Ultra-Short Pulse Laser Cleaning of Contaminated Pleistocene Bone: A Comprehensive Study on the Influence of Pulse Duration and Wavelength
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Laser Cleaning Systems and Parameters
- (i)
- Ultraviolet (UV) irradiation was carried out at 343 nm using the linearly polarized output of an fs laser system (Carbide model, Light Conversion, Lithuania), coupled with a galvanometer mirror beam steering apparatus with final output through a 330 mm focal length telecentric lens (Direct Machining Control, UAB, Vilnius, Lithuania). Irradiation experiments were carried out with a pulse duration of 238 fs, a maximum output power of 9.33 W, and a Gaussian beam profile diameter of 30 µm. The pulse repetition rate could be adjusted between 1 kHz and 1 MHz, using a pulse peak divider (PPD) option.
- (ii)
- An air-cooled 800 ps pulsed 8 W (40 µJ max. Ep) sub-ns near-infrared (n-IR) laser (PowerLine Pico 10-1064, ROFIN-SINAR Laser GmbH, Germany) emitting at a wavelength of 1064 nm, integrated into a galvanometer mirror apparatus fitted with a 160 mm focal length flat-field lens, was employed as a second system. The beam waist diameter was determined as 80 µm. Its pulse repetition rate ranged between 200 and 800 kHz.
- (iii)
- The third system employed was a 3 W, air-cooled third harmonic solid-state laser with emission at 355 nm, a pulse duration of 300 ps, and a maximum output pulse energy of 15 µJ (PowerLine Pico 10-355 from ROFIN-SINAR Laser GmbH, Germany). This laser was also integrated into a galvanometer mirror system fitted with a 160 mm focal length flat-field lens, which resulted in an elliptical beam, with a waist axis of 34 µm and 29 µm. The pulse repetition rate was selectable between 200 and 800 kHz.
2.3. Characterization Techniques
3. Results and Discussion
3.1. Application of Sub-Ns n-IR and UV Laser
3.2. Application of fs UV Laser
3.3. SEM (EDS) Characterization
3.4. ATR-FTIR Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cooper, M. Laser Cleaning in Conservation: An Introduction; Butterworth-Heinemann: Oxford, UK, 1998. [Google Scholar]
- Asmus, J.F.; Murphy, C.G.; Munk, W.H. Studies on the Interaction of Laser Radiation with Art Artifacts. In Developments in Laser Technology II; SPIE: Bellingham, WA, USA, 1974; Volume 4, pp. 19–30. [Google Scholar] [CrossRef]
- Lahoz, R.; Angurel, L.A.; Brauch, U.; Estepa, L.C.; de la Fuente Leis, G.F. Laser Applications in the Preservation of Cultural Heritage: An Overview of Fundamentals and Applications of Lasers in the Preservation of Cultural Heritage. Conserv. Sci. Cult. Herit. Appl. Instrum. Anal. 2013, 294–332. [Google Scholar]
- Nevin, A.; Pouli, P.; Georgiou, S.; Fotakis, C. Laser conservation of art. Nat. Mater. 2007, 6, 320–322. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; de la Fuente, G.F.; Carretero, J.M.; Maingi, E.M.; Abad, M.P.A.; Alcalde, R.A.; Chapoulie, R.; Schiavon, N.; Angurel, L.A. Sub-ns-pulsed laser cleaning of an archaeological bone from the Sierra de Atapuerca, Spain: A case study. SN Appl. Sci. 2021, 3, 865. [Google Scholar] [CrossRef]
- Lazzarini, L.; Marchesini, L.; Asmus, J.F. Lasers for the Cleaning of Statuary: Initial Results and Potentialities. J. Vac. Sci. Technol. 1973, 10, 1039–1043. [Google Scholar] [CrossRef]
- Palomar, T.; Oujja, M.; Llorente, I.; Barat, B.R.; Cañamares, M.; Cano, E.; Castillejo, M. Evaluation of laser cleaning for the restoration of tarnished silver artifacts. Appl. Surf. Sci. 2016, 387, 118–127. [Google Scholar] [CrossRef] [Green Version]
- Buccolieri, G.; Nassisi, V.; Buccolieri, A.; Vona, F.; Castellano, A. Laser cleaning of a bronze bell. Appl. Surf. Sci. 2012, 272, 55–58. [Google Scholar] [CrossRef]
- Siano, S.; Agresti, J.; Cacciari, I.; Ciofini, D.; Mascalchi, M.; Osticioli, I.; Mencaglia, A.A. Laser cleaning in conservation of stone, metal, and painted artifacts: State of the art and new insights on the use of the Nd:YAG lasers. Appl. Phys. A 2011, 106, 419–446. [Google Scholar] [CrossRef]
- Burmester, T.; Meier, M.; Haferkamp, H.; Barcikowski, S.; Bunte, J.; Ostendorf, A. Femtosecond Laser Cleaning of Metallic Cultural Heritage and Antique Artworks. In Lasers in the Conservation of Artworks; Springer: Berlin/Heidelberg, Germany, 2005; pp. 61–69. [Google Scholar] [CrossRef]
- Gemeda, B.T.; Lahoz, R.; Caldeira, A.T.; Schiavon, N. Efficacy of laser cleaning in the removal of biological patina on the volcanic scoria of the rock-hewn churches of Lalibela, Ethiopia. Environ. Earth Sci. 2018, 77, 36. [Google Scholar] [CrossRef]
- Siano, S.; Salimbeni, R. Advances in Laser Cleaning of Artwork and Objects of Historical Interest: The Optimized Pulse Duration Approach. Acc. Chem. Res. 2010, 43, 739–750. [Google Scholar] [CrossRef]
- Kearns, A.; Fischer, C.; Watkins, K.; Glasmacher, M.; Kheyrandish, H.; Brown, A.; Steen, W.; Beahan, P. Laser removal of oxides from a copper substrate using Q-switched Nd:YAG radiation at 1064 nm, 532 nm and 266 nm. Appl. Surf. Sci. 1998, 127–129, 773–780. [Google Scholar] [CrossRef]
- Chen, G.X.; Kwee, T.J.; Tan, K.P.; Choo, Y.S.; Hong, M.H. Laser cleaning of steel for paint removal. Appl. Phys. A 2010, 101, 249–253. [Google Scholar] [CrossRef]
- Sanz, M.; Oujja, M.; Ascaso, C.; Pérez-Ortega, S.; Souza-Egipsy, V.; Fort, R.; Rios, A.D.L.; Wierzchos, J.; Cañamares, M.; Castillejo, M. Influence of wavelength on the laser removal of lichens colonizing heritage stone. Appl. Surf. Sci. 2017, 399, 758–768. [Google Scholar] [CrossRef] [Green Version]
- Yandrisevits, M.A.; Londero, P.; Carò, F.; Rizzo, A.; Cappuccini, C. Wavelength-dependent absorption and scattering effects on laser cleaning of a corroded iron alloy European scale armor. In Lasers in the Conservation of Artworks XI, Proceedings of the LACONA XI, Krakow, Poland, 20–23 September 2016; Targowski, P., Walczak, M., Pouli, P., Eds.; NCU Press: Toruń, Poland, 2017. [Google Scholar] [CrossRef]
- Fotakis, C.; Kautek, W.; Castillejo, M. Lasers in the Preservation of Cultural Heritage; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef] [Green Version]
- Siano, S. Principles of Laser Cleaning in Conservation. In Handbook on the Use of Lasers in Conservation and Conservation Science; COST G7 (2007); COST OFFICE: Brussels, Belgium, 2007; Volume 7, pp. 1–26. [Google Scholar]
- Pouli, P.; Papakonstantinou, E.; Frantzikinaki, K.; Panou, A.; Frantzi, G.; Vasiliadis, C.; Fotakis, C. The two-wavelength laser cleaning methodology; theoretical background and examples from its application on CH objects and monuments with emphasis to the Athens Acropolis sculptures. Herit. Sci. 2016, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Svendsen, W.E.; Schou, J.; Thestrup, B.; Ellegaard, O. Ablation from metals induced by visible and UV laser irradiation. Appl. Surf. Sci. 1996, 96–98, 518–521. [Google Scholar] [CrossRef]
- Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831–838. [Google Scholar] [CrossRef]
- Salimbeni, R.; Pini, R.; Siano, S. A variable pulse width Nd:YAG laser for conservation. J. Cult. Herit. 2003, 4, 72–76. [Google Scholar] [CrossRef]
- Oujja, M.; Sanz, M.; Rebollar, E.; Marco, J.; Domingo, C.; Pouli, P.; Kogou, S.; Fotakis, C.; Castillejo, M. Wavelength and pulse duration effects on laser induced changes on raw pigments used in paintings. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 102, 7–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oujja, M.; García, A.; Romero, C.; de Aldana, J.R.V.; Moreno, P.; Castillejo, M. UV laser removal of varnish on tempera paints with nanosecond and femtosecond pulses. Phys. Chem. Chem. Phys. 2011, 13, 4625–4631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walczak, M.; Oujja, M.; Crespo-Arcá, L.; García, A.; Méndez, C.; Moreno, P.; Domingo, C.; Castillejo, M. Evaluation of femtosecond laser pulse irradiation of ancient parchment. Appl. Surf. Sci. 2008, 255, 3179–3183. [Google Scholar] [CrossRef]
- Yakovlev, E.; Shandybina, G.; Shamova, A. Modelling of the heat accumulation process during short and ultrashort pulsed laser irradiation of bone tissue. Biomed. Opt. Express 2019, 10, 3030–3040. [Google Scholar] [CrossRef]
- Vasantgadkar, N.A.; Bhandarkar, U.V.; Joshi, S. A finite element model to predict the ablation depth in pulsed laser ablation. Thin Solid Films 2010, 519, 1421–1430. [Google Scholar] [CrossRef]
- Le Harzic, R.; Breitling, D.; Weikert, M.; Sommer, S.; Föhl, C.; Valette, S.; Donnet, C.; Audouard, E.; Dausinger, F. Pulse width and energy influence on laser micromachining of metals in a range of 100fs to 5ps. Appl. Surf. Sci. 2005, 249, 322–331. [Google Scholar] [CrossRef]
- Gamaly, E. The physics of ultra-short laser interaction with solids at non-relativistic intensities. Phys. Rep. 2011, 508, 91–243. [Google Scholar] [CrossRef]
- Pouli, P.; Paun, I.-A.; Bounos, G.; Georgiou, S.; Fotakis, C. The potential of UV femtosecond laser ablation for varnish removal in the restoration of painted works of art. Appl. Surf. Sci. 2008, 254, 6875–6879. [Google Scholar] [CrossRef]
- Rode, A.; Baldwin, K.; Wain, A.; Madsen, N.; Freeman, D.; Delaporte, P.; Luther-Davies, B. Ultrafast laser ablation for restoration of heritage objects. Appl. Surf. Sci. 2007, 254, 3137–3146. [Google Scholar] [CrossRef]
- Lippert, T.; Dickinson, J.T. Chemical and Spectroscopic Aspects of Polymer Ablation: Special Features and Novel Directions. Chem. Rev. 2003, 103, 453–486. [Google Scholar] [CrossRef] [PubMed]
- Paraskevi, P.; Alexandros, S.; Savas, G.; Fotakis, C. Recent Studies of Laser Science in Paintings Conservation and Research. Acc. Chem. Res. 2010, 43, 771–781. [Google Scholar]
- Di Niso, F.; Gaudiuso, C.; Sibillano, T.; Mezzapesa, F.P.; Ancona, A.; Lugarà, P.M. Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates. Opt. Express 2014, 22, 12200–12210. [Google Scholar] [CrossRef]
- Mensink, K.; Penilla, E.H.; Martínez-Torres, P.; Cuando, N.; Mathaudhu, S.; Aguilar, G. High repetition rate femtosecond laser heat accumulation and ablation thresholds in cobalt-binder and binderless tungsten carbides. J. Mater. Process. Technol. 2018, 266, 388–396. [Google Scholar] [CrossRef]
- Phillips, K.C.; Gandhi, H.H.; Mazur, E.; Sundaram, S.K. Ultrafast laser processing of materials: A review. Adv. Opt. Photonics 2015, 7, 684–712. [Google Scholar] [CrossRef]
- Marczak, J.; Koss, A.; Targowski, P.; Góra, M.; Strzelec, M.; Sarzyński, A.; Skrzeczanowski, W.; Ostrowski, R.; Rycyk, A. Characterization of Laser Cleaning of Artworks. Sensors 2008, 8, 6507–6548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Žemaitis, A.; Gaidys, M.; Brikas, M.; Gečys, P.; Račiukaitis, G.; Gedvilas, M. Advanced laser scanning for highly-efficient ablation and ultrafast surface structuring: Experiment and model. Sci. Rep. 2018, 8, 17376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; Garmire, E. Paint removal using lasers. Appl. Opt. 1995, 34, 4409–4415. [Google Scholar] [CrossRef]
- Liu, X.; Du, D.; Mourou, G. Laser ablation and micromachining with ultrashort laser pulses. IEEE J. Quantum Electron. 1997, 33, 1706–1716. [Google Scholar] [CrossRef]
- Gunness, B. Laser cleaning. Corros. Mater. 2018, 43, 46–47. [Google Scholar] [CrossRef]
- Chichkov, B.N.; Momma, C.; Nolte, S.; Von Alvensleben, F.; Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 1996, 63, 109–115. [Google Scholar] [CrossRef]
- Pouli, P.; Oujja, M.; Castillejo, M. Practical issues in laser cleaning of stone and painted artefacts: Optimisation procedures and side effects. Appl. Phys. A 2011, 106, 447–464. [Google Scholar] [CrossRef]
- Al Sekhaneh, W.; El Serogy, A.; El-Bakri, M. Yag-Laser Cleaning of Archaeological Materials in Jordanian Museums. Mediterr. Archaeol. Archaeom. 2015, 15, 157–164. [Google Scholar] [CrossRef]
- Bilmes, G.M.; Freisztav, C.; Schinca, D.; Orsetti, A. Cleaning and characterization of objects of cultural value by laser ablation. In Optical Methods for Arts and Archaeology; SPIE: Bellingham, WA, USA, 2005; Volume 5857, p. 585704. [Google Scholar] [CrossRef] [Green Version]
- Carbonell, E.; De Castro, J.M.B.; Parés, J.M.; Pérez-González, A.; Cuenca-Bescós, G.; Ollé, A.; Mosquera, M.; Huguet, R.; Van Der Made, J.; Rosas, A.; et al. The first hominin of Europe. Nature 2008, 452, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Arsuaga, J.L.; Martinez, I.; Gracia, A.; Carretero, J.-M.; Lorenzo, C.; García, N.; Ortega, A.I. Sima de los Huesos (Sierra de Atapuerca, Spain). The site. J. Hum. Evol. 1997, 33, 109–127. [Google Scholar] [CrossRef] [Green Version]
- Caldararo, N. Effects of cleaning and regard for cleaning goals: Eleven years later. AIC Objects Spec. Group Postprints 2005, 12, 126–153. [Google Scholar]
- Rahman, M.A. Laser Based Intervention in Archaeological Materials and Museum Artifacts. Ph.D. Thesis, University of Burgos, Burgos, Spain, University of Évora, Évora, Portugal, 2022. [Google Scholar]
- Bischoff, J.; Fitzpatrick, J.; León, L.; Arsuaga, J.; Falgueres, C.; Bahain, J.; Bullen, T. Geology and preliminary dating of the hominid-bearing sedimentary fill of the Sima de los Huesos Chamber, Cueva Mayor of the Sierra de Atapuerca, Burgos, Spain. J. Hum. Evol. 1997, 33, 129–154. [Google Scholar] [CrossRef] [PubMed]
- Suarez, C.A.; Morschhauser, E.M.; Suarez, M.B.; You, H.; Li, D.; Dodson, P. Rare earth element geochemistry of bone beds from the Lower Cretaceous Zhonggou Formation of Gansu Province, China. J. Vertebr. Paléontol. 2018, 38, 22–35. [Google Scholar] [CrossRef]
- Liu, J.M. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 1982, 7, 196–198. [Google Scholar] [CrossRef]
- Rode, A.V.; Freeman, D.; Baldwin, K.G.H.; Wain, A.; Uteza, O.; Delaporte, P. Scanning the laser beam for ultrafast pulse laser cleaning of paint. Appl. Phys. A 2008, 93, 135–139. [Google Scholar] [CrossRef]
- Absolonová, K.; Dobisiková, M.; Beran, M.; Zocová, J.; Velemínský, P. The temperature of cremation and its effect on the microstructure of the human rib compact bone. Anthr. Anz. 2012, 69, 439–460. [Google Scholar] [CrossRef]
- Bäuerle, D. Thermal, Photophysical, and Photochemical Processes. In Laser Processing and Chemistry; Springer: Berlin/Heidelberg, Germany, 2000; pp. 13–38. [Google Scholar] [CrossRef]
- Maingi, E.M.; Alonso, M.P.; Angurel, L.A.; Rahman, A.; Chapoulie, R.; Dubernet, S.; de la Fuente, G.F. Historical stained-glass window laser preservation: The heat accumulation challenge. Bol. Soc. Esp. Ceram. Vid. 2022, 61 (Suppl.1), S69–S82. [Google Scholar] [CrossRef]
- Gutiérrez, A.M.; Ruiz, M.N.; Barredo, F.J. Estudio experimental acerca de la pátina que adquieren los materiales de sílex neógeno procedente de la sierra de Atapuerca. Arqueol. Del. Paleolítico. 2017, 5, 35–52. [Google Scholar]
- Della Pepa, G. Microelements for bone boost: The last but not the least. Bone Abstr. 2016, 13, 181–185. [Google Scholar] [CrossRef]
- Sasso, G.D.; Lebon, M.; Angelini, I.; Maritan, L.; Usai, D.; Artioli, G. Bone diagenesis variability among multiple burial phases at Al Khiday (Sudan) investigated by ATR-FTIR spectroscopy. Palaeogeogr. Palaeoclim. Palaeoecol. 2016, 463, 168–179. [Google Scholar] [CrossRef]
- Chang, M.C.; Tanaka, J. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials 2002, 23, 4811–4818. [Google Scholar] [CrossRef] [PubMed]
- Cangueiro, L.T.; Vilar, R.M.C.S.; do Rego, A.M.B.; Muralha, V.S.F. Femtosecond laser ablation of bovine cortical bone. J. Biomed. Opt. Vol. 2012, 17, 125005. [Google Scholar] [CrossRef] [PubMed]
- Rehman, I.; Bonfield, W. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J. Mater. Sci. Mater. Med. 1997, 8, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Eugénio, S.; Sivakumar, M.; Vilar, R.; Rego, A.M. Characterisation of dentin surfaces processed with KrF excimer laser radiation. Biomaterials 2005, 26, 6780–6787. [Google Scholar] [CrossRef] [PubMed]
Emission Characteristics | Femtosecond (fs) Laser | Sub-Nanosecond Laser | Sub-Nanosecond Laser |
---|---|---|---|
Wavelength λ | 343 nm | 1064 nm | 355 nm |
Pulse duration τ | 238 fs | 800 ps | 300 ps |
Pulse repetition rate f | 200 kHz–1 MHz | 200–800 kHz | 200–800 kHz |
Max. average power P | 9.33 W | 8 W | 3 W |
Max. pulse energy Ep | 46.6 µJ | 40 µJ | 15 µJ |
Beam diameter Db | 30 µm | 80 µm | 34 µm (2a) × 29 µm (2b) |
Distance between laser passes d | 15 µm | 20 µm | 20 µm |
Laser | Area | P (W) | f (kHz) | Ep (μJ) | v (mm/s) | Fpulse (J/cm2) | Ipulse (GW/cm2) | Observations |
---|---|---|---|---|---|---|---|---|
Sub-ns n-IR (1064 nm) 800 ps Laser | 1 | 7.24 | 700 | 10.3 | 7000 | 0.20 | 0.25 | Very little cleaning (Figure 3: Area 1). |
2 | 7.24 | 600 | 12.1 | 6000 | 0.24 | 0.30 | Cleaning efficiency is not good (Figure 2a and Figure 3: Area 2). | |
3 | 7.24 | 500 | 14.5 | 5000 | 0.28 | 0.36 | Cleaning efficiency is not good (Figure 3: Area 3). | |
4 | 7.24 | 400 | 18.1 | 4000 | 0.36 | 0.45 | Micro-cracks and melt evidence observed (Figure 2b and Figure 3: Area 4). | |
5 | 6.29 | 400 | 15.7 | 4000 | 0.31 | 0.39 | Cleaning efficiency is not good (Figure 3: Area 5). | |
Sub-ns UV (355 nm) 300 ps Laser | 1 | 0.58 | 300 | 1.9 | 3000 | 0.25 | 0.83 | Cleaning efficiency is not much appreciable. |
2 | 0.49 | 500 | 1.0 | 5000 | 0.12 | 0.42 | No noticeable cleaning. | |
3 | 0.66 | 400 | 1.7 | 4000 | 0.21 | 0.71 | Cleaning efficiency is not good. | |
4 | 0.90 | 300 | 3.0 | 3000 | 0.38 | 1.29 | Structural damages, melt evidence and color changes observed (Figure 2d). | |
5 | 1.02 | 400 | 2.6 | 4000 | 0.32 | 1.09 | Good cleaning (Figure 2c). |
Area | P (W) | Pulse Frequency f (kHz) | EP (μJ) | Fpulse (J/cm2) | Ipulse (TW/cm2) | Observations |
---|---|---|---|---|---|---|
1 | 0.42 | 10 | 2.1 | 0.29 | 1.24 | Good cleaning; hard blackish-yellowish encrustations and staining steadily cleaned (Figure 5 and Figure 6: Laser treated Area 1) |
2 | 0.42 | 10 | 2.1 | 0.29 | 1.24 | Good cleaning; hard blackish encrustations and blackish-yellowish staining steadily cleaned (Figure 5 and Figure 6: Laser treated Area 2) |
3 | 0.54 | 10 | 2.7 | 0.38 | 1.60 | Good cleaning; hard blackish encrustations and yellowish staining progressively cleaned (Figure 5 and Figure 6: Laser treated Area 3) |
4 | 0.66 | 10 | 3.3 | 0.46 | 1.96 | Good cleaning; hard blackish encrustations and yellowish staining mostly cleaned (Figure 5 and Figure 6 Laser treated Area 4) |
5 | 0.80 | 10 | 4.0 | 0.56 | 2.37 | Good cleaning; hard blackish encrustations and blackish-yellowish staining mostly cleaned (Figure 5 and Figure 6: Laser treated Area 5) |
6 | 0.94 | 10 | 4.7 | 0.66 | 2.79 | Structural damages observed; hard blackish encrustations and blackish-yellowish staining mostly cleaned (Figure 5 and Figure 6: Laser treated Area 6) |
Elements (wt%) | Area 1 | Laser Treated Area 1 | Area 2 | Laser Treated Area 2 | Area 3 | Laser Treated Area 3 | Area 4 | Laser Treated Area 4 | Area 5 | Laser Treated Area 5 | Area 6 | Laser Treated Area 6 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | 49.1 | 22.0 | 15.7 | 6.7 | 14.8 | 7.4 | 14.9 | 5.9 | 12.4 | 7.2 | 9.5 | 6.9 |
O | 26.6 | 37.3 | 38.6 | 34.8 | 38.9 | 34.7 | 38.8 | 38.0 | 36.4 | 35.3 | 40.6 | 35.3 |
Fe | 1.4 | 1.7 | 5 | 2.1 | 5.5 | 2.0 | 4.3 | 5.6 | 2.8 | 3.5 | 4.9 | 3.5 |
Na | 0.5 | 0.5 | 0.5 | 0.4 | 0.4 | 0.5 | 0.4 | 0.2 | 0.5 | 0.5 | 0.4 | 0.4 |
Mg | 0.3 | 0.3 | 0.6 | 0.2 | 0.6 | 0.4 | 0.5 | 1.0 | 0.3 | 0.8 | 0.5 | 0.3 |
Al | 2.7 | 3.2 | 6.2 | 2.0 | 6.3 | 2.6 | 4.8 | 8.6 | 2.6 | 5.7 | 5.8 | 3.0 |
Si | 3.8 | 2.9 | 10.2 | 3.1 | 11.5 | 4.3 | 7.8 | 16.9 | 4.2 | 10.6 | 9 | 4.8 |
P | 3.8 | 8.9 | 6.3 | 14.6 | 6.0 | 13.4 | 8.2 | 5.7 | 12.4 | 9.7 | 8.8 | 12.6 |
K | 1.0 | 0.5 | 1.9 | 0.6 | 2.1 | 0.9 | 1.4 | 2.9 | 0.8 | 1.9 | 1.5 | 1.0 |
Ca | 10.3 | 20.5 | 14.5 | 33.0 | 13.3 | 31.2 | 18.4 | 12.6 | 27.1 | 21.9 | 18.5 | 28.8 |
Mn | 0.5 | 0.8 | 0.7 | 0.9 | 0.7 | 0.7 | 0.5 | 1.2 | 0.5 | 1.2 | 0.5 | 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.A.; de la Fuente, G.F.; Miguel Carretero, J.; Abad, M.P.A.; Alcalde, R.A.; Chapoulie, R.; Schiavon, N.; Angurel, L.A. Ultra-Short Pulse Laser Cleaning of Contaminated Pleistocene Bone: A Comprehensive Study on the Influence of Pulse Duration and Wavelength. Heritage 2023, 6, 2503-2519. https://doi.org/10.3390/heritage6030132
Rahman MA, de la Fuente GF, Miguel Carretero J, Abad MPA, Alcalde RA, Chapoulie R, Schiavon N, Angurel LA. Ultra-Short Pulse Laser Cleaning of Contaminated Pleistocene Bone: A Comprehensive Study on the Influence of Pulse Duration and Wavelength. Heritage. 2023; 6(3):2503-2519. https://doi.org/10.3390/heritage6030132
Chicago/Turabian StyleRahman, Md. Ashiqur, Germán F. de la Fuente, José Miguel Carretero, Mª Pilar Alonso Abad, Rodrigo Alonso Alcalde, Rémy Chapoulie, Nick Schiavon, and Luis A. Angurel. 2023. "Ultra-Short Pulse Laser Cleaning of Contaminated Pleistocene Bone: A Comprehensive Study on the Influence of Pulse Duration and Wavelength" Heritage 6, no. 3: 2503-2519. https://doi.org/10.3390/heritage6030132
APA StyleRahman, M. A., de la Fuente, G. F., Miguel Carretero, J., Abad, M. P. A., Alcalde, R. A., Chapoulie, R., Schiavon, N., & Angurel, L. A. (2023). Ultra-Short Pulse Laser Cleaning of Contaminated Pleistocene Bone: A Comprehensive Study on the Influence of Pulse Duration and Wavelength. Heritage, 6(3), 2503-2519. https://doi.org/10.3390/heritage6030132