRef]
- Mammoli, R.; Mariotti, C.; Quattrini, R. Modeling the Fourth Dimension of Architectural Heritage: Enabling Processes for a Sustainable Conservation. Sustainability 2021, 13, 5173. [Google Scholar] [CrossRef]
- Santoni, A.; Martín-Talaverano, R.; Quattrini, R.; Murillo-Fragero, J.I. HBIM Approach to Implement the Historical and Constructive Knowledge. The Case of the Real Colegiata of San Isidoro (León, Spain). Virtual Archaeol. Rev. 2021, 12, 49. [Google Scholar] [CrossRef]
- Jouan, P.; Hallot, P. Digital Twin: A HBIM-Based Methodology to Support Preventive Conservation of Historic Assets through Heritage Significance Awareness. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W15, 609–615. [Google Scholar] [CrossRef]
- Funari, M.F.; Hajjat, A.E.; Masciotta, M.G.; Oliveira, D.V.; Lourenço, P.B. A Parametric Scan-to-FEM Framework for the Digital Twin Generation of Historic Masonry Structures. Sustainability 2021, 13, 11088. [Google Scholar] [CrossRef]
- Moyano, J.; Fernández-Alconchel, M.; Nieto-Julián, J.E.; Marín-García, D.; Bruno, S. Integration of Dynamic Information on Energy Parameters in HBIM Models. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-2-2023, 1089–1096. [Google Scholar] [CrossRef]
- Vuoto, A.; Funari, M.F.; Lourenço, P.B. Shaping Digital Twin Concept for Built Cultural Heritage Conservation: A Systematic Literature Review. Int. J. Archit. Herit. 2023, 18, 1762–1795. [Google Scholar] [CrossRef]
- Jouan, P.; Hallot, P. Digital Twin: Research Framework to Support Preventive Conservation Policies. ISPRS Int. J. Geo-Inf. 2020, 9, 228. [Google Scholar] [CrossRef]
- Banfi, F.; Barazzetti, L.; Previtali, M.; Roncoroni, F. Historic BIM: A New Repository for Structural Health Monitoring. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-5/W1, 269–274. [Google Scholar] [CrossRef]
- Aglietti, A.; Biagini, C.; Bongini, A.; Ottobri, P. Historic Bridges Monitoring through Sensor Data Management with BIM Methodologies. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-2-2023, 33–41. [Google Scholar] [CrossRef]
- Meoni, A.; Vittori, F.; Piselli, C.; D’Alessandro, A.; Pisello, A.L.; Ubertini, F. Integration of Structural Performance and Human-Centric Comfort Monitoring in Historical Building Information Modeling. Autom. Constr. 2022, 138, 104220. [Google Scholar] [CrossRef]
- Nagy, G.; Ashraf, F. HBIM Platform & Smart Sensing as a Tool for Monitoring and Visualizing Energy Performance of Heritage Buildings. Dev. Built Environ. 2021, 8, 100056. [Google Scholar] [CrossRef]
- O’Shea, M.; Murphy, J. Design of a BIM Integrated Structural Health Monitoring System for a Historic Offshore Lighthouse. Buildings 2020, 10, 131. [Google Scholar] [CrossRef]
- Desogus, G.; Quaquero, E.; Rubiu, G.; Gatto, G.; Perra, C. BIM and IoT Sensors Integration: A Framework for Consumption and Indoor Conditions Data Monitoring of Existing Buildings. Sustainability 2021, 13, 4496. [Google Scholar] [CrossRef]
- Santini, S.; Borghese, V.; Baggio, C. HBIM-Based Decision-Making Approach for Sustainable Diagnosis and Conservation of Historical Timber Structures. Sustainability 2023, 15, 3003. [Google Scholar] [CrossRef]
- García-León, J.; Murrieri, P.; Collado-Espejo, P.E. HBIM as a Tool for the Analysis and Conservation of Architectural Heritage. Case Study: The Rame Tower’s Digital Twin. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-2-2023, 637–644. [Google Scholar] [CrossRef]
- Achille, C.; Fassi, F.; Mandelli, A.; Perfetti, L.; Rechichi, F.; Teruggi, S. From a Traditional to a Digital Site: 2008–2019. The History of Milan Cathedral Surveys. In Digital Transformation of the Design, Construction and Management Processes of the Built Environment; Daniotti, B., Gianinetto, M., Della Torre, S., Eds.; Research for Development; Springer International Publishing: Cham, Germany, 2020; pp. 331–341. ISBN 978-3-030-33569-4. [Google Scholar]
- Rechichi, F.; Mandelli, A.; Achille, C.; Fassi, F. Sharing High-Resolution Models and Information on Web: The Web Module of BIM3DSG System. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B5, 703–710. [Google Scholar] [CrossRef]
- Oreni, D.; Brumana, R.; Della Torre, S.; Banfi, F.; Barazzetti, L.; Previtali, M. Survey Turned into HBIM: The Restoration and the Work Involved Concerning the Basilica Di Collemaggio after the Earthquake (L’Aquila). ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II-5, 267–273. [Google Scholar] [CrossRef]
- Saricaoglu, T.; Saygi, G. Data-Driven Conservation Actions of Heritage Places Curated with HBIM. Virtual Archaeol. Rev. 2022, 13, 17–32. [Google Scholar] [CrossRef]
- Raco, F. Geometric and Informative Models of Cultural Heritage. The HBIM Role for the Management of the Galleria Borghese Museum. Paesaggio Urbano 2022, 2, 16–27. [Google Scholar]
- Achille, C.; Tommasi, C.; Rechichi, F.; Fassi, F.; De Filippis, E. Towards an Advanced Conservation Strategy: A Structured Database for Sharing 3D Documentation between Expert Users. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W15, 9–16. [Google Scholar] [CrossRef]
- Colucci, E.; Iacono, E.; Matrone, F.; Ventura, G.M. The Development of a 2D/3D BIM-GIS Web Platform for Planned Maintenance of Built and Cultural Heritage: The MAIN10ANCE Project. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-2-2023, 433–439. [Google Scholar] [CrossRef]
- Croce, V.; Caroti, G.; De Luca, L.; Piemonte, A.; Véron, P. Semantic Annotations on Heritage Models: 2D/3D Approaches and Future Research Challenges. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B2-2020, 829–836. [Google Scholar] [CrossRef]
- Pulcrano, M. Cloud-to-BIM-to-VR: An Operative Approach for the Construction of Interactive and Information Models for the Cultural Heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLVI-2/W1-2022, 443–449. [Google Scholar] [CrossRef]
- Bruno, S.; Scioti, A.; Pierucci, A.; Rubino, R.; Di Noia, T.; Fatiguso, F. VERBUM—Virtual Enhanced Reality for Building Modelling (Virtual Technical Tour in Digital Twins for Building Conservation). ITcon 2022, 27, 20–47. [Google Scholar] [CrossRef]
- Leonardi, M.L.; Granja, J.; Oliveira, D.V.; Azenha, M. Scalable BIM Based Open Workflow for Structural Analysis of Masonry Building Aggregates. Comput. Struct. 2024, 297, 107321. [Google Scholar] [CrossRef]
- D’Altri, A.M.; Sarhosis, V.; Milani, G.; Rots, J.; Cattari, S.; Lagomarsino, S.; Sacco, E.; Tralli, A.; Castellazzi, G.; De Miranda, S. Modeling Strategies for the Computational Analysis of Unreinforced Masonry Structures: Review and Classification. Arch. Comput. Methods Eng. 2020, 27, 1153–1185. [Google Scholar] [CrossRef]
- Minafò, G.; Rusticano, G.; La Mendola, L.; Pennisi, S. Procedure for Safety Assessment and BIM Modelling of an Historical Complex Structure through a Macroelement Approach: The Building “Molino-Pastificio Soresi” of Partinico (Italy). Buildings 2022, 12, 1408. [Google Scholar] [CrossRef]
- Barazzetti, L.; Banfi, F.; Brumana, R.; Gusmeroli, G.; Previtali, M.; Schiantarelli, G. Cloud-to-BIM-to-FEM: Structural Simulation with Accurate Historic BIM from Laser Scans. Simul. Model. Pract. Theory 2015, 57, 71–87. [Google Scholar] [CrossRef]
- Tucci, G.; Betti, M.; Conti, A.; Corongiu, M.; Fiorini, L.; Matta, C.; Kovačević, C.; Borri, C.; Hollberg, C. BIM for Museums: An Integrated Approach from the Building to the Collections. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W11, 1089–1096. [Google Scholar] [CrossRef]
- Crespi, P.; Franchi, A.; Ronca, P.; Giordano, N.; Scamardo, M.; Gusmeroli, G.; Schiantarelli, G. From BIM to FEM: The Analysis of an Historical Masonry Building. In Proceedings of the BIM2015, Bristol, UK, 9–11 September 2015; pp. 581–592. [Google Scholar]
- Santini, S.; Baggio, C.; Sabbatini, V.; Sebastiani, C. Setup Optimization of Experimental Measures on a Historical Building: The Octagonal Hall of the Diocletian’s Bath. Heritage 2021, 4, 2205–2223. [Google Scholar] [CrossRef]
- Ursini, A.; Grazzini, A.; Matrone, F.; Zerbinatti, M. From Scan-to-BIM to a Structural Finite Elements Model of Built Heritage for Dynamic Simulation. Autom. Constr. 2022, 142, 104518. [Google Scholar] [CrossRef]
- Lo Presti, N.; Castellazzi, G.; D’Altri, A.M.; Bertani, G.; De Miranda, S.; Azenha, M.; Roggio, D.S.; Bitelli, G.; Ferretti, F.; Rende, N.; et al. Streamlining FE and BIM Modeling for Historic Buildings with Point Cloud Transformation. Int. J. Archit. Herit. 2024, 19, 1086–1099. [Google Scholar] [CrossRef]
- Martínez-Carricondo, P.; Casimiro-Bernández, J.M.; Agüera-Vega, F.; Carvajal-Ramírez, F. Structural Weakness of the Twenty Eyes Aqueduct in the Wadi of Carcauz (Almeria, Spain). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-2-2023, 1021–1025. [Google Scholar] [CrossRef]
- Machete, R.; Neves, M.; Ponte, M.; Falcão, A.P.; Bento, R. A BIM-Based Model for Structural Health Monitoring of the Central Body of the Monserrate Palace: A First Approach. Buildings 2023, 13, 1532. [Google Scholar] [CrossRef]
- Abbate, E.; Invernizzi, S.; Spanò, A. HBIM Parametric Modelling from Clouds to Perform Structural Analyses Based on Finite Elements: A Case Study on a Parabolic Concrete Vault. Appl. Geomat. 2022, 14, 79–96. [Google Scholar] [CrossRef]
- Santini, S.; Canciani, M.; Borghese, V.; Sabbatini, V.; Sebastiani, C. From Digital Restitution to Structural Analysis of a Historical Adobe Building: The Escuela José Mariano Méndez in El Salvador. Heritage 2023, 6, 4362–4379. [Google Scholar] [CrossRef]
- Mondello, A.; Garozzo, R.; Salemi, A.; Santagati, C. HBIM for the Seismic Vulnerability Assessment of Traditional Bell Towers. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W15, 791–798. [Google Scholar] [CrossRef]
- Alsaid, A.M.; Hegazi, Y.S.; Shalaby, H.A.; Ahmed, M.A. Methodology to Improve Energy Efficiency of Heritage Buildings Using HBIM-Sabil Qaitbay: A Case Study from Egypt. Civ. Eng. Arch. 2023, 11, 425–449. [Google Scholar] [CrossRef]
- Gigliarelli, E.; Calcerano, F.; Cessari, L. Heritage Bim, Numerical Simulation and Decision Support Systems: An Integrated Approach for Historical Buildings Retrofit. Energy Procedia 2017, 133, 135–144. [Google Scholar] [CrossRef]
- Massafra, A.; Costantino, C.; Predari, G.; Gulli, R. Building Information Modeling and Building Performance Simulation-Based Decision Support Systems for Improved Built Heritage Operation. Sustainability 2023, 15, 11240. [Google Scholar] [CrossRef]
- Piselli, C.; Romanelli, J.; Di Grazia, M.; Gavagni, A.; Moretti, E.; Nicolini, A.; Cotana, F.; Strangis, F.; Witte, H.J.L.; Pisello, A.L. An Integrated HBIM Simulation Approach for Energy Retrofit of Historical Buildings Implemented in a Case Study of a Medieval Fortress in Italy. Energies 2020, 13, 2601. [Google Scholar] [CrossRef]
- Maiezza, P. As-Built Reliability in Architectural HBIM Modeling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W9, 461–466. [Google Scholar] [CrossRef]
- ISO 19650-1:2018; Organization and Digitization of Information About Buildings and Civil Engineering Works, Including Building Information Modelling (BIM)—Information Management Using Building Information Modelling Part 1: Concepts and Principles. International Organization for Standardization: Geneva, Switzerland, 2018.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parente, M.; Bruno, N.; Ottoni, F. HBIM and Information Management for Knowledge and Conservation of Architectural Heritage: A Review. Heritage 2025, 8, 306. https://doi.org/10.3390/heritage8080306
Parente M, Bruno N, Ottoni F. HBIM and Information Management for Knowledge and Conservation of Architectural Heritage: A Review. Heritage. 2025; 8(8):306. https://doi.org/10.3390/heritage8080306
Chicago/Turabian StyleParente, Maria, Nazarena Bruno, and Federica Ottoni. 2025. "HBIM and Information Management for Knowledge and Conservation of Architectural Heritage: A Review" Heritage 8, no. 8: 306. https://doi.org/10.3390/heritage8080306
APA StyleParente, M., Bruno, N., & Ottoni, F. (2025). HBIM and Information Management for Knowledge and Conservation of Architectural Heritage: A Review. Heritage, 8(8), 306. https://doi.org/10.3390/heritage8080306