Environmental Archaeology Through Tree Rings: Dendrochronology as a Tool for Reconstructing Ancient Human–Environment Interactions
Abstract
1. Introduction
2. Materials and Methods
2.1. Bibliographic Database Compilation
2.2. Search Strategy
2.3. Screening and Eligibility Criteria
2.4. Thematic Categorization
2.5. Bibliometric Analysis and Metrics
2.6. Network Metrics
2.7. Justification for English-Only Selection
2.8. Data Transparency and Reproducibility
3. Results
3.1. Bibliometric Analyse
3.2. Literature Review
3.2.1. Advances in Dendrochronological Techniques
3.2.2. Historical Data and Locations Related to Dendrochronology in History
3.2.3. Environmental Disruptions and Human Societies
Natural Disasters and Climate Variability
Climatic Extremes and Societal Collapse
3.2.4. Art and Cultural History: Insights from Dendrochronology
3.2.5. Architectural and Construction History: Dendrochronological Perspectives
3.2.6. Reconstructing Mining History Through Dendrochronology
3.2.7. Environmental Changes and Historical Insights from Dendrochronology
3.2.8. Dendrochronology and Ancient Timber Trade
3.2.9. Wood Utilization and Woodland Management in Archaeological Contexts
3.2.10. Dendrochronology and Timber Transport in the Roman Period
3.2.11. Tree Species in Dendrochronology
3.2.12. Dendroprovenancing and Historical Applications
4. Discussion
4.1. Existing Literature on Dendrochronology and Archaeology
4.2. Historical Data and Locations Related to Dendrochronology in History
4.3. Tree Species Utilized in Dendrochronology
4.4. Species Identification and the Role of Wood Anatomy in Dendrochronological Studies
4.5. Locating the Origins of Wood Resources
4.5.1. Timber Sourcing in Nautical Archaeology
4.5.2. Challenges and Future Directions in Dendroprovenancing
4.6. Cultural Heritage and Dendrochronology
4.7. Dendrochronology and the Archaeology of Mining: Insights from Tree-Rings
4.8. Environmental Disruptions and Human Societies: Insights from Dendrochronology
4.9. Limitations of This Review
5. Conclusions
- Dendrochronology has proven to be an invaluable tool in archaeological research, offering precise dating methods and insights into past human–environment interactions. By analyzing tree-ring data, researchers can reconstruct climatic conditions, determine the provenance of wooden artifacts, and enhance our understanding of ancient construction techniques, trade networks, and cultural practices. This study highlights the increasing significance of dendroarchaeology in multiple disciplines, including archaeology, anthropology, art history, and environmental science.
- The bibliometric analysis conducted in this study reveals a growing interest in dendrochronological research over the past 15 years, reflecting advancements in methodology and interdisciplinary collaboration. However, several challenges remain, including the need for expanded regional reference chronologies, the development of non-destructive sampling techniques, and improved integration with other scientific dating methods such as radiocarbon and isotopic analysis. Addressing these limitations will enhance the accuracy and applicability of dendrochronology in archaeological studies.
- Future research should focus on expanding dendroarchaeological investigations in regions with limited chronological datasets, particularly in tropical and arid environments where tree-ring growth is less distinct. Additionally, integrating emerging technologies such as high-resolution imaging and geochemical analysis will allow for more refined provenance studies and environmental reconstructions. By strengthening interdisciplinary collaboration and refining analytical techniques, dendrochronology will continue to play a critical role in shaping our understanding of ancient civilizations. This study underscores the necessity of preserving and analyzing wooden archaeological materials with precision, ensuring that dendrochronological research remains a cornerstone in the broader field of cultural heritage studies.
- A key limitation of this study concerns the linguistic scope of the bibliometric search. Although our inclusion criteria required English-language titles and abstracts for standardization and comparability, we did include some publications whose full texts were written in other languages but accompanied by English abstracts within the databases. Thus, non-English research was partially represented in our analysis. However, we acknowledge that valuable studies without English metadata, especially those published in languages such as German, French, Italian, Spanish, or Russian, may have been excluded. This linguistic bias reflects broader asymmetries in global scientific visibility and should be addressed in future research. Expanding future bibliometric analyses to include multilingual databases (e.g., Scielo) and regional repositories will provide a more comprehensive and inclusive overview of dendroarchaeological scholarship worldwide.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balouet, J.C.; Smith, K.T.; Vroblesky, D.; Oudijk, G. Use of dendrochronology and dendrochemistry in environmental forensics: Does it meet the Daubert criteria? Environ. Forensics 2009, 10, 268–276. [Google Scholar] [CrossRef]
- Bridge, M. Locating the origins of wood resources: A review of dendroprovenancing. J. Archaeol. Sci. 2012, 39, 2828–2834. [Google Scholar] [CrossRef]
- Cherubini, P.; Gartner, B.L.; Tognetti, R.; Bräker, O.U.; Schoch, W.; Innes, J.L. Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biol. Rev. 2003, 78, 119–148. [Google Scholar] [CrossRef]
- Kuniholm, P.I. Dendrochronology and other applications of tree-ring studies in archaeology. In Archaeological Method and Theory: An Encyclopedia; Wiley: Hoboken, NJ, USA, 2001; pp. 35–46. [Google Scholar]
- Daly, A. Timber supply through time—Copenhagen waterfronts under scrutiny. Dendrochronologia 2024, 83, 126164. [Google Scholar] [CrossRef]
- Čufar, K. Dendrochronology and past human activity—A review of advances since 2000. Tree-Ring Res. 2007, 63, 47–60. [Google Scholar] [CrossRef]
- Eckstein, D.; Wrobel, S. Dendrochronological proof of origin of historic timber–retrospect and perspectives. TRACE–Tree Rings Archaeol. Climatol. Ecol. 2007, 5, 8–20. [Google Scholar]
- Haneca, K.; Čufar, K.; Beeckman, H. Oaks, tree-rings and wooden cultural heritage: A review of the main characteristics and applications of oak dendrochronology in Europe. J. Archaeol. Sci. 2009, 36, 1–11. [Google Scholar] [CrossRef]
- Torrence, R.; Grattan, J. The archaeology of disasters: Past and future trends. In Disaster Prevention; Routledge: Abingdon, UK, 2015; pp. 186–203. [Google Scholar]
- Daems, D. A review and roadmap of online learning platforms and tutorials in digital archaeology. Adv. Archaeol. Pract. 2020, 8, 87–92. [Google Scholar] [CrossRef]
- Dinca, L.; Murariu, G.; Lupoae, M. Understanding the ecosystem services of riparian forests: Patterns, gaps, and global trends. Forests 2025, 16, 947. [Google Scholar] [CrossRef]
- Sullivan, A. Bridging the divide between rural and urban community-based forestry: A bibliometric review. For. Policy Econ. 2022, 144, 102826. [Google Scholar] [CrossRef]
- Enescu, C.M.; Mihalache, M.; Ilie, L.; Dinca, L.; Constandache, C.; Murariu, G. Agricultural benefits of shelterbelts and windbreaks: A bibliometric analysis. Agriculture 2025, 15, 1204. [Google Scholar] [CrossRef]
- Ma, Z.; Hu, C.; Huang, J.; Li, T.; Lei, J. Forests and forestry in support of sustainable development goals (SDGs): A bibliometric analysis. Forests 2022, 13, 1960. [Google Scholar] [CrossRef]
- Bratu, I.; Dinca, L.; Constandache, C.; Murariu, G. Resilience and decline: The impact of climatic variability on temperate oak forests. Climate 2025, 13, 119. [Google Scholar] [CrossRef]
- Clarivate. Web of Science Core Collection. 2024. Available online: https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/webofscience-platform/web-of-science-core-collection/ (accessed on 2 February 2025).
- Elsevier. Scopus: Comprehensive Abstract and Citation Database for Impact Makers. Available online: https://www.elsevier.com/products/scopus (accessed on 1 February 2025).
- Schotten, M.; Meester, W.J.; Steiginga, S.; Ross, C.A. A brief history of Scopus: The world’s largest abstract and citation database of scientific literature. In Research Analytics; Auerbach Publications: Boca Raton, FL, USA, 2017; pp. 31–58. [Google Scholar]
- Bauerochse, A.; Leuschner, B.; Frank, T.; Metzler, A.; Höppel, G.; Leuschner, H.H. Dendrochronologische Datierungen an Bauhölzern von Moorwegen Nordwestdeutschlands–Ergänzung, Korrektur und Neubewertung. Archäologisches Korresp. 2014, 44, 483–494. [Google Scholar]
- Herrmann, J.; Heussner, K. Dendrochronology, Archaeology and prehistory from 6th To 12th-Century in the Regions Between Saale, Elbe And Oder. Ausgrabungen Und Funde 1991, 36, 255–290. [Google Scholar]
- Rieth, E. The xv (th) Century EP1-Canche Shipwreck, Beutin (Pas-de-Calais): A First Archeological Assessment (2005–2008). Revue du nord 2009, 91, 203–242. [Google Scholar] [CrossRef]
- Le Roy, M.; Astrade, L.; Edouard, J.L.; Bazan, M.P.; Iancovescu, C. Tree-ring dating of mountain pasture buildings in the core area of the Vanoise National Park. ArchéoSciences 2017, 41, 7–22. [Google Scholar]
- Eriksson, N. Is Lojsta Castle on Gotland the fortress Gullborg that was conquered by the Teutonic Order in 1404? Marine archaeological answers to an old question. Fornvannen-J. Swed. Antiqu. Res. 2023, 118. [Google Scholar]
- Murillo Fragero, J.I. Constructive sequence of the Church of Santiago in Peñalba de Santiago (Ponferrada, León). Reforms of an unitary building. Arqueol. Y Territ. Mediev. 2017, 24, 55–88. [Google Scholar] [CrossRef]
- Mainichcva, A.Y.; Myglan, V.S.; Filatova, M.O. Prospects for applying the dendrochronological method to ethno-ecological studies of Tuvan historical and cultural heritage. Нoвые Uсследoвания Тувы 2020, 92–103. [Google Scholar]
- Vrabel, M. Preferred reporting items for systematic reviews and meta-analyses. Oncol. Nurs. Forum 2015, 42, 552–554. [Google Scholar] [CrossRef]
- Microsoft. Microsoft Excel. Microsoft.com. 2025. Available online: https://www.microsoft.com/en-us/microsoft-365/excel (accessed on 2 February 2025).
- Google Developers. GeoChart. Available online: https://developers.google.com/chart/interactive/docs/gallery/geochart (accessed on 10 February 2025).
- VOSviewer. Available online: https://www.vosviewer.com/ (accessed on 4 February 2025).
- Schweingruber, F.H. Tree Rings and Environment Dendroecology; Haupt: Bern, Switzerland, 1996; p. 609. [Google Scholar]
- Tudose, N.C.; Cheval, S.; Ungurean, C.; Broekman, A.; Sanchez-Plaza, A.; Cremades, R.; Mitter, H.; Kropf, B.; Davidescu, Ș.O.; Dincă, L.; et al. Climate services for sustainable resource management: The water-energy-land nexus in the Tarlung river basin (Romania). Land Use Policy 2022, 119, 106221. [Google Scholar] [CrossRef]
- Marin, M.; Clinciu, I.; Tudose, N.C.; Ungurean, C.; Mihalache, A.L.; Mărțoiu, N.E.; Tudose, O.N. Assessment of Seasonal Surface Runoff under Climate and Land Use Change Scenarios for a Small Forested Watershed: Upper Tarlung Watershed (Romania). Water 2022, 14, 2860. [Google Scholar] [CrossRef]
- Bayliss, A.; Marshall, P.; Dee, M.W.; Friedrich, M.; Heaton, T.J.; Wacker, L. IntCal20 tree rings: An archaeological SWOT analysis. Radiocarbon 2020, 62, 1045–1078. [Google Scholar] [CrossRef]
- Wacker, L.; Bonani, G.; Friedrich, M.; Hajdas, I.; Kromer, B.; Němec, M.; Vockenhuber, C. MICADAS: Routine and high-precision radiocarbon dating. Radiocarbon 2010, 52, 252–262. [Google Scholar] [CrossRef]
- Bill, J.; Daly, A.; Johnsen, Ø.; Dalen, K.S. DendroCT–Dendrochronology without damage. Dendrochronologia 2012, 30, 223–230. [Google Scholar] [CrossRef]
- Jacobsson, P.; Hale, A.; Hamilton, D.; Cook, G. Radiocarbon wiggle-match dating in the intertidal zone. J. Isl. Coast. Archaeol. 2019, 14, 61–70. [Google Scholar] [CrossRef]
- Loader, N.J.; McCarroll, D.; Miles, D.; Young, G.H.; Davies, D.; Ramsey, C.B.; Fudge, M. Dating of non-oak species in the United Kingdom historical buildings archive using stable oxygen isotopes. Dendrochronologia 2021, 69, 125862. [Google Scholar] [CrossRef]
- Hofmann, D.; Ebersbach, R.; Doppler, T.; Whittle, A. The life and times of the house: Multi-scalar perspectives on settlement from the Neolithic of the northern Alpine foreland. Eur. J. Archaeol. 2016, 19, 596–630. [Google Scholar] [CrossRef]
- Pranckėnaitė, E. Living in wetlands in the southeastern Baltic region during the Late Bronze to early Iron Age: The archaeological context of the Luokesa lake settlements. Veg. Hist. Archaeobot. 2014, 23, 341–354. [Google Scholar] [CrossRef]
- Bolliger, M.; Maczkowski, A.; Francuz, J.; Reich, J.; Hostettler, M.; Ballmer, A.; Hafner, A. Dendroarchaeology at Lake Ohrid: 5th and 2nd millennia BCE tree-ring chronologies from the waterlogged site of Ploča Mičov Grad, North Macedonia. Dendrochronologia 2023, 79, 126095. [Google Scholar] [CrossRef]
- Thomas, D.H.; Rhode, D.; Millar, C.I.; Kennett, D.J.; Harper, T.K.; Mensing, S. Great Basin Survivance (USA): Challenges and windfalls of the Neoglaciation/Late Holocene Dry Period (3100–1800 cal BP). Am. Antiq. 2023, 88, 402–418. [Google Scholar] [CrossRef]
- Leuschner, H.H.; Bauerochse, A.; Metzler, A. Environmental change, bog history and human impact around 2900 BC in NW Germany–preliminary results from a dendroecological study of a sub-fossil pine woodland at Campemoor, Dümmer Basin. Veg. Hist. Archaeobot. 2007, 16, 183–195. [Google Scholar] [CrossRef]
- Maczkowski, A.; Bolliger, M.; Ballmer, A.; Gori, M.; Lera, P.; Oberweiler, C.; Hafner, A. The Early Bronze Age dendrochronology of Sovjan (Albania): A first tree-ring sequence of the 24th–22nd c. BC for the southwestern Balkans. Dendrochronologia 2021, 66, 125811. [Google Scholar] [CrossRef]
- Kutschera, W.; Bietak, M.; Wild, E.M.; Ramsey, C.B.; Dee, M.; Golser, R.; Weninger, F. The chronology of Tell el-Daba: A crucial meeting point of 14C dating, archaeology, and Egyptology in the 2nd millennium BC. Radiocarbon 2012, 54, 407–422. [Google Scholar] [CrossRef]
- Kuniholm, P.I.; Kromer, B.; Manning, S.W.; Newton, M.; Latini, C.E.; Bruce, M.J. Anatolian tree rings and the absolute chronology of the eastern Mediterranean, 2220–2718 BC. Nature 1996, 381, 780–783. [Google Scholar] [CrossRef]
- Zaitseva, G.I.; Vasiliev, S.S.; Marsadolov, L.S.; Van Der Plicht, J.; Sementsov, A.A.; Dergachev, V.A.; Lebedeva, L.M. A tree-ring and 14C chronology of the key Sayan-Altai monuments. Radiocarbon 1997, 40, 571–580. [Google Scholar] [CrossRef]
- Demeter, S. Tatarli—A fifth-century BCE painted wooden tomb in Anatolia: Study, conservation, restitution and reconstruction. Stud. Conserv. 2010, 55, 225–230. [Google Scholar] [CrossRef]
- Bernabei, M.; Bontadi, J.; Rea, R.; Büntgen, U.; Tegel, W. Dendrochronological evidence for long-distance timber trading in the Roman Empire. PLoS ONE 2019, 14, e0224077. [Google Scholar] [CrossRef]
- Visser, R.M. Imperial timber? Dendrochronological evidence for large-scale road building along the Roman limes in the Netherlands. J. Archaeol. Sci. 2015, 53, 243–254. [Google Scholar] [CrossRef]
- Visser, R.M. Dendrochronological provenance patterns. Network analysis of tree-ring material reveals spatial and economic relations of roman timber in the continental north-western provinces. J. Comput. Appl. Archaeol. 2021, 4, 230–253. [Google Scholar] [CrossRef]
- Andersen, H. The Slavic expansion. Streams, springs, and wells. Scando-Slavica 2023, 69, 39–87. [Google Scholar] [CrossRef]
- Li, M.; Shao, X.; Yin, Z.Y.; Xu, X. Tree-ring dating of the reshui-1 tomb in Dulan County, Qinghai Province, north-west China. PLoS ONE 2015, 10, e0133438. [Google Scholar] [CrossRef]
- Brather, S. The Western Slavs of the Seventh to the Eleventh Century–An archaeological perspective. Hist. Compass 2011, 9, 454–473. [Google Scholar] [CrossRef]
- Maeda, H.; Hoshino, Y.; Ohyama, M.; Ura, Y.; Kohdzuma, Y. Tree-ring dates of excavated wooden containers provide a chronological framework for the ancient capital of Nara in Japan. J. Archaeol. Sci. Rep. 2024, 57, 104600. [Google Scholar] [CrossRef]
- Guiterman, C.H.; Baisan, C.H.; English, N.B.; Quade, J.; Dean, J.S.; Swetnam, T.W. Convergence of evidence supports a Chuska Mountains origin for the Plaza Tree of Pueblo Bonito, Chaco Canyon. Am. Antiq. 2020, 85, 331–346. [Google Scholar] [CrossRef]
- Gamba, E.; Shindo, L.; Isoardi, D.; Talon, B. Multidisciplinary approach to investigate human–forest relationships in southern French Alps: How to estimate the impact of populations on the local mountain wood stock? Quat. Int. 2024, 700, 80–96. [Google Scholar] [CrossRef]
- Helama, S.; Ratilainen, T.; Ruohonen, J.; Taavitsainen, J.P. Developing millennial tree-ring chronology for Turku (Åbo) and comparing palaeoclimatic signals inferred from archaeological, subfossil and living Pinus sylvestris data in Southwest Finland. Stud. Quat. 2024, 41, 1–11. [Google Scholar] [CrossRef]
- Morales, M.S.; Nielsen, A.E.; Villalba, R. First dendroarchaeological dates of prehistoric contexts in South America: Chullpas in the Central Andes. J. Archaeol. Sci. 2013, 40, 2393–2401. [Google Scholar] [CrossRef]
- Hansson, A.; Linderson, H.; Foley, B. Casks from Gribshunden (1495)—Dendrochronology of Late Medieval shipboard victual containers. Int. J. Naut. Archaeol. 2022, 51, 358–375. [Google Scholar] [CrossRef]
- Akkemik, Ü.; Köse, N.E.S.; Çatalbaş, M.E.; Thys-Şenocak, L. Dendrochronology and archival texts: Dating the Ottoman fortress of Seddülbahir on the Gallipoli Peninsula, Turkey. Archaeometry 2020, 62, 427–438. [Google Scholar] [CrossRef]
- Beattie-Edwards, M.; Le Fevre, P.; Fox, F. The Norman’s Bay Shipwreck, East Sussex, UK: A possible 17th-century Dutch ship from the Battle of Beachy Head. Int. J. Naut. Archaeol. 2018, 47, 159–181. [Google Scholar] [CrossRef]
- Larson, E.R.; Johnson, L.B.; Wilding, T.C.; Hildebrandt, K.M.; Kipfmueller, K.F.; Johnson, L.R. Faces in the wilderness: A new network of crossdated culturally modified red pine in the Boundary Waters Canoe Area Wilderness of Northern Minnesota, USA. Hum. Ecol. 2019, 47, 747–764. [Google Scholar] [CrossRef]
- Caruso, L.L.; Bianchi Villelli, M.E.; Villalba, R.; Aciar, M.E. Archaeobotanical and dendrochronological studies of a Spanish Colonial settlement in Nahuel Huapi (Patagonia, eighteenth century). Environ. Archaeol. 2023, 28, 387–398. [Google Scholar] [CrossRef]
- Grissino-Mayer, H.D.; Maxwell, J.T.; Harley, G.L.; Garland, N.A.; Holt, D.H.; Absher, C.; Dye, A.W. Dendrochronology reveals the construction history of an early 19th century farm settlement, southwestern Virginia, USA. J. Archaeol. Sci. 2013, 40, 481–489. [Google Scholar] [CrossRef]
- Szubska, M.I.; Szubski, M.J.; Klisz, M.; Pilch, K.; Wojnar, J.; Zin, E. Advantages and limitations of an interdisciplinary approach in woodland archaeology: An example of 18th–19th century tar production in European temperate forest. Quat. Int. 2023, 659, 63–73. [Google Scholar] [CrossRef]
- Penagos, C.; Girardclos, O.; Hunot, J.Y.; Martin, C.; Jacquot, K.; Cao, I.; Dufraisse, A. Naming, relocating and dating the woods of Notre-Dame “forest”, first results based on collated data and archaeological surveys of the remains. J. Cult. Herit. 2024, 65, 21–31. [Google Scholar] [CrossRef]
- Dominguez-Delmas, M.; Alejano-Monge, R.; Van Daalen, S.; Rodríguez-Trobajo, E.; García-González, I.; Susperregi, J.; Jansma, E. Tree-rings, forest history and cultural heritage: Current state and future prospects of dendroarchaeology in the Iberian Peninsula. J. Archaeol. Sci. 2015, 57, 180–196. [Google Scholar] [CrossRef]
- Schweig, E.S.; Van Arsdale, R.B. Neotectonics of the upper Mississippi embayment. Eng. Geol. 1996, 45, 185–203. [Google Scholar] [CrossRef]
- Dincă, L.; Murariu, G.; Enescu, C.M.; Achim, F.; Georgescu, L.; Murariu, A.; Holonec, L. Productivity differences between southern and northern slopes of Southern Carpathians (Romania) for Norway spruce, silver fir, birch and black alder. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 1070–1084. [Google Scholar] [CrossRef]
- Oprică, R.; Tudose, N.C.; Davidescu, S.O.; Zup, M.; Marin, M.; Comanici, A.N.; Crit, M.N.; Pitar, D. Gender inequalities in Transylvania’s largest peri-urban forest usage. Ann. For. Res. 2022, 65, 57–69. [Google Scholar] [CrossRef]
- Berger, A.R. Rapid landscape changes, their causes, and how they affect human history and culture. North. Rev. 2008, 28, 15–26. [Google Scholar]
- Blanton, D.B. Drought as a factor in the Jamestown Colony, 1607–1612. Hist. Archaeol. 2000, 34, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Klontza-Jaklová, V. What’s Wrong?: Hard Science and Humanities—Tackling the Question of the Absolute Chronology of the Santorini Eruption; Masaryk University Press: Brno, Czech Republic, 2016. [Google Scholar]
- Lavigne, F.; Degeai, J.P.; Komorowski, J.C.; Guillet, S.; Robert, V.; Lahitte, P.; De Belizal, E. Source of the great AD 1257 mystery eruption unveiled: Samalas volcano, Rinjani Volcanic Complex, Indonesia. Proc. Natl. Acad. Sci. USA 2013, 110, 16742–16747. [Google Scholar] [CrossRef]
- Stahle, D.W.; Dean, J.S. North American tree rings, climatic extremes, and social disasters. In Dendroclimatology: Progress and Prospects; Springer: Dordrecht, The Netherlands, 2010; pp. 297–327. [Google Scholar]
- Shennan, S. Population, culture history, and the dynamics of culture change. Curr. Anthropol. 2000, 41, 811–835. [Google Scholar] [CrossRef]
- Bellorado, B.A. The context, dating, and role of painted building murals in Gallina society. Kiva 2017, 83, 494–514. [Google Scholar] [CrossRef]
- Koerner, S.D.; Grissino-Mayer, H.D.; Sullivan, L.P.; Deweese, G.G. A dendroarchaeological approach to Mississippian culture occupational history in Eastern Tennessee, USA. Tree-Ring Res. 2009, 65, 81–90. [Google Scholar] [CrossRef]
- Lorenz, I.A.; Arnold, V.; Jansen, D.; Grootes, M.; Nelle, O. Iron Age wood usage at an enclosure in northern Germany. Quat. Int. 2017, 458, 94–102. [Google Scholar] [CrossRef]
- King, C. Early fabric in historic towns: Timber-framed buildings in Southwell, Nottinghamshire, c. 1350–1650. Vernac. Archit. 2019, 50, 18–39. [Google Scholar] [CrossRef]
- Legendziewicz, A.; Raszczuk, K.; Michalak, A. Municipal Defensive Walls in Western Poland: The Example of Żagań. Int. J. Archit. Herit. 2024, 19, 1058–1072. [Google Scholar] [CrossRef]
- Querrec, L.; Filion, L.; Auger, R.; Arseneault, D. Tree-ring analysis of white cedar (Thuja occidentalis L.) archaeological and historical wood in Québec City (Québec, Canada). Dendrochronologia 2009, 27, 199–212. [Google Scholar] [CrossRef]
- Domínguez-Delmás, M.; Driessen, M.; García-González, I.; van Helmond, N.; Visser, R.; Jansma, E. Long-distance oak supply in mid-2nd century AD revealed: The case of a Roman harbour (Voorburg-Arentsburg) in the Netherlands. J. Archaeol. Sci. 2014, 41, 642–654. [Google Scholar] [CrossRef]
- Akkemik, Ü.; Köse, N.; Wazny, T.; Kızıltan, Z.; Öncü, Ö.E.; Martin, J.P. Dating and dendroprovenancing of the timbers used in Yenikapı historical jetty (İstanbul, Turkey). Dendrochronologia 2019, 57, 125628. [Google Scholar] [CrossRef]
- Sidorova, M.O.; Büntgen, U.; Omurova, G.T.; Kardash, O.V.; Myglan, V.S. First dendro-archaeological evidence of a completely excavated medieval settlement in the extreme north of Western Siberia. Dendrochronologia 2017, 44, 146–152. [Google Scholar] [CrossRef]
- Seim, A.; Linscott, K.; Heussner, K.U.; Bonde, N.; Baittinger, C.; Stornes, J.M.; Linderholm, H.W. Diverse construction types and local timber sources characterize early medieval church roofs in southwestern Sweden. Dendrochronologia 2015, 35, 39–50. [Google Scholar] [CrossRef]
- Blankenship, S.A.; Pike, M.G.; Deweese, G.G.; Van De Gevel, S.L.; Grissino-Mayer, H.D. The dendroarchaeology of Cagle Saltpetre Cave: A 19th century saltpeter mining site in Van Buren County, Tennessee, USA. Tree-Ring Res. 2009, 65, 11–22. [Google Scholar] [CrossRef]
- Fouédjeu, L.; Saulnier, M.; Lejay, M.; Dušátko, M.; Labbas, V.; Jump, A.S.; Py-Saragaglia, V. High-resolution reconstruction of modern charcoal production kilns: An integrated approach combining dendrochronology, micromorphology and anthracology in the French Pyrenees. Quat. Int. 2021, 593, 306–319. [Google Scholar] [CrossRef]
- Shindo, L.; Py-Saragaglia, V.; Ancel, B.; Édouard, J.L.; Burri, S.; Corona, C. New insights on the chronology of medieval mining activity in the small polymetallic district of Faravel (Massif des Écrins, Southern French Alps) derived from dendrochronological and archaeological approaches. J. Archaeol. Sci. Rep. 2019, 23, 451–463. [Google Scholar] [CrossRef]
- Grabner, M.; Wächter, E.; Nicolussi, K.; Bolka, M.; Sormaz, T.; Steier, P.; Reschreiter, H. Prehistoric salt mining in Hallstatt, Austria: New chronologies out of small wooden fragments. Dendrochronologia 2021, 66, 125814. [Google Scholar] [CrossRef]
- Hrubý, P.; Kaiser, K.; Kočár, P.; Malý, K.; Petr, L. Silver mining and landscape changes in medieval Central Europe: Reconstructing ore processing in a buried fir forest on the Bohemian–Moravian Highlands (Koječín, Czech Republic). Geoarchaeology 2024, 39, 485–507. [Google Scholar] [CrossRef]
- Szychowska-Krąpiec, E. Dendrochronological studies of wood from mediaeval mines of polymetallic ores in Lower Silesia (SW Poland). Geochronometria 2007, 26, 61–68. [Google Scholar] [CrossRef]
- Szychowska-Krąpiec, E.; Dudek, K. Wieliczka Salt Mine and its history written in annual growth rings of spruce wood. Geol. Q. 2014, 58, 617–622. [Google Scholar] [CrossRef]
- McDonald, J. Cultivating in the Northwest: Early accounts of Tsimshian horticulture. In Keeping It Living: Traditions of Plant Use and Cultivation on the Northwest Coast of North America; University of Washington Press: Seattle, WA, USA, 2005; pp. 240–273. [Google Scholar]
- Armstrong, C.G.; Earnshaw, J.; McAlvay, A.C. Coupled archaeological and ecological analyses reveal ancient cultivation and land use in Nuchatlaht (Nuu-chah-nulth) territories, Pacific Northwest. J. Archaeol. Sci. 2022, 143, 105611. [Google Scholar] [CrossRef]
- Armstrong, C.G.; Lyons, N.; McAlvay, A.C.; Ritchie, P.M.; Lepofsky, D.; Blake, M. Historical ecology of forest garden management in Laxyuubm Ts’msyen and beyond. Ecosyst. People 2023, 19, 2160823. [Google Scholar] [CrossRef]
- Ford, A.; Nigh, R. Origins of the Maya forest garden: Maya resource management. J. Ethnobiol. 2009, 29, 213–236. [Google Scholar] [CrossRef]
- Ekblom, A.; Gillson, L.; Notelid, M. A historical ecology of the Limpopo and Kruger National Parks and lower Limpopo Valley. J. Archaeol. Anc. Hist. 2011, 1, 1–29. [Google Scholar] [CrossRef]
- Neves, E.G.; Heckenberger, M.J. The call of the wild: Rethinking food production in ancient Amazonia. Annu. Rev. Anthropol. 2019, 48, 371–388. [Google Scholar] [CrossRef]
- Larson, D.O.; Neff, H.; Graybill, D.A.; Michaelsen, J.; Ambos, E. Risk, climatic variability, and the study of Southwestern prehistory: An evolutionary perspective. Am. Antiq. 1996, 61, 217–241. [Google Scholar] [CrossRef]
- Liebmann, M.J.; Farella, J.; Roos, C.I.; Stack, A.; Martini, S.; Swetnam, T.W. Native American depopulation, reforestation, and fire regimes in the Southwest United States, 1492–1900 CE. Proc. Natl. Acad. Sci. USA 2016, 113, E696–E704. [Google Scholar] [CrossRef]
- Brandolini, F.; Compostella, C.; Pelfini, M.; Turner, S. The evolution of historic agroforestry landscape in the northern Apennines (Italy) and its consequences for slope geomorphic processes. Land 2023, 12, 1054. [Google Scholar] [CrossRef]
- Röpke, A.; Stobbe, A.; Oeggl, K.; Kalis, A.J.; Tinner, W. Late-Holocene land-use history and environmental changes at the high altitudes of St Antönien (Switzerland, Northern Alps): Combined evidence from pollen, soil and tree-ring analyses. Holocene 2011, 21, 485–498. [Google Scholar] [CrossRef]
- Boswijk, G.; Fowler, A.; Lorrey, A.; Palmer, J.; Ogden, J. Extension of the New Zealand kauri (Agathis australis) chronology to 1724 BC. Holocene 2006, 16, 188–199. [Google Scholar] [CrossRef]
- Akkemik, Ü.; Caner, H.; Conyers, G.A.; Dillon, M.J.; Karlioğlu, N.; Rauh, N.K.; Theller, L.O. The archaeology of deforestation in south coastal Turkey. Int. J. Sustain. Dev. World Ecol. 2012, 19, 395–405. [Google Scholar] [CrossRef]
- Bernabei, M.; Bontadi, J. Distinguishing root-and stem-wood of Picea abies. IAWA J. 2011, 32, 375–382. [Google Scholar] [CrossRef]
- Dahdouh-Guebas, F.; Koedam, N. Long-term retrospection on mangrove development using transdisciplinary approaches: A review. Aquat. Bot. 2008, 89, 80–92. [Google Scholar] [CrossRef]
- Boswijk, G.; Loader, N.J.; Young, G.H.; Hogg, A. Developing tree-ring chronologies from New Zealand matai (Prumnopitys taxifolia) and miro (Prumnopitys ferruginea) for archaeological dating: Progress and problems. Dendrochronologia 2021, 69, 125876. [Google Scholar] [CrossRef]
- Billamboz, A. Regional patterns of settlement and woodland developments: Dendroarchaeology in the Neolithic pile-dwellings on Lake Constance (Germany). Holocene 2014, 24, 1278–1287. [Google Scholar] [CrossRef]
- Domínguez-Delmás, M.; Rich, S.; Traoré, M.; Hajj, F.; Poszwa, A.; Akhmetzyanov, L.; Groenendijk, P. Tree-ring chronologies, stable strontium isotopes and biochemical compounds: Towards reference datasets to provenance Iberian shipwreck timbers. J. Archaeol. Sci. Rep. 2020, 34, 102640. [Google Scholar] [CrossRef]
- Haneca, K.; van Daalen, S.; Beeckman, H. Timber for the trenches: A new perspective on archaeological wood from First World War trenches in Flanders Fields. Antiquity 2018, 92, 1619–1639. [Google Scholar] [CrossRef]
- Timpany, S.; Crone, A.; Hamilton, D.; Sharpe, M. Revealed by waves: A stratigraphic, palaeoecological, and dendrochronological investigation of a prehistoric oak timber and intertidal peats, Bay of Ireland, West Mainland, Orkney. J. Isl. Coast. Archaeol. 2017, 12, 515–539. [Google Scholar] [CrossRef]
- Yermokhin, M.; Khasanov, B.; Knysh, N.; Lukin, V. Multicentennial oak chronologies from Northern Belarus. Dendrochronologia 2024, 83, 126159. [Google Scholar] [CrossRef]
- Lavoie, C.; Payette, S. Late-Holocene light-ring chronologies from subfossil black spruce stems in mires of subarctic Quebec. Holocene 1997, 7, 129–137. [Google Scholar] [CrossRef]
- Nicolussi, K.; Kaufmann, M.; Thomas, M.M.; van der Plicht, J.; Schießling, P.; Thurner, A. A 9111 year long conifer tree-ring chronology for the European Alps: A base for environmental and climatic investigations. Holocene 2009, 19, 909–920. [Google Scholar] [CrossRef]
- Jansma, E.; Haneca, K.; Kosian, M. A dendrochronological reassessment of three Roman boats from Utrecht (the Netherlands): Evidence of inland navigation between the Lower-Scheldt region in Gallia Belgica and the limes of Germania Inferior. J. Archaeol. Sci. 2014, 50, 484–496. [Google Scholar] [CrossRef]
- Murariu, G.; Dinca, L.; Tudose, N.; Crisan, V.; Georgescu, L.; Munteanu, D.; Mocanu, G.D. Structural characteristics of the main resinous stands from Southern Carpathians, Romania. Forests 2021, 12, 1029. [Google Scholar] [CrossRef]
- Jacoby, G.C. Dendrochronology. In Quaternary Geochronology: Methods and Applications; Noller, J.S., Sowers, J.M., Lettis, W.R., Eds.; American Geophysical Union: Washington, DC, USA, 2000; pp. 11–20. [Google Scholar]
- Norton, D.A. Dendrochronology in the Southern Hemisphere. In Methods of Dendrochronology: Applications in the Environmental Sciences; Cook, E.R., Kairiukstis, L.A., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 1990; pp. 17–22. [Google Scholar]
- Galvin, S.; Potito, A.; Hickey, K. Evaluating the dendroclimatological potential of Taxus baccata (yew) in southwest Ireland. Dendrochronologia 2014, 32, 144–152. [Google Scholar] [CrossRef]
- Bleicher, N. Four levels of patterns in tree-rings: An archaeological approach to dendroecology. Veg. Hist. Archaeobot. 2014, 23, 615–627. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Ballesteros-Cánovas, J.A.; George, S.S.; Stoffel, M. Tropical and subtropical dendrochronology: Approaches, applications, and prospects. Ecol. Indic. 2022, 144, 109506. [Google Scholar] [CrossRef]
- Dinca, L.; Constandache, C.; Postolache, R.; Murariu, G.; Tupu, E. Timber harvesting in mountainous regions: A comprehensive review. Forests 2025, 16, 495. [Google Scholar] [CrossRef]
- Sulphey, M.M.; AlKahtani, N.S.; Senan, N.A.M.; Adow, A.H.E. A bibliometric study on organization citizenship behavior for the environment. Glob. J. Environ. Sci. Manag. 2024, 10, 891–906. [Google Scholar]
- Timis-Gansac, V.; Dinca, L.; Constandache, C.; Murariu, G.; Cheregi, G.; Timofte, C.S.C. Conservation biodiversity in arid areas: A review. Sustainability 2025, 17, 2422. [Google Scholar] [CrossRef]
- Wikipedia Contributors. List of Archaeological Sites by Country. Available online: https://en.wikipedia.org/wiki/List_of_archaeological_sites_by_country (accessed on 14 March 2025).
- Helbaek, H. First impressions of the Çatal Hüyük plant husbandry. Anatol. Stud. 1964, 14, 121–123. [Google Scholar] [CrossRef]
- van Zeist, W.; Bottema, S. Plant husbandry in early neolithic Nea Nikomedeia, Greece. Acta Bot. Neerl. 1971, 20, 524–538. [Google Scholar] [CrossRef]
- Hillman, G. Phytosociology and ancient weed floras: Taking account of taphonomy and changes in cultivation methods. In Modelling Ecological Change; Harris, D.R., Thomas, K.D., Eds.; Routledge: New York, NY, USA, 2016; pp. 27–40. [Google Scholar]
- Jacomet, S. Identification of Cereal Remains from Archaeological Sites; Basel University: Basel, Switzerland, 2006. [Google Scholar]
- Grissino-Mayer, H.D. A 2129-year reconstruction of precipitation for northwestern New Mexico. In Tree-Rings, Environment, and Humanity; Dean, J.S., Meko, D., Swetnam, T.W., Eds.; Radiocarbon: Tucson, AZ, USA, 1996; pp. 191–205. [Google Scholar]
- Towner, R.H. Arboreal archaeology and early Navajo land use. J. Archaeol. Sci. Rep. 2016, 6, 342–350. [Google Scholar] [CrossRef]
- Brewer, S.; Cheddadi, R.; De Beaulieu, J.L.; Reille, M. The spread of deciduous Quercus throughout Europe since the last glacial period. For. Ecol. Manag. 2002, 156, 27–48. [Google Scholar] [CrossRef]
- Petit, R.J.; Brewer, S.; Bordács, S.; Burg, K.; Cheddadi, R.; Coart, E.; Kremer, A. Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For. Ecol. Manag. 2002, 156, 49–74. [Google Scholar] [CrossRef]
- Gafenco, I.M.; Dinulică, F.; Pleșca, B.I.; Șofletea, N. Links between tree phenology and wood traits in sessile oak (Quercus petraea (Matt.) Liebl.). Ann. For. Res. 2024, 67, 31–50. [Google Scholar] [CrossRef]
- Hughes, M.K. Dendrochronology in climatology—The state of the art. Dendrochronologia 2002, 20, 95–116. [Google Scholar] [CrossRef]
- Edvardsson, J.; Almevik, G.; Lindblad, L.; Linderson, H.; Melin, K.M. How cultural heritage studies based on dendrochronology can be improved through two-way communication. Forests 2021, 12, 1047. [Google Scholar] [CrossRef]
- Eissing, T.; Dittmar, C. Timber transport and dendroprovenancing in Thuringia and Bavaria. In Tree Rings, Art, Archaeology, Proceedings of an International Conference; Royal Institute for Cultural Heritage: Brussels, Belgium, 2011; pp. 137–149. [Google Scholar]
- Guibal, F.F. First dendrochronological dating of a shipwreck in the western Mediterranean area. Dendrochronologia 1992, 10, 147–156. [Google Scholar]
- Negueruela, I.; Pinedo, J.; Gömez, M.; Miñano, A.; Arellano, I.; Barba, J.S. Seventh-century BC Phoenician vessel discovered at Playa de la Isla, Mazarrón, Spain. Int. J. Naut. Archaeol. 1995, 24, 189–197. [Google Scholar] [CrossRef]
- Daly, A.; Nymoen, P. The Bøle ship, Skien, Norway—Research history, dendrochronology and provenance. Int. J. Naut. Archaeol. 2008, 37, 153–170. [Google Scholar] [CrossRef]
- Nayling, N. The Norman Bay’s Wreck, East Sussex: Tree-Ring Analysis of Ship Timbers; English Heritage: Swindon, UK, 2008. [Google Scholar]
- Ciocirlan, M.C.I.; Ciocîrlan, E.; Radu, G.R.; Chira, D.; Gailing, O.; Vînătoru, C.; Curtu, A.L. Exploring the association between adaptive and growth traits and within-individual genetic diversity in common beech (Fagus sylvatica). Ann. For. Res. 2024, 67, 151–166. [Google Scholar] [CrossRef]
- Schroeder, S.; White, A.J. Cultural-Environmental Systems and the Archaeology of Climate Change and Social Complexity: Midwest and Southeast United States. Annu. Rev. Anthropol. 2024, 53, 147–163. [Google Scholar] [CrossRef]
- Esper, J.; Krusic, P.J.; Ljungqvist, F.C.; Luterbacher, J.; Carrer, M.; Cook, E.; Davi, N.K.; Hartl-Meier, C.; Kirdyanov, A.; Konter, O.; et al. Ranking of tree-ring based temperature reconstructions of the past millennium. Quat. Sci. Rev. 2016, 145, 134–151. [Google Scholar] [CrossRef]
- Amoroso, M.M.; Daniels, L.D.; Baker, P.J.; Camarero, J.J. Dendroecology: Tree-Ring Analyses Applied to Ecological Studies; Springer: Cham, Switzerland, 2017; Volume 231. [Google Scholar]
- Fritts, H.C.; Swetnam, T.W. Dendroecology: A tool for evaluating variations in past and present forest environments. Adv. Ecol. Res. 1989, 19, 111–188. [Google Scholar]
- Trigger, B.G. A History of Archaeological Thought, 2nd ed.; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Şofletea, N.; Curtu, A.L.; Daia, M.L.; Budeanu, M. The dynamics and variability of radial growth in provenance trials of Norway spruce (Picea abies (L.) Karst.) within and beyond the hot margins of its natural range. Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 43, 265–271. [Google Scholar] [CrossRef]
- Budeanu, M.; Apostol, E.N.; Besliu, E.; Crișan, V.E.; Petritan, A.M. Phenotypic variability and differences in the drought response of Norway spruce pendula and pyramidalis half-sib families. Forests 2021, 12, 947. [Google Scholar] [CrossRef]
- Budeanu, M.; Besliu, E.; Pepelea, D. Testing the radial increment and climate–growth relationship between Swiss stone pine European provenances in the Romanian Carpathians. Forests 2025, 16, 391. [Google Scholar] [CrossRef]
- Leifsson, C.; Buras, A.; Klesse, S.; Zang, C. Identifying drivers of non-stationary climate-growth relationships of European beech. Sci. Total Environ. 2024, 937, 173321. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, P.; Gao, T.; Yu, R.; Zhou, P.; Cheng, H. The 5400 a BP extreme weakening event of the Asian summer monsoon and cultural evolution. Sci. China Earth Sci. 2017, 60, 1171–1182. [Google Scholar] [CrossRef]
- Giacomelli, L.; Perrotta, A.; Scandone, R.; Scarpati, C. The eruption of Vesuvius of 79 AD and its impact on human environment in Pompeii. Episodes 2003, 26, 235–238. [Google Scholar] [CrossRef]
- Dong, G.; Zhang, F.; Liu, F.; Zhang, D.; Zhou, A.; Yang, Y.; Wang, G. Multiple evidences indicate no relationship between prehistoric disasters in Lajia site and outburst flood in upper Yellow River valley, China. Sci. China Earth Sci. 2018, 61, 441–449. [Google Scholar] [CrossRef]
- Wechsler, N.; Katz, O.; Dray, Y.; Gonen, I.; Marco, S. Estimating location and size of historical earthquake by combining archaeology and geology in Umm-El-Qanatir, Dead Sea Transform. Nat. Hazards 2009, 50, 27–43. [Google Scholar] [CrossRef]
- Weiss, H.; Courty, M.A.; Wetterstrom, W.; Guichard, F.; Senior, L.; Meadow, R.; Curnow, A. The genesis and collapse of third millennium north Mesopotamian civilization. Science 1993, 261, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- DeMenocal, P.B. Cultural responses to climate change during the late Holocene. Science 2001, 292, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Haug, G.H.; Gunther, D.; Peterson, L.C.; Sigman, D.M.; Hughen, K.A.; Aeschlimann, B. Climate and the collapse of Maya civilization. Science 2003, 299, 1731–1735. [Google Scholar] [CrossRef]
- Pellatt, M.G.; Gedalof, Z.E. Environmental change in Garry oak (Quercus garryana) ecosystems: The evolution of an eco-cultural landscape. Biodivers. Conserv. 2014, 23, 2053–2067. [Google Scholar] [CrossRef]
- Zin, E.; Drobyshev, I.; Bernacki, D.; Niklasson, M. Dendrochronological reconstruction reveals a mixed-intensity fire regime in Pinus sylvestris-dominated stands of Białowieża Forest, Belarus and Poland. J. Veg. Sci. 2015, 26, 934–945. [Google Scholar] [CrossRef]
- Harley, G.L.; Baisan, C.H.; Brown, P.M.; Falk, D.A.; Flatley, W.T.; Grissino-Mayer, H.D.; Taylor, A.H. Advancing dendrochronological studies of fire in the United States. Fire 2018, 1, 11. [Google Scholar] [CrossRef]
- Manton, M.; Ruffner, C.; Kibirkštis, G.; Brazaitis, G.; Marozas, V.; Pukienė, R.; Angelstam, P. Fire occurrence in Hemi-Boreal forests: Exploring natural and cultural scots pine fire regimes using dendrochronology in Lithuania. Land 2022, 11, 260. [Google Scholar] [CrossRef]
- Marin, M.; Clinciu, I.; Tudose, N.C.; Ungurean, C.; Adorjani, A.; Mihalache, A.L.; Davidescu, A.A.; Davidescu, Ș.O.; Dinca, L.; Cacovean, H. Assessing the vulnerability of water resources in the context of climate changes in a small forested watershed using SWAT: A review. Environ. Res. 2020, 184, 109330. [Google Scholar] [CrossRef] [PubMed]
- Tudose, N.C.; Marin, M.; Cheval, S.; Mitter, H.; Broekman, A.; Sanchez-Plaza, A.; Ungurean, C.; Davidescu, S. Challenges and opportunities of knowledge co-creation for the water-energy-land nexus. Clim. Serv. 2023, 30, 100340. [Google Scholar] [CrossRef]








| Current Number | Country | Documents | Citations | Total Link Strength |
|---|---|---|---|---|
| 1 | USA | 64 | 5434 | 69 |
| 2 | England | 28 | 5527 | 73 |
| 3 | Germany | 23 | 4746 | 57 |
| 4 | France | 22 | 5013 | 55 |
| 5 | Switzerland | 17 | 4784 | 57 |
| 6 | Netherlands | 15 | 4573 | 43 |
| 7 | Italy | 8 | 4391 | 36 |
| 8 | Sweden | 9 | 4331 | 29 |
| 9 | Australia | 6 | 4380 | 24 |
| 10 | Spain | 8 | 2172 | 23 |
| 11 | New Zealand | 7 | 4447 | 22 |
| 12 | Denmark | 6 | 4396 | 20 |
| 13 | China | 5 | 4342 | 20 |
| 14 | Poland | 10 | 64 | 11 |
| 15 | Canada | 8 | 233 | 4 |
| 16 | Argentina | 4 | 29 | 2 |
| Current Number | Journal | Documents | Citations | Total Link Strength |
|---|---|---|---|---|
| 1 | Journal of archaeological science | 13 | 666 | 33 |
| 2 | Dendrochronologia | 18 | 156 | 22 |
| 3 | Radiocarbon | 14 | 590 | 19 |
| 4 | International journal of nautical archaeology | 7 | 66 | 12 |
| 5 | Tree-ring research | 7 | 89 | 12 |
| 6 | Forests | 2 | 13 | 7 |
| 7 | Plos one | 3 | 61 | 6 |
| 8 | Journal of archaeological science-reports | 6 | 39 | 5 |
| 9 | Nature | 3 | 74 | 5 |
| 10 | Holocene | 4 | 148 | 4 |
| 11 | Antiquity | 4 | 77 | 3 |
| 12 | Quaternary international | 6 | 36 | 3 |
| Current Number | Keyword | Occurrences | Total Link Strength |
|---|---|---|---|
| 1 | archaeology | 73 | 203 |
| 2 | dendrochronology | 80 | 193 |
| 3 | vegetation | 18 | 73 |
| 4 | tree-rings | 23 | 70 |
| 5 | climate | 20 | 67 |
| 6 | radiocarbon | 16 | 59 |
| 7 | history | 14 | 58 |
| 8 | calibration | 18 | 57 |
| 9 | variability | 12 | 55 |
| 10 | record | 11 | 51 |
| 11 | oak | 10 | 42 |
| 12 | wood | 10 | 40 |
| 13 | drought | 10 | 33 |
| 14 | Cultural heritage | 8 | 32 |
| 15 | dendroarchaeology | 12 | 26 |
| 16 | dendroclimatology | 8 | 30 |
| Current Number | Period | Location | Studied Aspect | Cited By |
|---|---|---|---|---|
| 1 | Neolithic | northern Alpine foreland | Perspectives on settlement | Hofmann et al., 2016 [38] |
| 2 | Late Bronze to early Iron Age | Luokesa lake, Lithuania | The prehistoric lake settlement tradition | Pranckėnaitė, 2014 [39] |
| 3 | 5th and 2nd millennia BC | Ohrid, North Macedonia | Well-replicated tree-ring chronologies for different species | Bolliger et al., 2023 [40] |
| 4 | 3100–1800 BC | Great Basin Survivance (USA) | Challenges and Windfalls of the Neoglaciation/Late Holocene Dry Period | Thomas et al., 2023 [41] |
| 5 | 2900 BC | Nord West Germany | Environmental change, bog history and human impact | Leuschner et al., 2007 [42] |
| 6 | 2158–2142 BC | Sovjan, Albania | Early Bronze Age dendrochronology | Maczkowski et al., 2021 [43] |
| 7 | the 2nd Millennium BC | Tell el-Daba site in the Nile Delta, Egypt | The Chronology of Tell El-Daba | Kutschera et al., 2012 [44] |
| 8 | 2220–718 BC | Anatolia, Turkey | The absolute chronology of the eastern Mediterranean | Kuniholm et al., 1996 [45] |
| 9 | 9th and late 5th–4th centuries BC | Key Sayan-Altai monuments, Russia | Monuments chronology from the Scythian period | Zaitseva et al., 1997 [46] |
| 10 | fifth century BC | Central Anatolia, Turkey | Painting on wood during antiquity | Demeter, 2010 [47] |
| 11 | AD 40–60 | France | Dendrochronological evidence for long-distance timber trading in the Roman Empire | Bernabei et al., 2019 [48] |
| 12 | AD 124–125 | Netherlands | Dendrochronological evidence for large-scale road building along the Roman limes | Visser, 2015 [49] |
| 13 | AD 100–300 | Northern Europe | Network analysis of tree-ring material reveals spatial and economic relations of Roman timber in the Continental North-Western provinces | Visser, 2021 [50] |
| 14 | AD 300–700 | Europe | Slavic expansion | Andersen, 2023 [51] |
| 15 | AD 311–900 | north-western China | Dating of the Reshui-1 Tomb | Li et al., 2015 [52] |
| 16 | AD Seventh to the Eleventh Century | Europe | Western Slavs | Brather, 2011 [53] |
| 17 | AD 710–794 | Nara, Japan | Tree-ring dates of excavated wooden containers | Maeda et al., 2024 [54] |
| 18 | AD 850–1140 | Pueblo Bonito, Mexico | Origin for the Plaza tree | Guiterman et al., 2020 [55] |
| 19 | AD 1000–2000 | southern French Alps | The impact of populations on the local mountain wood stock | Gamba et al., 2024 [56] |
| 20 | AD 1183–1430 | Turku, Finland | Comparing palaeoclimatic signals inferred from archaeological, subfossil and living Pinus sylvestris data | Helama et al., 2024 [57] |
| 21 | AD 13th century | Central Andes, Bolivia | The chronology of chullpas (burial towers and storage chambers) | Morales et al., 2013 [58] |
| 22 | AD 1495 | Casks from royal flagship Gribshunden | Danish–Norwegian | Hansson et al., 2022 [59] |
| 23 | AD 1656 | Gallipoli Peninsula, Turkey | Ottoman fortress of Seddülbahir | Akkemik et al., 2020 [60] |
| 24 | AD 1690 | Sussex coast, UK | A gun Dutch ship lost during the Battle of Beachy Head | Beattie-Edwards et al., 2018 [61] |
| 25 | AD from the mid-1700s to the early 1900s | northern Minnesota, USA | Historical water routes during the North American fur trade | Larson et al., 2019 [62] |
| 26 | AD Eighteenth Century | Nahuel Huapi, Patagonia | Spanish colonial settlement | Caruso et al., 2023 [63] |
| 27 | AD 1789 | Catawba Valley, Virginia, USA | Construction history of a farm settlement | Grissino-Mayer et al., 2013 [64] |
| 28 | AD 18th–19th century | Poland | Tar production in European temperate forest | Szubska et al., 2023 [65] |
| 29 | AD 2019 | Notre Dame, Paris, France | Naming, relocating and dating the woods of Notre-Dame | Penagos et al., 2024 [66] |
| 30 | - | Spain | Dendroarchaeology in the Iberian Peninsula | Dominguez-Delmas et al., 2015 [67] |
| 31 | - | USA | Neotectonics of the upper Mississippi embayment | Schweig and Van Arsdale, 1996 [68] |
| Current Number | Studied Aspect | Location | Cited By |
|---|---|---|---|
| 1 | Agathis australis (D. Don) Loudon (kauri) chronology | New Zealand | Boswijk et al., 2006 [104] |
| 2 | Deforestation | south coastal Turkey | Akkemik et al., 2012 [105] |
| 3 | Distinguishing root- and stem-wood of Picea abies | Trentino region, Italy | Bernabei and Bontadi, 2011 [106] |
| 4 | Long-term retrospection on mangrove development | general | Dahdouh-Guebas and Koedam, 2008 [107] |
| 5 | Matai—Prumnopitys taxifolia (Banks & Sol. ex D. Don) de Laub. and miro—Prumnopitys ferruginea (G.Benn. ex D. Don) C.N.Page chronologies | New Zealand | Boswijk et al., 2021 [108] |
| 6 | Regional patterns of settlement and woodland developments | Lake Constance | Billamboz, 2014 [109] |
| 7 | The provenance of the wood used in an 18th-century Spanish ship of the Royal Navy | Spain | Domínguez-Delmás et al., 2020 [110] |
| 8 | Timber for the trenches in First World War | North-west Europe | Haneca et al., 2018 [111] |
| 9 | Bay of Ireland, West Mainland, Orkney, UK | Dendrochronological investigation of a prehistoric oak timber | Timpany et al., 2017 [112] |
| 10 | Road building along the Roman limes | Netherlands | Visser, 2015 [49] |
| 11 | Oak chronologies | Northern Belarus | Yermokhin, 2024 [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinca, L.; Constandache, C.; Murariu, G.; Antofie, M.M.; Draghici, T.; Bratu, I. Environmental Archaeology Through Tree Rings: Dendrochronology as a Tool for Reconstructing Ancient Human–Environment Interactions. Heritage 2025, 8, 482. https://doi.org/10.3390/heritage8110482
Dinca L, Constandache C, Murariu G, Antofie MM, Draghici T, Bratu I. Environmental Archaeology Through Tree Rings: Dendrochronology as a Tool for Reconstructing Ancient Human–Environment Interactions. Heritage. 2025; 8(11):482. https://doi.org/10.3390/heritage8110482
Chicago/Turabian StyleDinca, Lucian, Cristinel Constandache, Gabriel Murariu, Maria Mihaela Antofie, Tiberiu Draghici, and Iulian Bratu. 2025. "Environmental Archaeology Through Tree Rings: Dendrochronology as a Tool for Reconstructing Ancient Human–Environment Interactions" Heritage 8, no. 11: 482. https://doi.org/10.3390/heritage8110482
APA StyleDinca, L., Constandache, C., Murariu, G., Antofie, M. M., Draghici, T., & Bratu, I. (2025). Environmental Archaeology Through Tree Rings: Dendrochronology as a Tool for Reconstructing Ancient Human–Environment Interactions. Heritage, 8(11), 482. https://doi.org/10.3390/heritage8110482

