Rice Yield Forecasting in Northeast China with a Dual-Factor ARIMA Model Incorporating SPEI1-Sep. and Sown Area
Highlights
- Rural financial development plays a significant role in expanding the land scale for grain farmers by alleviating credit constraints, enhancing mechanization, and supporting land consolidation.
- The impact of agricultural credit on land expansion is particularly strong in maize-dominant regions and small-scale farming households, with mechanization serving as a key intermediary.
- The study highlights the importance of enhancing rural financial infrastructure, especially for smallholder farmers in less-developed areas, to ensure affordable access to credit and mechanization.
- It emphasizes the need for targeted financial policies and interventions in specific regions, particularly in areas with maize farming, to support large-scale farming operations and improve food security.
Abstract
1. Introduction
2. Data and Methods
2.1. Data Source
2.2. Research Method
2.2.1. Standardized Precipitation Evapotranspiration Index
2.2.2. Baseline Panel Regression Model
2.2.3. Multiple Forecast Models
3. Empirical Results and Mechanism Analysis
3.1. Baseline Panel Regression Results at the National Level
3.2. Baseline Panel Regression Results for the Three Provinces of Northeast China
3.3. Mechanisms of Climatic Factors During Key Growth Stages
4. Rice Yield Forecast and Validation in the Three Provinces of Northeast China
4.1. Construction of the Dual-Factor Forecasting Index System: Climate and Sown Area
4.2. Comparison of Different Models and Performance Evaluation
4.3. Rice Yield Forecasting Results for the Three Provinces of Northeast China
5. Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SPEI | standardized precipitation evapotranspiration index |
| RF | random forest |
| XGBoost | extreme gradient boosting |
| ARIMA | autoregressive integrated moving average |
| LSTM | long short-term memory networks |
| GRU | gated recurrent unit |
| PDSI | Palmer Drought Severity Index |
| SPI | standardized precipitation index |
References
- Lin, F.; Li, X.; Jia, N.; Feng, F.; Huang, H.; Huang, J.; Fan, S.; Ciais, P.; Song, X.P. The impact of Russia-Ukraine conflict on global food security. Glob. Food Secur. 2023, 36, 100661. [Google Scholar] [CrossRef]
- Rudolfsen, I.; Bartusevic, H.; van Leeuwen, F.; Østby, G. War and food insecurity in Ukraine. World Dev. 2024, 180, 106647. [Google Scholar] [CrossRef]
- Valera, H.G.A.; Mishra, A.K.; Pede, V.O.; Yamano, T.; Dawe, D. Domestic and international impacts of rice export restrictions: The recent case of Indian non-basmati rice. Global Food Secur. 2024, 41, 100754. [Google Scholar] [CrossRef]
- Toromade, A.S.; Soyombo, D.A.; Kupa, E.; Ijomah, T.I. Reviewing the impact of climate change on global food security: Challenges and solutions. Int. J. Appl. Res. Soc. Sci. 2024, 6, 1403–1416. [Google Scholar] [CrossRef]
- Shahbaz, K.; Muzaffar, M. The ripple effects of the Russia-Ukraine war on south Asian economies: Trade, energy, and inflation in a geopolitical crisis. Pak. Soc. Sci. Rev. 2025, 9, 20–35. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, L.; Zhang, J.; Cui, Q.; Liu, Y.; Nie, F.; Hu, Y. Aggravating effects of food export restrictions under climate change on food security: An analysis of rice economy based on alternative indicators. Clim. Change Econ. 2022, 13, 2240006. [Google Scholar] [CrossRef]
- Cui, K.; Shoemaker, S.P. A look at food security in China. Npj Sci. Food 2018, 2, 4. [Google Scholar] [CrossRef]
- Hou, D.; Chen, J.; Dong, J.; Ji, C.; Feng, J.; Du, G.; Yang, L. A 30-m annual paddy rice dataset in northeastern China during period 2000–2023. Sci. Data 2025, 12, 1355. [Google Scholar] [CrossRef]
- Gao, J.; Faye, B.; Tian, R.; Du, G.; Zhang, R.; Biot, F. Understanding the impact of climatic events on optimizing agricultural production in northeast China. Atmosphere 2025, 16, 704. [Google Scholar] [CrossRef]
- Meng, F.; Xie, K.; Liu, P.; Chen, H.; Wang, Y.; Shi, H. Extreme precipitation trends in northeast China based on a non-stationary generalized extreme value model. Geosci. Lett. 2024, 11, 13. [Google Scholar] [CrossRef]
- Jin, Y.; Gardebroek, C.; Heerink, N. The impact of Chinese rice support policies on rice acreages. Food Secur. 2024, 16, 705–719. [Google Scholar] [CrossRef]
- Heerink, N.; Qu, F.; Kuiper, M.; Shi, X.; Tan, S. Policy reforms, rice production and sustainable land use in China: A macro-micro analysis. Agric. Syst. 2007, 94, 784–800. [Google Scholar] [CrossRef]
- Yi, F.; Sun, D.; Zhou, Y. Grain subsidy, liquidity constraints and food security-impact of the grain subsidy program on the grain-sown areas in China. Food Policy 2015, 50, 114–124. [Google Scholar] [CrossRef]
- Hultgren, A.; Carleton, T.; Delgado, M.; Gergel, D.R.; Greenstone, M.; Houser, T.; Hsiang, S.; Jina, A.; Kopp, R.E.; Malevich, S.B.; et al. Impacts of climate change on global agriculture accounting for adaptation. Nature 2025, 642, 644–652. [Google Scholar] [CrossRef]
- Prabnakorn, S.; Maskey, S.; Suryadi, F.X.; de Fraiture, C. Rice yield in response to climate trends and drought index in the mun river basin, Thailand. Sci. Total Environ. 2018, 621, 108–119. [Google Scholar] [CrossRef]
- Sharma, R.K.; Kumar, S.; Vatta, K.; Bheemanahalli, R.; Dhillon, J.; Reddy, K.N. Impact of recent climate change on corn, rice, and wheat in southeastern USA. Sci. Rep. 2022, 12, 16928. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.; Qian, T. A global dataset of palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 2004, 5, 1117–1130. [Google Scholar] [CrossRef]
- Kumar, M.N.; Murthy, C.S.; Sai, M.V.R.S.; Roy, P.S. On the use of standardized precipitation index (SPI) for drought intensity assessment. Meteorol. Appl. 2009, 16, 381–389. [Google Scholar] [CrossRef]
- Kogan, F. World droughts in the new millennium from AVHRR-based vegetation health indices. Eos Trans. AGU 2002, 83, 557–563. [Google Scholar] [CrossRef]
- Wan, Z.; Wang, P.; Li, X. Using modis land surface temperature and normalized difference vegetation index products for monitoring drought in the southern great plains, USA. Int. J. Remote Sens. 2004, 25, 61–72. [Google Scholar] [CrossRef]
- Wu, M.-x.; Lu, H.-q. A modified vegetation water supply index (MVWSI) and its application in drought monitoring over Sichuan and Chongqing, China. J. Integr. Agric. 2016, 15, 2132–2141. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, J.; Li, X.; Zhou, H.; Yang, J.; Geng, G.; An, X.; Liu, L.; Tang, Z. A comprehensively quantitative method of evaluating the impact of drought on crop yield using daily multi-scale SPEI and crop growth process model. Int. J. Biometeorol. 2017, 61, 685–699. [Google Scholar] [CrossRef]
- Feng, K.; Su, X. Spatiotemporal characteristics of drought in the Heihe river basin based on the extreme-point symmetric mode decomposition method. Int. J. Disaster Risk Sci. 2019, 10, 591–603. [Google Scholar] [CrossRef]
- Yu, M.; Li, Q.; Hayes, M.J.; Svoboda, M.D.; Heim, R.R. Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951–2010? Int. J. Climatol. 2014, 34, 545–558. [Google Scholar] [CrossRef]
- Yang, P.; Xia, J.; Zhang, Y.; Zhan, C.; Qiao, Y. Comprehensive assessment of drought risk in the arid region of northwest China based on the global palmer drought severity index gridded data. Sci. Total Environ. 2018, 627, 951–962. [Google Scholar] [CrossRef]
- Lesk, C.; Coffel, E.; Winter, J.; Ray, D.; Zscheischler, J.; Seneviratne, S.I.; Horton, R. Stronger temperature-moisture couplings exacerbate the impact of climate warming on global crop yields. Nat. Food 2021, 2, 683–691. [Google Scholar] [CrossRef]
- Mondal, K.; Kar, R.K.; Chakraborty, A.; Dey, N. Concurrent effect of drought and heat stress in rice (Oryza sativa L.): Physio-biochemical and molecular approach. 3 Biotech 2024, 14, 132. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multi-scalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Sohn, S.J.; Ahn, J.B.; Tam, C.Y. Six month-lead downscaling prediction of winter to spring drought in South Korea based on a multi-model ensemble. Geophys. Res. Lett. 2013, 40, 579–583. [Google Scholar] [CrossRef]
- Xu, L.; Chen, N.; Yang, C.; Zhang, C.; Yu, H. A parametric multivariate drought index for drought monitoring and assessment under climate change. Agric. For. Meteorol. 2021, 310, 108657. [Google Scholar] [CrossRef]
- Han, J.; Singh, V.P. A review of widely used drought indices and the challenges of drought assessment under climate change. Environ. Monit. Assess. 2023, 195, 1438. [Google Scholar] [CrossRef]
- Everingham, Y.; Sexton, J.; Skocaj, D.; Inman-Bamber, G. Accurate prediction of sugarcane yield using a random forest algorithm. Agron. Sustain. Dev. 2016, 36, 27. [Google Scholar] [CrossRef]
- Mishra, P.; Al Khatib, A.M.G.; Yadav, S.; Ray, S.; Lama, A.; Kumari, B.; Sharma, D.; Yadav, R. Modeling and forecasting rainfall patterns in India: A time series analysis with XGBoost algorithm. Environ. Earth Sci. 2024, 83, 163. [Google Scholar] [CrossRef]
- Haider, S.A.; Naqvi, S.R.; Akram, T.; Umar, G.A.; Shahzad, A.; Sial, M.R.; Khaliq, S.; Kamran, M. LSTM neural network based forecasting model for wheat production in Pakistan. Agronomy 2019, 9, 72. [Google Scholar] [CrossRef]
- Leukel, J.; Zimpel, T.; Stumpe, C. Machine learning technology for early prediction of grain yield at the field scale: A systematic review. Comput. Electron. Agric. 2023, 207, 107721. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, X.; Zhang, H.; Wang, R.; Wang, C.; Meng, X.; Zhang, Z.; Wang, S.; Yang, Y.; Han, B.; et al. Mechanisms and early warning of drought disasters: Experimental drought meteorology research over China. Bull. Am. Meteorol. Soc. 2019, 100, 673–687. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, W.; Zhang, Q.; Yao, Y.b. Characteristics of drought vulnerability for maize in the eastern part of Northwest China. Sci. Rep. 2019, 9, 964. [Google Scholar] [CrossRef]
- Thom, H.C. A note on the gamma distribution. Mon. Weather Rev. 1958, 86, 117–122. [Google Scholar] [CrossRef]
- Zhang, Q.; Miao, C.; Su, J.; Gou, J.; Hu, J.; Zhao, X.; Xu, Y. A new high-resolution multi-drought-index dataset for mainland China. Earth Syst. Sci. Data 2025, 17, 837–853. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Almazroui, M.; Salam, M.A.; Mondol, M.A.H.; Rahman, M.M.; Deb, L.; Kundu, P.K.; Zaman, M.A.U.; Islam, A.R.M.T. Spatiotemporal drought analysis in Bangladesh using the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI). Sci. Rep. 2022, 12, 20694. [Google Scholar] [CrossRef]
- Mendicino, G.; Senatore, A. Regionalization of the Hargreaves coefficient for the assessment of distributed reference evapotranspiration in southern Italy. J. Irrig. Drain. Eng. 2013, 139, 349–362. [Google Scholar] [CrossRef]
- Wang, Q.; Zeng, J.; Qi, J.; Zhang, X.; Zeng, Y.; Shui, W.; Xu, Z.; Zhang, R.; Wu, X.; Cong, J. A multi-scale daily SPEI dataset for drought characterization at observation stations over mainland China from 1961 to 2018. Earth Syst. Sci. Data 2021, 13, 331–341. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T.; Chanvichit, P. Historical analysis of the effects of drought on rice and maize yields in Southeast Asia. Resources 2024, 13, 44. [Google Scholar] [CrossRef]
- Nie, T.; Liu, X.; Chen, P.; Jiang, L.; Sun, Z.; Yin, S.; Wang, T.; Li, T.; Du, C. Characterizing droughts during the rice growth period in northeast China based on daily spei under climate change. Plants 2025, 14, 30. [Google Scholar] [CrossRef]
- Sein, Z.M.M.; Zhi, X.; Ogou, F.K.; Nooni, I.K.; Sian, K.T.C.L.K.; Gnitou, G.T. Spatio-temporal analysis of drought variability in myanmar based on the standardized precipitation evapotranspiration index (spei) and its impact on crop production. Agronomy 2021, 11, 1691. [Google Scholar] [CrossRef]
- Ho, S.L.; Xie, M. The use of ARIMA models for reliability forecasting and analysis. Comput. Ind. Eng. 1998, 35, 213–216. [Google Scholar] [CrossRef]
- Pang, R.; Sun, D.; Sun, W. Spatiotemporal Variations in Grain Yields and Their Responses to Climatic Factors in Northeast China During 1993–2022. Land 2025, 14, 1693. [Google Scholar] [CrossRef]
- Li, J.; Xie, Y.; Liu, L.; Song, K.; Zhu, B. Long short-term memory neural network with attention mechanism for rice yield early estimation in qian gorlos county, northeast China. Agriculture 2025, 15, 231. [Google Scholar] [CrossRef]
- Sbai, Z. Deep learning models and their ensembles for robust agricultural yield prediction in saudi arabia. Sustainability 2025, 17, 5807. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Yuan, L.; Wang, Z.; Yang, J.; Zhang, J. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. J. Exp. Bot. 2012, 63, 215–227. [Google Scholar] [CrossRef]




| Variables | Meanings |
|---|---|
| Rice_yield | Actual rice yield by province (unit: 10,000 tons) |
| SPEI1 | SPEI at monthly scale (negative values indicate drought, positive values indicate wetness) |
| Rice_sown_area | Actual sown area for rice planting by province (unit: 1000 hectares) |
| Reservoir_cap | Total water storage capacity of reservoirs in each province (unit: 100 million cubic meters) |
| Machinery_power | Total power of agricultural machinery and equipment in each province (unit: 10,000 kilowatts) |
| Pesticide_use | Total usage of chemical pesticides including insecticides, fungicides, and herbicides in each province (unit: tons) |
| Rural_elec | Total electricity consumption for production and daily life in rural areas of each province (unit: 100 million kWh) |
| Disaster_area | Cumulative area of crop yield reduction caused by natural disasters (droughts and floods) in each province (unit: 1000 hectares) |
| Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 |
|---|---|---|---|---|---|---|
| SPEI1-Apr. | ||||||
| () | ||||||
| SPEI1-May | ||||||
| () | ||||||
| SPEI1-Jun. | ||||||
| () | ||||||
| SPEI1-Jul. | ||||||
| () | ||||||
| SPEI1-Aug. | ||||||
| () | ||||||
| SPEI1-Sep. | ||||||
| () | ||||||
| Rice_sown_area | ||||||
| () | () | () | () | () | () | |
| Machinery_power | ||||||
| () | () | () | () | () | () | |
| Disaster_area | ||||||
| () | () | () | () | () | () | |
| Rural_elec | ||||||
| () | () | () | () | () | () | |
| Reservoir_cap | ||||||
| () | () | () | () | () | () | |
| Pesticide_use | ||||||
| () | () | () | () | () | () | |
| Constant | ||||||
| () | () | () | () | () | () | |
| Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Province FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Observations | 1023 | 1023 | 1023 | 1023 | 1023 | 1023 |
| Variables | Model 7 | Model 8 | Model 9 | Model 10 | Model 11 | Model 12 |
|---|---|---|---|---|---|---|
| SPEI1-Apr. | ||||||
| (1.03) | ||||||
| SPEI1-May | 6.383 | |||||
| (0.38) | ||||||
| SPEI1-Jun. | ||||||
| () | ||||||
| SPEI1-Jul. | ||||||
| () | ||||||
| SPEI1-Aug. | ||||||
| () | ||||||
| SPEI1-Sep. | ||||||
| () | ||||||
| Rice_sown_area | ||||||
| (45.08) | (34.88) | (37.49) | (31.25) | (63.33) | (35.50) | |
| Machinery_power | ||||||
| () | (0.58) | (1.20) | () | (1.04) | (0.62) | |
| Disaster_area | ||||||
| (−3.44) | (−3.28) | (−5.56) | (−4.00) | (−4.48) | (−4.91) | |
| Rural_elec | ||||||
| () | () | () | () | () | () | |
| Reservior_cap | ||||||
| (−2.85) | (−2.92) | (−2.16) | () | () | (−2.33) | |
| Pesticide_use | ||||||
| () | () | () | () | () | () | |
| Constant | ||||||
| (1.73) | (1.61) | (1.28) | (2.21) | (1.76) | (1.41) | |
| Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Province FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Observations | 1023 | 1023 | 1023 | 1023 | 1023 | 1023 |
| Jilin | Heilongjiang | Liaoning | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RF | XGBoost | ARIMA | LSTM | GRU | RF | XGBoost | ARIMA | LSTM | GRU | RF | XGBoost | ARIMA | LSTM | GRU | |
| MAPE (%) | 13.59 | 8.14 | 3.86 | 10.51 | 9.47 | 13.30 | 7.07 | 2.82 | 8.52 | 8.63 | 16.60 | 20.03 | 14.87 | 16.22 | 16.17 |
| RMSE ( tons) | 122.83 | 74.10 | 30.81 | 86.08 | 68.89 | 460.81 | 248.29 | 100.22 | 290.5 | 287.76 | 83.44 | 94.36 | 64.05 | 72.27 | 72.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, S.; Jiang, Z.-Q. Rice Yield Forecasting in Northeast China with a Dual-Factor ARIMA Model Incorporating SPEI1-Sep. and Sown Area. Forecasting 2025, 7, 67. https://doi.org/10.3390/forecast7040067
Nie S, Jiang Z-Q. Rice Yield Forecasting in Northeast China with a Dual-Factor ARIMA Model Incorporating SPEI1-Sep. and Sown Area. Forecasting. 2025; 7(4):67. https://doi.org/10.3390/forecast7040067
Chicago/Turabian StyleNie, Song, and Zhi-Qiang Jiang. 2025. "Rice Yield Forecasting in Northeast China with a Dual-Factor ARIMA Model Incorporating SPEI1-Sep. and Sown Area" Forecasting 7, no. 4: 67. https://doi.org/10.3390/forecast7040067
APA StyleNie, S., & Jiang, Z.-Q. (2025). Rice Yield Forecasting in Northeast China with a Dual-Factor ARIMA Model Incorporating SPEI1-Sep. and Sown Area. Forecasting, 7(4), 67. https://doi.org/10.3390/forecast7040067

